1. Let $U = a(a+b)^*a$. Which of the following words belong to U^{ω} ?

- i. $(abaabba)^{\omega}$
- ii. $(ab)^{\omega}$
- iii. a^{ω}

Solution: i. and iii. belong to U^{ω} . Note that for a word to belong to U^{ω} , it needs to have infinitely many *aa*. This shows $(ab)^{\omega}$ does not belong to U^{ω} .

- 2. Let $U = a(a + b)^*a$. Which of the following words belong to $\lim U$?
 - i. $(abaabba)^{\omega}$
 - ii. $(ab)^{\omega}$
 - iii. a^{ω}

Solution: If a word starts with a and contains infinitely many a, then it belongs to $\lim U$. All the above words belong to $\lim U$.

3. Give an example of a regular language U such that $U^{\omega} \not\subseteq \lim U$.

Solution: Pick $U = ab^*$. Consider the word $(ab)^{\omega}$. Clearly, $(ab)^{\omega} \in U^{\omega}$, but $(ab)^{\omega} \notin \lim U$.

- 4. Prove or disprove the following equations. Justify your answer: if you think the equation is true, provide a proof; otherwise give a specific counterexample to the equation. In the following, fix a finite alphabet Σ and assume that U and V are subsets of Σ^* . The notation V^+ stands for $V^* \setminus \epsilon$.
 - i. $(U \cup V)^{\omega} = U^{\omega} \cup V^{\omega}$
 - ii. $\lim(U \cup V) = \lim U \cup \lim V$
 - iii. $U^{\omega} = \lim(U^+)$
 - iv. $\lim(U \cdot V^+) = U \cdot V^{\omega}$

Solution:

- i. Clearly, $U^{\omega} \subseteq (U \cup V)^{\omega}$ and $V^{\omega} \subseteq (U \cup V)^{\omega}$. Therefore $U^{\omega} \cup V^{\omega} \subseteq (U \cup V)^{\omega}$. However, it is not necessary that $(U \cup V)^{\omega} \subseteq U^{\omega} \cup V^{\omega}$. Take $U = \{a\}, V = \{b\}$. Then $(U \cup V)^{\omega}$ is the set of all infinite words formed using $\{a, b\}$. But, $U^{\omega} \cup V^{\omega}$ is the set of two ω -words $\{a^{\omega}, b^{\omega}\}$.
- ii. This statement is true.

We first show that $\lim(U \cup V) \subseteq \lim U \cup \lim V$. Pick an ω -word $\alpha \in \lim(U \cup V)$. By definition, there exist infinitely many indices i such that $\alpha(0)\alpha(1)\cdots\alpha(i) \in U \cup V$, which implies that infinitely many of these indices come from either U or either V. This proves $\alpha \in \lim U \cup \lim V$.

The other direction $\lim U \cup \lim V \subseteq \lim (U \cup V)$ follows directly from definition.

iii. We show that $U^{\omega} \subseteq \lim(U^+)$ for every U, but there exist U such that $\lim(U^+) \not\subseteq U^{\omega}$. $U^{\omega} \subseteq \lim(U^+)$: Pick $\alpha \in U^{\omega}$. Then α is of the form $u_0 u_1 u_2 \ldots$ where each $u_i \in U$. Note that for each i, the word $u_0 u_1 \ldots u_i \in U^+$. This gives infinitely many i such that the prefix $u_0 \ldots u_i \in U^+$. Hence $\alpha \in \lim U^+$. $\lim(U^+) \not\subseteq U^{\omega}$: Take $U = ab^*$. The word $ab^{\omega} \in \lim(U^+)$ as $ab^i \in U$ (and hence $ab^i \in U^+$) for every

 $\lim(U^+) \not\subseteq U^{\omega}$: Take $U = ab^*$. The word $ab^{\omega} \in \lim(U^+)$ as $ab^{\varepsilon} \in U$ (and hence $ab^{\varepsilon} \in U^+$) for every i. However, $ab^{\omega} \notin U^{\omega}$.

iv. Similar to previous question. We can show that $U.V^{\omega} \subseteq \lim(U.V^+)$. However, $\lim(U.V^+) \not\subseteq U.V^{\omega}$: take $U = \{\epsilon\}$ and $V = ab^*$ and use previous answer.

- 5. Let $\Sigma = \{a, b, c\}$. Give Büchi automata (deterministic or non-deterministic) for the following languages:
 - i. set of all ω -words where abc occurs at least once
 - ii. set of all ω -words where abc occurs infinitely often
 - iii. set of all ω -words where abc occurs finitely often

Solution:

NBA for i.

6. Let $\Sigma = \{a, b\}$. Give a Büchi automaton for the following language:

 $\{ \alpha \in \Sigma^{\omega} \mid \forall i \text{ if } \alpha(i) = a \text{ then } \exists j > i \text{ s.t. } \alpha(j) = b \}$

Recall that we write α as $\alpha(0)\alpha(1)\alpha(2)\dots$ where $\alpha(i)$ denotes the letter at the i^{th} position.

Solution:

7. Suppose U is the regular language $a(a+b)^*a$. What is the NBA for U^{ω} ?

Solution:

8. Let L be an ω -language. Suppose L is of the form U^{ω} for some U. Does it mean that there is no deterministic Büchi automaton which can recognize L?

Solution: No. Consider $L = \Sigma^{\omega}$. There is also a deterministic Büchi automaton for it.

9. Let \mathcal{A} be an NFA. Let \mathcal{B} be an NBA whose structure is identical to \mathcal{A} . Answer the following:

- i. Is $\lim(\mathcal{L}(\mathcal{A})) \supseteq \mathcal{L}(\mathcal{B})$?
- ii. Is $\lim(\mathcal{L}(\mathcal{A})) \subseteq \mathcal{L}(\mathcal{B})$?

Solution:

- i. It is true that $\mathcal{L}(\mathcal{B}) \subseteq \lim(\mathcal{L}(\mathcal{A}))$. Pick a word $\alpha \in \mathcal{L}(\mathcal{B})$. It has a run $\rho : q_0 \to q_1 \to \cdots$ which visits accepting states infinitely often. Each prefix of word corresponding to $q_0 \to q_1 \to \cdots \to q_i$ such that q_i is an accepting state gives a word in $\mathcal{L}(\mathcal{A})$. This shows that $\alpha \in \lim(\mathcal{L}(\mathcal{A}))$.
- ii. No, this is not true. Consider the following automaton: By looking at it as NFA \mathcal{A} , we get that

 $\mathcal{L}(\mathcal{A})$ as the set of all words ending in b. By looking at it as NBA \mathcal{B} , we get $\mathcal{L}(\mathcal{B})$ to be the set of all ω -words that contain a only finitely often. The word $(ab)^{\omega}$ belongs to $\lim(\mathcal{L}(\mathcal{A}))$, but does not belong to $\mathcal{L}(\mathcal{B})$.

10. Let UP be the set of all ω -words over $\{0,1\}$ that are ultimately periodic. Show that UP is not ω -regular.

Solution: Consider the complement of UP (which is the set of all words that are not ultimately periodic), denoted as UP^c . Suppose UP is ω -regular. Then UP^c is also ω -regular. But we know that every non-empty ω -regular language has an ultimately periodic word. However, UP^c does not have an ultimately periodic word. This leads to a contradiction. Hence UP is not ω -regular.