1. Let $U=a(a+b)^{*} a$. Which of the following words belong to U^{ω} ?
i. $(a b a a b b a)^{\omega}$
ii. $(a b)^{\omega}$
iii. a^{ω}

Solution: i. and iii. belong to U^{ω}. Note that for a word to belong to U^{ω}, it needs to have infinitely many $a a$. This shows $(a b)^{\omega}$ does not belong to U^{ω}.
2. Let $U=a(a+b)^{*} a$. Which of the following words belong to $\lim U$?
i. $(a b a a b b a)^{\omega}$
ii. $(a b)^{\omega}$
iii. a^{ω}

Solution: If a word starts with a and contains infinitely many a, then it belongs to $\lim U$. All the above words belong to $\lim U$.
3. Give an example of a regular language U such that $U^{\omega} \nsubseteq \lim U$.

Solution: Pick $U=a b^{*}$. Consider the word $(a b)^{\omega}$. Clearly, $(a b)^{\omega} \in U^{\omega}$, but $(a b)^{\omega} \notin \lim U$.
4. Prove or disprove the following equations. Justify your answer: if you think the equation is true, provide a proof; otherwise give a specific counterexample to the equation. In the following, fix a finite alphabet Σ and assume that U and V are subsets of Σ^{*}. The notation V^{+}stands for $V^{*} \backslash \epsilon$.
i. $(U \cup V)^{\omega}=U^{\omega} \cup V^{\omega}$
ii. $\lim (U \cup V)=\lim U \cup \lim V$
iii. $U^{\omega}=\lim \left(U^{+}\right)$
iv. $\lim \left(U \cdot V^{+}\right)=U \cdot V^{\omega}$

Solution:

i. Clearly, $U^{\omega} \subseteq(U \cup V)^{\omega}$ and $V^{\omega} \subseteq(U \cup V)^{\omega}$. Therefore $U^{\omega} \cup V^{\omega} \subseteq(U \cup V)^{\omega}$. However, it is not necessary that $(U \cup V)^{\omega} \subseteq U^{\omega} \cup V^{\omega}$. Take $U=\{a\}, V=\{b\}$. Then $(U \cup V)^{\omega}$ is the set of all infinite words formed using $\{a, b\}$. But, $U^{\omega} \cup V^{\omega}$ is the set of two ω-words $\left\{a^{\omega}, b^{\omega}\right\}$.
ii. This statement is true.

We first show that $\lim (U \cup V) \subseteq \lim U \cup \lim V$. Pick an ω-word $\alpha \in \lim (U \cup V)$. By definition, there exist infinitely many indices i such that $\alpha(0) \alpha(1) \cdots \alpha(i) \in U \cup V$, which implies that infinitely many of these indices come from either U or either V. This proves $\alpha \in \lim U \cup \lim V$. The other direction $\lim U \cup \lim V \subseteq \lim (U \cup V)$ follows directly from definition.
iii. We show that $U^{\omega} \subseteq \lim \left(U^{+}\right)$for every U, but there exist U such that $\lim \left(U^{+}\right) \nsubseteq U^{\omega}$.
$U^{\omega} \subseteq \lim \left(U^{+}\right):$Pick $\alpha \in U^{\omega}$. Then α is of the form $u_{0} u_{1} u_{2} \ldots$ where each $u_{i} \in U$. Note that for each i, the word $u_{0} u_{1} \ldots u_{i} \in U^{+}$. This gives infinitely many i such that the prefix $u_{0} \ldots u_{i} \in U^{+}$. Hence $\alpha \in \lim U^{+}$.
$\lim \left(U^{+}\right) \nsubseteq U^{\omega}$: Take $U=a b^{*}$. The word $a b^{\omega} \in \lim \left(U^{+}\right)$as $a b^{i} \in U$ (and hence $a b^{i} \in U^{+}$) for every i. However, $a b^{\omega} \notin U^{\omega}$.
iv. Similar to previous question. We can show that $U . V^{\omega} \subseteq \lim \left(U . V^{+}\right)$. However, $\lim \left(U . V^{+}\right) \nsubseteq U . V^{\omega}$: take $U=\{\epsilon\}$ and $V=a b^{*}$ and use previous answer.
5. Let $\Sigma=\{a, b, c\}$. Give Büchi automata (deterministic or non-deterministic) for the following languages:
i. set of all ω-words where $a b c$ occurs at least once
ii. set of all ω-words where $a b c$ occurs infinitely often
iii. set of all ω-words where $a b c$ occurs finitely often

Solution:

NBA for i.

NBA for ii.

NBA for iii.
6. Let $\Sigma=\{a, b\}$. Give a Büchi automaton for the following language:

$$
\left\{\alpha \in \Sigma^{\omega} \mid \forall i \text { if } \alpha(i)=a \text { then } \exists j>i \text { s.t. } \alpha(j)=b\right\}
$$

Recall that we write α as $\alpha(0) \alpha(1) \alpha(2) \ldots$ where $\alpha(i)$ denotes the letter at the $i^{\text {th }}$ position.

Solution:

7. Suppose U is the regular language $a(a+b)^{*} a$. What is the NBA for U^{ω} ?

Solution:

NFA for $a \Sigma^{*} a$

8. Let L be an ω-language. Suppose L is of the form U^{ω} for some U. Does it mean that there is no deterministic Büchi automaton which can recognize L ?

Solution: No. Consider $L=\Sigma^{\omega}$. There is also a deterministic Büchi automaton for it.
9. Let \mathcal{A} be an NFA. Let \mathcal{B} be an NBA whose structure is identical to \mathcal{A}. Answer the following:
i. Is $\lim (\mathcal{L}(\mathcal{A})) \supseteq \mathcal{L}(\mathcal{B})$?
ii. Is $\lim (\mathcal{L}(\mathcal{A})) \subseteq \mathcal{L}(\mathcal{B})$?

Solution:

i. It is true that $\mathcal{L}(\mathcal{B}) \subseteq \lim (\mathcal{L}(\mathcal{A}))$. Pick a word $\alpha \in \mathcal{L}(\mathcal{B})$. It has a run $\rho: q_{0} \rightarrow q_{1} \rightarrow \cdots$ which visits accepting states infinitely often. Each prefix of word corresponding to $q_{0} \rightarrow q_{1} \rightarrow \cdots \rightarrow q_{i}$ such that q_{i} is an accepting state gives a word in $\mathcal{L}(\mathcal{A})$. This shows that $\alpha \in \lim (\mathcal{L}(\mathcal{A}))$.
ii. No, this is not true. Consider the following automaton: By looking at it as NFA \mathcal{A}, we get that

$\mathcal{L}(\mathcal{A})$ as the set of all words ending in b. By looking at it as NBA \mathcal{B}, we get $\mathcal{L}(\mathcal{B})$ to be the set of all ω-words that contain a only finitely often. The word $(a b)^{\omega}$ belongs to $\lim (\mathcal{L}(\mathcal{A}))$, but does not belong to $\mathcal{L}(\mathcal{B})$.
10. Let $U P$ be the set of all ω-words over $\{0,1\}$ that are ultimately periodic. Show that $U P$ is not ω-regular.

Solution: Consider the complement of $U P$ (which is the set of all words that are not ultimately periodic), denoted as $U P^{c}$. Suppose $U P$ is ω-regular. Then $U P^{c}$ is also ω-regular. But we know that every non-empty ω-regular language has an ultimately periodic word. However, $U P^{c}$ does not have an ultimately periodic word. This leads to a contradiction. Hence $U P$ is not ω-regular.

