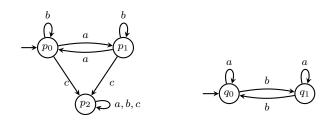
1. Consider the following functions f() and g().

f(){ w = 5; w = 2*z + 2; } g(){ z = w+1; z = 3*z - w; print(z); }

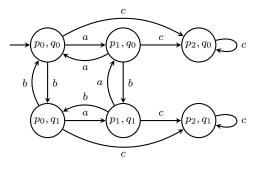
We start with w and z set to 0 and execute f() and g() in parallel. What are the possible values printed by g()?

Solution: The possible values are : $\{-1, -2, 3, 4, 7, 13\}$, corresponding to the interleavings below.

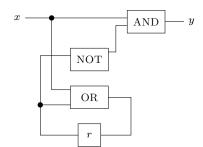
2. Given below are two transition systems which are executed in parallel. The two systems synchronize over shared actions $\{a, b\}$. Draw the transition system representing the joint behaviour of the concurrent system.



Solution:



3. Consider the following sequential circuit: Use NuSMV tool to check if the above circuit satisfies the



property: in every execution, the register r becomes 0 at some point of time (excluding the initial value).

Solution:

MODULE main
VAR
x: boolean;
r: boolean;
DEFINE
y := x & (!r) ;
ASSIGN
next(r) := x | r ;

Property to be checked:

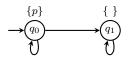
```
XF!r
```

4. Let ϕ be a property.

- (a) Can a (non-empty) transition system without terminal states satisfy both ϕ and $\neg \phi$?
- (b) Is it possible that a transition system satisfies neither ϕ nor $\neg \phi$?

Solution: Each property ϕ corresponds to a language L_{ϕ} over infinite words. A transition system TS satisfies ϕ if $Traces(TS) \subseteq L_{\phi}$.

- (a) No, a transition system cannot satisfy both ϕ and its negation $\neg \phi$. The language $L_{\neg \phi}$ is the complement of L_{ϕ} . Since the transition system does not have terminal states, there is at least one infinite word in Traces(TS). This word cannot belong to both L_{ϕ} and $L_{\neg \phi}$.
- (b) Yes, it is possible that a transition system satisfies neither ϕ nor $\neg \phi$. Consider the following transition system: The transition system given below neither satisfies $\mathbf{G}p$ nor $\neg(\mathbf{G}p)$ (Why?).



5. Which of the following are safety properties?

i)
$$\boldsymbol{G} p$$
 ii) $\boldsymbol{F} p$ iii) $\boldsymbol{GF} p$

where p is an atomic proposition.

Solution:

G p is a safety property. The set of bad prefixes is the set of all words containing $\neg p$.

F p is not a safety property. Suppose F p is a safety property. Then, there exists a set of bad prefixes B such that each word in F p contains no prefix from B. Let $w \in B$. Consider the word $\rho := w\{p\}\{\}\{\}\}\dots$. The word $\rho \in F p$, but contains a bad prefix w. This leads to a contradiction.

 $\boldsymbol{GF}\,p$ is not a safety property. Similar reasoning as above.