
Automata and Reactive Systems

Lecture WS 2002/2003

Prof. Dr. W. Thomas

RWTH Aachen

Preliminary version

(Last change March 20, 2003)

Translated and revised by S. N. Cho and

S. Wöhrle

German version by M. Gründler, C. Löding,

and W. Thomas



Note

These lecture notes have not yet undergone a thorough revision. They may contain mistakes
of any kind. Please report any bugs you find, comments, and proposals on what could be
improved to skript@i7.informatik.rwth-aachen.de .



Contents

Introduction 1

1 Omega-Automata: Introduction 3
1.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Büchi Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Elementary Constructions of Omega-Automata . . . . . . . . . . . . . . . . . 6
1.4 Characterization of Büchi Recognizable Omega-Languages . . . . . . . . . . . 8
1.5 Closure Properties of Büchi Recognizable Omega-Languages . . . . . . . . . . 10
1.6 Generalized Büchi Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Temporal Logic and Model Checking 13
2.1 The Model-Checking Problem and Sequence Properties . . . . . . . . . . . . 13
2.2 Kripke Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Linear-Time Temporal Logic LTL . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 LTL-Model-Checking Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 From LTL to Büchi Automata . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6 S1S (Second-Order Theory of One Successor) . . . . . . . . . . . . . . . . . . 28
2.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Theory of Deterministic Omega-Automata 35
3.1 Deterministic Omega-Automata . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 McNaughton’s Theorem, Safra Construction . . . . . . . . . . . . . . . . . . . 36
3.3 Complexity Analysis of the Safra Construction . . . . . . . . . . . . . . . . . 39
3.4 Logical Application: From S1S to Büchi Automata . . . . . . . . . . . . . . . 43
3.5 Complexity of Logic-Automata Translations . . . . . . . . . . . . . . . . . . . 45
3.6 Classification of Omega-Regular Languages . . . . . . . . . . . . . . . . . . . 46
3.7 Deciding the Level of Languages . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.8 Staiger-Wagner Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.9 Parity Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.10 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Games and Winning Strategies 65
4.1 Basic Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2 Special Strategies, Strategy Automata . . . . . . . . . . . . . . . . . . . . . . 66
4.3 Guaranty and Safety Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.4 Weak Parity and Staiger-Wagner Games . . . . . . . . . . . . . . . . . . . . . 70



4 CONTENTS

4.5 Game Reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.6 Büchi Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.7 Parity Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.8 Muller Games and LAR-Construction . . . . . . . . . . . . . . . . . . . . . . 81
4.9 Optimality of the LAR-Construction . . . . . . . . . . . . . . . . . . . . . . . 85
4.10 Minimization of Strategy Automata . . . . . . . . . . . . . . . . . . . . . . . 86
4.11 Strategy Improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.12 Rabin and Streett Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.13 Solving Games with Logical Winning Conditions . . . . . . . . . . . . . . . . 95
4.14 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5 Tree Automata and the Logic S2S 101
5.1 Trees and Tree Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.2 Parity tree automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.3 Tree Automata and Games, Complementation . . . . . . . . . . . . . . . . . . 106
5.4 Towards the Nonemptiness Problem . . . . . . . . . . . . . . . . . . . . . . . 109
5.5 S2S and Rabin’s Tree Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6 Decidability of Monadic Theories 117
6.1 Towards More General Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.2 Unravelling Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.3 Propositional Dynamic Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.4 Tree Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7 Infinite Games on Infinite Graphs 135
7.1 Gale-Stewart Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.2 Determinacy of Open and Closed Games . . . . . . . . . . . . . . . . . . . . . 141
7.3 The Borel Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
7.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149



Introduction

Reactive systems consist of several components which continuously interact with each other
(and, most of the time, do not terminate). In the most basic case such a system would consist
of two components, namely a controller program and its environment.

Example 0.1.

1. Signal-box:
Controller program vs. Railway service (environment)

2. Operating system:
Operating system program vs. User (environment)

�

A reactive system is modeled by a two-player-game - Player 0 (she) vs. Player 1 (he). Infinite
games are generated by alternate actions which do not need to be strictly rotational.

In order to decide on a winner, a winning condition for infinite games needs to be formu-
lated (e.g. for Player 0). It’s the goal of Player 0 to construct a winning strategy which, for
every possible course of actions by Player 1, results in fulfilling the winning condition, and
therefore in winning the game for Player 0.

Example 0.2. Modeling of an elevator control for 10 levels

Player 0: Elevator control

Player 1: User

The system state is described by the following properties:

1. A set of level numbers that are requested by pushing a button (either on the re-
spective floor or in the elevator). This set is represented by a bitvector (b1, . . . , b10)
(with bi = 1 ⇔ level i is requested.)

2. A level number for the position of the elevator (i ∈ {1, . . . , 10}).
3. An indicator which (0|1) shows whose turn it is.

State space: Let B = {0, 1}. The state space of the system is

Z = B10 × {1, . . . , 10} × {0, 1}.

We note: |Z| ∼= 20000 states



2 CONTENTS

Transitions: We define two different kinds of transition. They lead from the 0-states, where
it is the turn of Player 0 (elevator controller), to 1-states, where it is the users turn,
and vice versa.

door closes, elevator moves,

delivers people

Player 0 Player 1

b1, . . . , b10, i, 0 b′1 . . . b
′

10, i
′, 1

with i 6= i′, b′i′ = 0, b′j = bj for j 6= i′

Player 1 Player 0

users

push buttons

b1, . . . , b10, i, 1 b′1 . . . b
′

10, i, 0

with bj ≤ b′j for every j ∈ {1, . . . , 10}.
State space and transitions define the so called “system graph” or “game graph”.

Examples for winning conditions:

1. Every requested floor is served at some time.

2. The elevator does not skip requested floors (bi = 1  bi = 0), except on the way
to level 10 (on the way to the top management :-)

3. On the way to level 10 the elevator stops at most one time.

4. The elevator always returns to level 1.

5. . . .

�

Important questions that need to be answered during the course of this lecture are:

• Can any controller program fulfill all demands? (Then we would have an implementation
of a winning strategy.)

• Does a finite memory suffice and how large does it have to be?

• Can we automatically derive a controller program from the system graph and the win-
ning conditions?



Chapter 1

Omega-Automata: Introduction

1.1 Terminology

Σ denotes a finite alphabet.
B = {0, 1} is the Boolean alphabet.
a, b, c, . . . stand for letters of an alphabet.
Σ∗ is the set of finite words over Σ.
u, v, w, . . . stand for finite words.
ε is the empty word.
Σ+ = Σ∗ \ {ε} is the set of non-empty words over Σ.
α, β, γ, . . . denote ω-words or infinite words where an ω-word

over Σ is a sequence α = α(0)α(1) . . . with α(i) ∈ Σ for all i ∈ N.
Σω is the set of infinite words over Σ.
Σ∞ = Σ∗ ∪ Σω

U, V,W, . . . denote sets of finite words (∗-languages) ⊆ Σ∗.
K,L,M, . . . denote sets of infinite words (ω-languages) ⊆ Σω.

We write u · v or simply uv for the concatenation of the words u and v. Similarly, the
concatenation of the word u and the ω-word α is the ω-word uα.

The concatenation of two languages is defined likewise:

U · V = {uv | u ∈ U, v ∈ V }
U · L = {uα | u ∈ U,α ∈ L}

We consider three different transitions from a language U ⊆ Σ∗ to an ω-language, namely to
U · Σω, Uω, and limU .

1. U · Σω := {α ∈ Σω | α = uβ with u ∈ U, β ∈ Σω}
Visualization:

α

∈ U

arbitrary



4 CHAPTER 1. OMEGA-AUTOMATA: INTRODUCTION

Example 1.1. Let U1 = 0110∗ + (00)+. We obtain

U1 · Σω = {α ∈ Σω | α starts with 00 or 011}

�

2. Uω := {α ∈ Σω | α = u0u1u2 . . . with ui ∈ U}
Visualization:

∈ U
∈ U ∈ U

∈ U

α

Notice that Uω = (U \ {ε})ω

Example 1.2. Let Σ = B, U is given by the regular expression

0110∗ + 00

Then Uω contains the word
α = 0001100110000000 . . .

Another word in Uω

α = 01100110001100001 . . .

�

3. limU (or ~U) := {α ∈ Σω | there exist infinitely many i with α(0) . . . α(i) ∈ U}.
The expression “there exist infinitely many i with α(0) . . . α(i) ∈ U” can also be written
in short as “∃ωi α[0, i] ∈ U”, where α[i, j] = α(i) . . . α(j).

Visualization:

α

∈ U

Example 1.3. Claim: limU1 contains just the two ω-words 0110000 . . . (in short 0110ω) and
0000000 . . . (in short 0ω).

The word 0110ω is an element of limU1, since 011, 0110, 011000, · · · ∈ U1. The word 0ω is
an element of limU1, since 00, 0000, 000000, · · · ∈ U1.

Now, let α ∈ limU1, i.e. there exist infinitely many α-prefixes in U1. Now look for the
first α-prefix v in U1.

Case 1: v = 011. Then all longer prefixes in U1 have to be of the form 0110∗, thus α = 0110ω.

Case 2: v = 00. Then every extension of v in U1 has to be of the form (00)∗, thus α = 0ω.

�



1.2. BÜCHI AUTOMATA 5

1.2 Büchi Automata

Definition 1.4. A Büchi automaton (to put it more precisely, a finite Büchi automaton) is
of the form

A = (Q,Σ, q0, δ or ∆, F )

with a finite set of states Q, input alphabet Σ, initial state q0 ∈ Q, a deterministic (and hence
complete) transition function δ : Q× Σ → Q or a transition relation ∆ ⊆ Q× Σ ×Q, and a
set of final states F . In the case of δ we have a deterministic Büchi automaton, in the case of
∆ a nondeterministic Büchi automaton.

Definition 1.5. (Run of a Büchi Automaton)

1. Let A = (Q,Σ, q0,∆, F ) be a nondeterministic Büchi automaton.

A run of A on α is a sequence of states ρ = ρ(0)ρ(1) · · · with ρ(0) = q0 and (ρ(i), α(i), ρ(i+
1)) ∈ ∆ for i ≥ 0.

2. Let A = (Q,Σ, q0, δ, F ) be a deterministic Büchi automaton. As it is usual, we expand
δ to δ∗ : Q× Σ∗ → Q by adding δ∗(q, ε) = q and δ∗(q, aw) = δ∗(δ(q, a), w).

The unambiguous run of A on α is the sequence of states ρ with ρ(0) = q0, ρ(1) =
δ(q0, α(0)), ρ(2) = δ∗(q0, α(0)α(1)), in general ρ(i) = δ∗(q0, α(0) . . . α(i− 1)).

Deterministic Büchi automata can be seen as special cases of nondeterministic ones where
(p, a, q) ∈ ∆ ⇔ δ(p, a) = q. To simplify our notation, we just write A = (Q,Σ, q0,∆, F ) for
a Büchi automaton if we don’t care whether it is deterministic or not, and just speak of a
Büchi automaton in this case.

Example 1.6. Given the following automaton A0:

q0

q2

q4a,b
q1

q3

a,b
a

a

a

a

b

b

b

with F = {q1, q3} and the ω-word α = abbaabababa . . . , some of the possible runs of A0 on α
are:

a b b a a b a b a b . . .
q0 q0 q0 q0 q0 q0 q0 q2 q3 q2 q3 . . .
q0 q0 q0 q0 q1 q1 q4 q4 q4 q4 q4 . . .
q0 q0 q0 q0 q0 q2 q3 q2 q3 q2 q3 . . .

�

Definition 1.7. Let A = (Q,Σ, q0,∆, F ) be a Büchi automaton. We say, that

A accepts α⇔ ex. a run ρ of A on α with ∃ωi ρ(i) ∈ F .

Notice, that, for a deterministic Büchi automaton, the unambiguous run ρ has to fulfill
this condition.



6 CHAPTER 1. OMEGA-AUTOMATA: INTRODUCTION

Definition 1.8. Let A = (Q,Σ, q0,∆, F ) be a Büchi automaton. Then

L(A) := {α ∈ Σω | A accepts α}

is the ω-language recognized by A. An ω-language L ⊆ Σω is Büchi recognizable (deter-
ministically Büchi recognizable), if a corresponding Büchi automaton (deterministic Büchi
automaton) A with L = L(A) exists.

Example 1.9. Let A0 be the nondeterministic Büchi automaton over Σ = {a, b} as defined
in example 1.6.

L(A0) = {α ∈ Σω | from some point in α onwards, there is only the letter a
or the sequence ab }.

�

1.3 Elementary Constructions of Omega-Automata

We will now, for the case of U ⊆ Σ∗ being regular, specify ω-automata for the ω-languages
Uω and limU .

Theorem 1.10. U ⊆ Σ∗ is regular ⇒ a) Uω is Büchi recognizable
b) limU is deterministically Büchi recognizable

Proof

a) Consider an NFA A = (Q,Σ, q0,∆, F ) that recognizes U .

Idea: Instead of a transition to F , allow a return to q0 and declare q0 as a final state.
But there will be a problem with this idea if a return to q0 is already allowed in the
original NFA.

q0

Fb

c

a

Preparation: Transform A into a standardized NFA A′ that has no transitions to the
initial state.

Construction: Introduce a new initial state q′0 and add a transition (q′0, a, q) for every
transition (q0, a, q). The final states remain untouched. But if q0 is a final state, add q′0
to F .

q0 q′0 q0

a

bb

a

b

a

The construction of the Büchi automaton for Uω for a given standardized NFA A =
(Q,Σ, q0,∆, F ) is done in two steps:



1.3. ELEMENTARY CONSTRUCTIONS OF OMEGA-AUTOMATA 7

• For every q′ ∈ F replace every transition (q, a, q′) with a new transition (q, a, q0).

• Fix the set of final states of the Büchi automaton to {q0}.

We thereby obtain the Büchi automaton B. The automaton B accepts α⇔ (+) there
exists a run of B on α that enters q0 infinitely often, e.g. after the segments u0, u1, . . . .
According to the construction, ui ∈ U holds and therefore α ∈ Uω.

Conversely, let α ∈ Uω, α = u0u1u2 . . . with ui ∈ U . Then A : q0
ui−→ F holds and

according to the construction B : q0
ui−→ q0. Thus there exists a run that fits (+), and

consequently B accepts the ω-word α.

b) Let U be recognized by the DFA A = (Q,Σ, q0, δ, F ) . Use A as a deterministic Büchi
automaton, now called B.

B accepts α
Def⇐⇒ The unambiguous run of B on α enters F infinitely often.
⇐⇒ ∃ωi : A reaches a state in F after α(0) . . . α(i)
⇐⇒ ∃ωi : α(0) . . . α(i) ∈ U (according to the def. of A)
⇐⇒ α ∈ limU

�

Note that the converse of Theorem 1.10(b) also holds. Every ω-language recognized by a
deterministic Büchi automaton is of the form limU for a regular language U .

Theorem 1.11. There is an ω-language which is Büchi recognizable but not recognizable by
any deterministic Büchi automaton.

Proof Consider the language

L = {α ∈ Bω | from some point in α onwards only zeros},

thus L = (0 + 1)∗0ω. A matching automaton could look like this:

0,1

0

0

Assume: L is recognized by det. Büchi Automata A = (Q,Σ, q0, δ, F ) . Then the following
holds:

A on 0ω infinitely often enters final states, after 0n1 for the first time. A on 0n110ω infinitely
often enters final states, before the last 1 for the first time, and after processing 0n110n2 a
second time. A on 0n110n210ω infinitely often enters final states, before the last 1 for the first
time, before the second 1 a second time, and a third time after processing 0n110n210n3 .

Continuing this we obtain an ω-word 0n110n210n310n4 . . . which causes A to enter final
states after each 0-block. A therefore accepts this ω-word, although it contains infinitely
many 1s. Contradiction. �



8 CHAPTER 1. OMEGA-AUTOMATA: INTRODUCTION

1.4 Characterization of Büchi Recognizable Omega-Languages

Theorem 1.12. (Characterization of the Büchi recognizable ω-languages) L ⊆ Σω is Büchi
recognizable ⇔ L has a description of the form of

L =
n⋃

i=0

Ui · V ω
i with U1, V1, . . . , Un, Vn ⊆ Σ∗ regular.

Proof

⇐ It suffices to show:

1. U ⊆ Σ∗ regular ⇒ Uω Büchi recognizable.

2. U ⊆ Σ∗ regular, K ⊆ Σω Büchi recognizable ⇒ U ·K Büchi recognizable.

3. L1, L2 ⊆ Σω Büchi recognizable ⇒ L1 ∪ L2 Büchi recognizable.

For 1: Use Theorem 1.10(a).

For 2: Let A = (Q,Σ, q0,∆, F ) be an NFA, which recognizes the language U , and let
A′ = (Q′,Σ, q′0,∆

′, F ′) be a Büchi automaton, which recognizes the language K. Now,
construct a Büchi automaton B = (Q]Q′,Σ, q0,∆B, F

′) for U ·K, where ∆B contains,
in addition to the transitions of ∆ and ∆′, the following:

• for every transition (p, a, q) with q ∈ F the transition (p, a, q′0)

• if q0 ∈ F , for every transition (q′0, a, q
′) ∈ ∆′ the transition (q0, a, q

′).

F’

b
a

F

a

b

b

A A
′

q′0q0

For 3: Merge the Büchi automata A = (Q,Σ, q0,∆, F ) and A′ = (Q′,Σ, q′0,∆
′, F ′) into a

single automaton B = (Q∪̇Q′,Σ, q0,∆B, F ), where ∆B contains all transitions of ∆,∆′,
as well as (q0, a, q

′) for (q′0, a, q
′) ∈ ∆′. In doing so, we assume w.l.o.g. that there are

no transitions to q0 in A.

⇒ Let A = (Q,Σ, q0,∆, F ) be a Büchi automaton. Set Aqq′ = (Q,Σ, q,∆, {q′}). Let Uqq′ ⊆
Σ∗ be the language that is recognized by the NFA Aqq′ . Notice that, consequently, Uqq′

is regular.

A accepts α ⇔ ex. q ∈ F which makes a segmentation of α into α = u0u1u2 . . . , with
u0 ∈ Uq0q, u1 ∈ Uqq, u2 ∈ Uqq, . . . , possible. Therefore the following holds.

A accepts α⇔ ex. q ∈ F with α ∈ Uq0q · Uωqq ⇔ α ∈
⋃

q∈F

Uq0q · Uωqq

�



1.4. CHARACTERIZATION OF BÜCHI RECOGNIZABLE OMEGA-LANGUAGES 9

Definition 1.13. An ω-regular expressions is of the form r1s
ω
1 + · · · + rns

ω
n with standard

regular expressions r1, s1, . . . , rn, sn.

The meaning (semantics) of those expressions is defined in a manner analogous to standard
regular expressions. We of course stipulate that for an expression s, which defines the language
U ⊆ Σ∗, the expression sω defines the ω-language Uω.

Example 1.14. Büchi automaton: Defining ω-regular expression:

q0

q2

a,b
q1

q3

a

a

a

a

b

(a+ b)∗aω + (a+ b)∗(ab)ω

�

From Theorem 1.12 we obtain:

Corollary 1.15. An ω-language is Büchi recognizable iff it can be defined by an ω-regular
expression.

Definition 1.16. An ω-language L is called regular if it is definable by an ω-regular expression
(or if it is nondeterministically Büchi recognizable).

Remark 1.17.

a) Every nonempty regular ω-language contains an ω-word which is eventually periodic (in
the form uvvvvv . . . , with u, v finite).

b) A set {α} with exactly one element is regular ⇔ α eventually periodic.

Proof

a) Let L =
⋃n
i=1 UiV

ω
i be regular and nonempty. Then, for a suitable i, Ui · V ω

i 6= ∅ holds.
Therefore there are words u ∈ Ui, v ∈ Vi with v 6= ε. So uvvv . . . ∈ L is eventually
periodic.

b) “⇒” is clear because of a)
“⇐” Let α = uvvvv . . . . Then {α} = {u} · {v}ω holds, where {u} and {v} are regular.

�

Theorem 1.18. (Nonemptiness Problem) The nonemptiness Problem for Büchi automata
(with state set Q and transition relation ∆) is solvable in time O(|Q| + |∆|).
Proof Let A = (Q,Σ, q0,∆, F ) be a Büchi automaton. Define E = {(p, q) ∈ Q × Q | ∃a ∈
Σ : (p, a, q) ∈ ∆} and call G := (Q,E) the transition graph of A.

Therefore L(A) 6= ∅ iff in the transition graph there is a path from q0 to a final state q,
from which there is a path back to q.

This is the case iff in the transition graph of A there is a strongly connected component
(SCC) C such that C contains a final state and is reachable by a path from q0.



10 CHAPTER 1. OMEGA-AUTOMATA: INTRODUCTION

Nonemptiness test

1. Apply depth-first search from q0 in order to determine the set Q0 of states reachable
from q0.

2. Apply Tarjan’s SCC-algorithm to list all SCC’s over Q0, and check each SCC for the
containment of a final state.

3. If such an SCC is encountered, answer L(A) 6= ∅, otherwise L(A) = ∅.

Items 1 and 2 require both time O(|Q| + |∆|). (For details turn to Cormen, Leiserson,
Rivest: Introduction to Algorithms.) �

1.5 Closure Properties of Büchi Recognizable Omega-Languages

We showed (in the exercises) that the union L1 ∪ L2 of two Büchi recognizable ω-languages
L1, L2 is in turn Büchi recognizable.

We will now verify closure under intersection:

Theorem 1.19. The intersection L1 ∩ L2 of two Büchi recognizable ω-languages L1, L2 is
again Büchi recognizable.

Proof Assume Li is recognized by the Büchi automaton Ai = (Qi,Σ, qi0,∆i, Fi) for i = 1, 2.

First Idea: Form the product automaton

(Q1 ×Q2,Σ, (q10, q20),∆, F1 × F2)

where ((p, q), a, (p′, q′)) ∈ ∆ iff (p, a, p′) ∈ ∆1 and (q, a, q′) ∈ ∆2.

Problem: We cannot assume that the final states in the two runs of A1,A2 are visited
simultaneously

Solution: Repeatedly do the following steps

1. Wait for a final state p ∈ F1 in the first component.

2. When a p ∈ F1 is encountered, wait for a final state q ∈ F2 in the second component.

3. When a q ∈ F2 is encountered, signal “cycle completed“ and go back to 1.

Hence work with the state space Q1 ×Q2 × {1, 2, 3}.
Form the refined product automaton

A = (Q1 ×Q2 × {1, 2, 3},Σ, (q10, q20, 1),∆′, Q1 ×Q2 × 3)

with the following transitions in ∆′, in each case assuming (p, a, p′) ∈ ∆1 and (q, a, q′) ∈ ∆2:

• ((p, q, 1), a, (p′, q′, 1)) if p′ 6∈ F1

• ((p, q, 1), a, (p′, q′, 2)) if p′ ∈ F1

• ((p, q, 2), a, (p′, q′, 2)) if q′ 6∈ F2



1.6. GENERALIZED BÜCHI AUTOMATA 11

• ((p, q, 2), a, (p′, q′, 3)) if q′ ∈ F2

• ((p, q, 3), a, (p′, q′, 1)

Then a run of A simulates two runs ρ1 of A1 and ρ2 of A2: It has infinitely often 3 in the
third component iff ρ1 visits infinitely often F1 and ρ2 infinitely often F2.

�

Note that up to now we do not know a general construction for the complement of a Büchi
recognizable language.

1.6 Generalized Büchi Automata

Definition 1.20. (Generalized Büchi Automaton) A generalized Büchi automaton is of the
form A = (Q,Σ, q0,∆, F1, . . . , Fk) with final state sets F1, . . . , Fk ⊆ Q. A run is successful if
the automaton visits each of the sets Fi (i.e. the automaton enters a state in each Fi) infinitely
often.

Remark 1.21. For any generalized Büchi automaton one can construct an equivalent Büchi
automaton.

We will first give a proof idea before dealing with the exact construction: Work with the state
set Q×{1, . . . , k, k+ 1}. For i, . . . , k a state (q, i) means “wait for visit to Fi”. After visiting
Fk proceed to i = k + 1 (“cycle completed”) and go back to i = 1. Consequently, declare
Q× {k + 1} as the set of final states.

Proof (Detailed construction)

Given a generalized Büchi automaton A = (Q,Σ, q0,∆, F1, . . . , Fk), construct the Büchi
automaton

A
′ = (Q× {1, . . . , k + 1},Σ, (q0, 1),∆′, Q× {k + 1})

with the following transitions in ∆′ (assuming that (p, a, q) ∈ ∆):

• ((p, i), a, (q, i)), if i ≤ k and q 6∈ Fi

• ((p, i), a, (q, i+ 1)), if i ≤ k and q ∈ Fi

• ((p, k + 1), a, (q, 1))

�

1.7 Exercises

Exercise 1.1. Specify Büchi automata, which recognize the following ω-languages over Σ =
{a, b, c}:

(a) The set of α ∈ Σω, in which abc appears as an infix at least once.

(b) The set of α ∈ Σω, in which abc appears as an infix infinitely often.



12 CHAPTER 1. OMEGA-AUTOMATA: INTRODUCTION

(c) The set of α ∈ Σω, in which abc appears as an infix only finitely often.

Exercise 1.2. Find ω-regular expressions, which define the ω-languages in Exercise 1.1.

Exercise 1.3. Let the NFA A recognize the language U ⊆ Σ∗. Verify both inclusions of the
equation L(A) = limU .

Exercise 1.4. Prove or disprove the following equations (for U, V ⊆ Σ+):

(a) (U ∪ V )ω = Uω ∪ V ω

(b) lim(U ∪ V ) = limU ∪ limV

(c) Uω = lim(U+)

(d) lim(U · V ) = U · V ω

Exercise 1.5. Consider the ω-language L over Σ = {a, b} which is defined by the ω-regular
expression (a+ b)∗aω + (a+ b)∗(ab)ω. (see Example 1.14). Show that L cannot be described
in the form U · V ω, with U, V ⊆ Σ∗ regular (therefore one needs the union operation in order
to generate all Büchi recognizable ω-languages).

Hint: Assume that L is of the form U · V ω and consider the words in V .

Exercise 1.6. Let L1, L2 be the ω-languages recognized by Büchi automata A1 = (Q1,Σ, q0,∆1, F1)
and A2 = (Q2,Σ, q0,∆2, F2), respectively. Show (using some necessary assumptions on the
structure of A1 and A2) that the language L1 ∪ L2 is again Büchi recognizable by

(a) constructing a Büchi automaton B1 with state set Q1 ∪ Q2, but without ε-transitions,
that accepts L1 ∪ L2.

(b) constructing a product Büchi automaton B2 with state set Q1 × Q2 accepting L1 ∪ L2.
Show in particular how to combine the Büchi acceptance conditions of both automata A1

and A2 into a single one for B2.

Exercise 1.7. Given the following Büchi automata,

p1

b
cA1 : q0

1

2

q1

1,2,3

q2

1,2,3

A2 : p0

a

b,c

p2

b

specify ω-regular expressions which define the ω-languages that are recognized by A1 and A2.

Exercise 1.8. Investigate the following question (whose answer is yet to be found): Is there
an algorithm that, for a given Büchi automata A over the alphabet Σ, decides whether L(A)
is of the form Uω for a regular language U ⊆ Σ∗?



Chapter 2

Temporal Logic and Model
Checking

In this chapter we are going to discuss an automata theoretic approach to the model checking
problem. The theory of Büchi automata, which we treated in the last chapter, will serve us
in two ways:

On the one hand, Büchi automata obviously represent a model for systems with infinite
runs. Such systems can be modeled by Büchi automata which have accepting runs only,
i.e. every state is a final state.

On the other hand, Büchi automata can be used to specify properties and constraints for
infinite state sequences, since they can be encoded by ω-words. For our purposes we need a
logical language which can specify systems and be translated into Büchi automata as well.

Hence the model checking problem can be reduced to comparing two Büchi automata.
This is where we will be using methods from the previous chapter.

2.1 The Model-Checking Problem and Sequence Properties

Starting the technical treatment, we will first recall the informal formulation of the model-
checking problem from the introduction:

Given a system Sys and a specification Spec on the runs of the system, decide
whether Sys satisfies Spec.

There was an early example for this problem in the first lecture:

Example 2.1. Sys = MUX (Mutual exclusion) protocol, modeled by a transition system
over the state-space B5.

Process 1: Repeat

00: non-critical section 1

01: wait unless turn = 0

10: critical section 1

11: turn := 1

Process 2: Repeat

00: non-critical section 2



14 CHAPTER 2. TEMPORAL LOGIC AND MODEL CHECKING

01: wait unless turn = 1

10: critical section 2

11: turn := 0

A state is a bit-vector (line no. of process 1, line no. of process 2, value of turn). The
system starts with the initial state (00000).

Spec = “a state (1010b) is never reached”, and “always when a state (01bcd) is reached,
then later a state (10b′c′d′) is reached” (similarly for states (bc01d), (b′c′10d′)). �

This example is going to be used to introduce transition systems and system specification.
After that, we will develop the general approach as follows:

1. Kripke structures as system models: Kripke structures provide a mathematical
framework for transition systems. Their states give information about the properties of
a system.

2. Simple specifications: We are going to model a simple example using Kripke struc-
tures and common language. Doing so we will see the need for a formal system specifi-
cation language.

3. Linear-time temporal logic LTL is the logic we choose to set system constraints. It
will enable us to express grammatical operators of common language.

4. The automata theoretic approach to model-checking: Having introduced the
necessary tools we will sketch a way to solve the model-checking problem using (Büchi)
automata theory.

5. Translation of temporal logic formulas to Büchi automata: At this stage we
will lack just one method: bridging the gap between LTL and Büchi automata.

2.2 Kripke Structures

Kripke structures are a general framework for the case where state properties p1, . . . , pn are
considered.

Definition 2.2. A Kripke structure over p1, . . . , pn has the form M = (S,R, λ) with

• a finite set S of “states”

• a “transition relation” R ⊆ S × S

• a “labeling function” λ : S → 2{p1,...,pn}, associating with s ∈ S the set of those pi which
are assumed true in s

Usually we write a value λ(s) as a bit vector (b1, . . . , bn) with bi = 1 iff pi ∈ λ(s).
In a pointed Kripke structure, a state s is declared as initial; we write (M, s). All runs

start in s.

Example 2.3. (MUX Protocol) State space: S = B5. We use the state properties

• p1, p2 for “being in wait instruction before the critical section of P1, or P2 respectively”,



2.2. KRIPKE STRUCTURES 15

• p3, p4 for “being in critical section of P1, respectively P2”.

The transition relation R is as defined by the transitions of the protocol. Example value of
the label function: λ(01101) = {p1, p4} [= (10010)]. �

We have another example which we will use again and again to familiarize ourselves with the
concept:

Example 2.4. (A toy example) Consider a system over two properties p1 and p2.

(
1
0

) (
0
0

)

(
1
1

)

(
0
1

)

A path through a pointed Kripke structure (M, s) with M = (S,R, λ) is a sequence s0, s1, s2, . . .
where s0 = s and (si, si+1) ∈ R for i ≥ 0.

The corresponding label sequence is the ω-word over Bn: λ(s0)λ(s1)λ(s2) . . ., for instance

(
1

1

)(
1

0

)(
0

1

)(
1

0

)(
0

0

)(
0

0

)
· · ·

over the alphabet B2 =
{(

0
0

)
,
(
1
0

)
,
(
0
1

)
,
(
1
1

)}
.

We hereby obtain an ω-language that contains the corresponding label sequences of all
possible runs of the Kripke structure. �

Now that we have introduced Kripke structures, we will state the model-checking problem
more precisely:

Given a pointed Kripke structure over p1, . . . , pn and a condition φ on ω-words
over Bn, does every label sequence of (M, s) satisfy φ?

For the MUX protocol consider the following conditions φ:

• “Never p3, p4 are simultaneously true” which means for any label sequence: “there is
no letter (b1, b2, 1, 1)”.

• “Always when p1 is true then sometime later p3 is true” which means for any label
sequence “when a letter (1, b2, b3, b4) occurs, later on a letter (b1, b2, 1, b4) occurs”.

Basic sequence properties We consider state properties p1, p2. Label sequences are then
ω-words over the alphabet B2 =

{(
0
0

)
,
(
0
1

)
,
(
1
0

)
,
(
1
1

)}
. We consider the following properties of

label sequences over p1 and p2:

Guaranty property: “Sometime p1 becomes true.”

Safety property: “Always p1 is true.”



16 CHAPTER 2. TEMPORAL LOGIC AND MODEL CHECKING

Periodicity property: “Initially p1 is true, and p1 is true precisely at every third moment.”
Example sequence:

(
1
0

) (
0
0

) (
0
1

) (
1
1

) (
0
1

) (
0
0

) (
1
0

)
· · ·

Obligation property: “Sometime p1 is true but p2 is never true.”

Recurrence property: “Again and again, p1 is true.”

Request-Response property: “Always when p1 is true, p2 will be true sometime later.”

Until property: “Always when p1 is true, sometime later p1 will be true again and in the
meantime p2 is always true.”

Fairness property: “If p1 is true again and again, then so is p2.”

We reformulate these conditions by using the following temporal operators:

• Xp for “p is true next time”,

• Fp for “eventually (sometime, including present) p is true”,

• Gp for “always (from now onwards) p is true”,

• p1Up2 for “p1 is true until eventually p2 is true”.

Guaranty: “Sometime p1 becomes true.”

Fp1

Safety: “Always p1 is true.”

Gp1

Periodicity: “Initially p1 is true, and p1 is true at precisely every third moment.”

p1 ∧ X¬p1 ∧ XX¬p1 ∧ G(p1 ↔ XXXp1)

Obligation: “Sometime p1 is true but p2 is never true.”

Fp1 ∧ ¬Fp2︸ ︷︷ ︸
≡G¬p2

Recurrence: “Again and again, p1 is true.”

GFp1

Request-Response: “Always when p1 is true, p2 will be true sometime later.”

G(p1 → XFp2)

Until Condition: “Always when p1 is true, sometime later p1 will be true again and in the
meantime p2 is always true.”

G(p1 → X(p2Up1))



2.3. LINEAR-TIME TEMPORAL LOGIC LTL 17

Fairness: “If p1 is true again and again, then so is p2.”

GFp1 → GFp2

Example 2.5. (Translation of LTL-formulas to Büchi automata) By intuition one can con-
struct corresponding Büchi automata for LTL-formula. These automata accept label se-
quences iff the corresponding LTL-formula are satisfied by them.

Fp1 : GP1 :

(0

0)

(1

0)

∗

(1

∗
)

p1 ∧ X¬p1 ∧ XX¬p1 ∧ G(p1 ↔ XXXp1) : Fp1 ∧ ¬Fp2 :

(1

∗
) (0

∗
)

(0

∗
)

(0

0)

(1

0)
(∗0)

GFp1 : G(p1 → XFp2) :

(0

∗
)

(1

∗
)

(1

∗
)

(0

∗
)

(0

∗
)

(1

∗
)

(∗0)
(1

1)

(0

1)

(1

1)

(∗0)

(0

1)

GFp1 → GFp2 :
∗

(0

∗
)

(0

∗
)

∗

∗

(∗0)
(∗1)

(∗1)

(∗0)

We leave G(p1 → X(p2Up1)) as an exercise. �

2.3 Linear-Time Temporal Logic LTL

We will now formally introduce the linear-time temporal logic.



18 CHAPTER 2. TEMPORAL LOGIC AND MODEL CHECKING

Definition 2.6. (Syntax of LTL)
The LTL-formulas over atomic propositions p1, . . . , pn are inductively defined as follows:

• pi is a LTL-formula.

• If ϕ,ψ are LTL-formulas, then so are ¬ϕ, ϕ ∨ ψ, ϕ ∧ ψ, ϕ→ ψ.

• If ϕ,ψ are LTL-formulas, then so are Xϕ, Fϕ, Gϕ, ϕUψ.

Example 2.7. For atomic propositions p1, p2 we consider

• GFp1: p1 is true again and again.

• XX(p1 → Fp2): if the p1 is true in the moment after the next, then p2 will eventually
be true afterwards.

• F(p1 ∧X(¬p2Up1)): Sometime p1 will be true and from the next moment on p2 will not
be true until p1 is true.

�

By convention we read “X” as “next”, “F” as “eventually”, “G” as “always”, and “U” as
“until”.

LTL-formulas over p1, . . . , pn are interpreted in ω-words α over Bn.

Notation If α = α(0)α(1) . . . ∈ (Bn)ω, then

1. αi stands for α(i)α(i+ 1) . . ., so α = α0.

2. (α(i))j is the j-th component of α(i).

Definition 2.8. (Semantics of LTL)
Define the satisfaction relation αi |= ϕ inductively over the construction of ϕ as follows:

• αi |= pj iff (α(i))j = 1.

• αi |= ¬ϕ iff not αi |= ϕ.

• similarly for ∨,∧,→.

• αi |= Xϕ iff αi+1 |= ϕ.

• αi |= Fϕ iff for some j ≥ i: αj |= ϕ.

• αi |= Gϕ iff for all j ≥ i: αj |= ϕ.

• αi |= ϕ U ψ iff for some j ≥ i, αj |= ψ and for all k = i, . . . j − 1: αk |= ϕ.

Definition 2.9. An ω-language L ⊆ ({0, 1}n)ω is LTL-definable if there is a LTL-formula φ
with propositional variables p1, . . . , pn such that L = {α ∈ ({0, 1}n)ω | α |= φ}.

Definition 2.10. (Satisfaction of LTL-Formulas by Kripke Structures)
A pointed Kripke structure (M, s) satisfies a LTL-formula ψ ((M, s) |= ψ) if all words

α = λ(q0)λ(q1) . . ., where q0, q1, . . . is a path through M with q0 = s, satisfy ψ.



2.3. LINEAR-TIME TEMPORAL LOGIC LTL 19

Example 2.11. We consider formulas over p1, p2.

1. α |= GFp1

iff for all j ≥ 0: αj |= Fp1

iff for all j ≥ 0 exists k ≥ j: αk |= p1

iff for all j ≥ 0 exists k ≥ j: (α(k))1 = 1

iff in α, infinitely often 1 appears in the first component.

2. α |= XX(p2 → Fp1)

iff α2 |= p2 → Fp1

iff if (α(2))2 = 1 then α2 |= Fp1

iff if (α(2))2 = 1 then ∃j ≥ 2: (α(j))1 = 1

iff “if second component of α(2) is 1, then the first component of some α(j) with
j ≥ 2 is 1”.

For example, this is true in: α =
(
1
0

)(
0
0

)(
1
1

)(
0
1

)(
1
0

)(
0
1

)
· · ·

3. α |= F(p1 ∧ X(¬p2Up1))

iff for some j ≥ 0: αj |= p1 and αj+1 |= ¬p2Up1

iff for some j ≥ 0: αj |= p1 and there is a j′ ≥ j + 1 with αj
′ |= p1 such that for

k = j + 1, . . . , j′ − 1: αk |= ¬p2

iff for some j and j′ > j, α(j) and α(j′) have 1 in first component such that for k
strictly between j and j′, α(k) has 0 in second component

iff α has two letters
(
1
∗

)
such that in between only letters

(
∗
0

)
occur.

�

We have defined the semantics of LTL-formulas. Now we want to be able to determine whether
a given sequence satisfies a formula.

Aim: Evaluation of a LTL-formula ϕ over a sequence α ∈ (Bn)ω.

Idea: Consider

• all subformulas ψ of ϕ in increasing complexity,

• the end sequences αi for all i ≥ 0.

This gives an infinite two-dimensional array of truth values: At array position (ψ, i) write 1
iff αi |= ψ. Then: α |= ϕ iff the value at position (ϕ, 0) is 1.

Example 2.12. Let ϕ = F(¬p1 ∧ X(¬p2Up1)). The corresponding array of truth values is:



20 CHAPTER 2. TEMPORAL LOGIC AND MODEL CHECKING

α =
(
1
0

) (
0
1

) (
1
1

) (
0
0

) (
1
0

) (
0
1

)
· · ·

¬p1 0 1 0 1 0 1 . . .

¬p2 1 0 0 1 1 0 . . .

¬p2Up1 1 0 1 1 1 0 . . .

X(¬p2Up1) 0 1 1 1 0 . . . .

¬p1 ∧ X(¬p2Up1) 0 1 0 1 0 . . . .

F(¬p1 ∧ X(¬p2Up1))︸ ︷︷ ︸
φ

1 1 1 1 . . . . .

�

Definition 2.13. Given an ω-word α over Bn and a LTL-formula ϕ over p1, . . . , pn, let m be
the number of distinct subformulas of ϕ. The array of truth values for all subformulas is an
ω-word β ∈ Bn+m, called the ϕ-expansion of α.

2.4 LTL-Model-Checking Problem

We have now met the technical requirements to reformulate the model-checking problem,
using Kripke structures and LTL:

A Kripke structure (M, s) is said to satisfy ϕ if each label sequence through (M, s)
satisfies ϕ.

To write that more formally:

Definition 2.14. (LTL-Model-Checking Problem)
Given a pointed Kripke structure (M, s) and a LTL-formula ϕ (both over p1, . . . , pn),

decide whether (M, s) satisfies ϕ.

Example 2.15. Consider GFp1, XX(p2 → Fp1), F(p1∧X(¬p2Up1)), and the following Kripke
structure:

(
1
0

) (
0
0

)

(
1
1

)

(
0
1

)

We see that GFp1 fails, XX(p2 → Fp1) is true, and F(p1 ∧ X(¬p2Up1)) fails. �

How do we go about solving a given LTL model-checking problem? In the above example the
answer was quite obvious. But for real world applications we need to do that algorithmically.
This is the point where we will use Büchi automata for the following idea for LTL model-
checking:



2.5. FROM LTL TO BÜCHI AUTOMATA 21

Check for the negative answer: Is there a label sequence through (M, s) which
does not satisfy ϕ?

Four steps are needed to implement this idea:

1. Define the ω-language of all label sequences through (M, s) by a Büchi automaton
AM,s.

2. Define the ω-language of all label sequences, which do not satisfy ϕ by a Büchi automa-
ton A¬ϕ.

3. Construct a Büchi automaton B which recognizes L(AM,s) ∩ L(A¬ϕ), i.e. accepts all
label sequences through (M, s) which violate ϕ.

4. Check B for nonemptiness; if L(B) 6= ∅ then answer “(M, s) does not satisfy ϕ”, other-
wise “(M, s) satisfies ϕ”.

We already know algorithms for items 3. and 4. Items 1. and 2. still need to be taken care
of.

From Kripke structures to Büchi automata This problem is straightforward and the
solution is rather obvious: Given a pointed Kripke structure (M, s) with M = (S,R, λ),
λ : S → Bn, construct a Büchi automaton AM,s = (S,Bn, s,∆, S) with

(s, (b1 . . . bn), s
′) ∈ ∆ iff (s, s′) ∈ R and λ(s) = (b1 . . . bn).

So a transition gets the label of the source state.

Example 2.16. Consider the Kripke structure from Example 2.15:

(
1
0

) (
0
0

)
(1

0)

(1

0)

(0

0)

(
1
1

)

(1

1)

(1

1)(
0
1

)

(0

1)

�

The second item is not that easy to solve. We are going to dedicate a whole section to this
problem.

2.5 From LTL to Büchi Automata

Idea: For a given LTL-formula ϕ construct a Büchi automaton, which, on input α, nondeter-
ministically guesses the ϕ-expansion β of α and, while running, simultaneously checks that
this guess is correct.



22 CHAPTER 2. TEMPORAL LOGIC AND MODEL CHECKING

Consequently, a guess of β is correct, if the automaton accepts and the automaton will
also ensure that the input α satisfies the corresponding LTL-formula by checking the entry
at position (ϕ, 0) of β. Recall that α |= ϕ iff β(ϕ, 0) = 1.

Therefore the automaton states are the bit vectors which are the “letters” (∈ Bn+m) of β.
To simplify the inductive structure of formulas, we only consider the temporal operators

X and U. Eliminate F and G by the rules:
Fϕ is equivalent to ttUϕ
Gϕ is equivalent to ¬F¬ϕ with tt ≡ p1 ∨ ¬p1.

Theorem 2.17. For a LTL-formula ϕ over p1, . . . , pn let ϕ1, . . . , ϕn+m be the list of all subfor-
mulas of ϕ in order of increasing complexity (such that ϕ1 = p1, . . . , ϕn = pn, . . . , ϕn+m = ϕ).
Then there is a generalized Büchi automaton Aϕ with state-set {q0} ∪ Bn+m, which is equiv-
alent to ϕ (in the sense that α |= ϕ iff Aϕ accepts α).

In order to check the consistency (i.e. the correctness) of the ϕ-expansion that the automaton
guesses, we need to come up with certain compatibility conditions. These are to assure that a
state (that is, a letter of β) is consistent in itself and also consistent with the preceding state.
Consider the following example:

Example 2.18. (Compatibility conditions) Let α ∈ (Bn)ω, ϕ1, . . . , ϕn the list of subformulas
of ϕ, and let β be the ϕ-expansion of α.

Illustration for ϕ = p1 ∨ X(¬p2Up1):

p1 0 0 1 0 1 0 0 1 0 0 0 . . .

p2 0 0 0 1 0 0 0 1 0 0 0 . . .

¬p2 1 1 1 0 1 1 1 0 1 1 1 . . .

¬p2Up1 1 1 1 0 1 1 1 1 0 0 0 . . .

X(¬p2Up1) 1 1 0 1 1 1 1 0 0 0 0 . . .

p1 ∨ X(¬p2Up1) 1 1 1 1 1 1 1 1 0 0 0 . . .

Observe that the third line has to be exactly the inverse of the second line and the fourth
line is equal to the fifth line, shifted to the right. The first and fifth line make up the input
for the ∨-function which is the sixth line. �

Under the assumptions of the previous example, the following holds:

ϕj = ¬ϕj1 ⇒ (β(i))j = 1 iff (β(i))j1 = 0
ϕj = ϕj1 ∧ ϕj2 ⇒ (β(i))j = 1 iff (β(i))j1 = 1 and (β(i))j2 = 1
ϕj = ϕj1 ∨ ϕj2 ⇒ (β(i))j = 1 iff (β(i))j1 = 1 or (β(i))j2 = 1
ϕj = Xϕj1 ⇒ (β(i))j = 1 iff (β(i+ 1))j1 = 1
ϕj = ϕj1Uϕj2 ⇒ (β(i))j = 1 iff (β(i))j2 = 1 or

[
(β(i))j1 = 1

and (β(i+ 1))j) = 1
]

For the last condition note: ϕUψ ≡ ψ ∨ (ϕ ∧ X(ϕUψ)). To ensure the satisfaction of a
subformula ϕj = ϕj1Uϕj2 we have to add the condition

(∗) there is no k such that for every l ≥ k : (β(l))j = 1 and (β(l))j2 = 0.

The first conditions are local (controllable by comparing successive column vectors of β). The
last condition (∗) is non-local.



2.5. FROM LTL TO BÜCHI AUTOMATA 23

Proposition 2.19. Assume β ∈ Bn+m satisfies all compatibility conditions for the given α.
Then β is uniquely determined and in fact it is the ϕ-expansion of α.

Proof by induction over the subformulas of ϕ:

For each subformula ϕj , the entry of the j-th component of β at position i is the truth
value of ϕj over the sequence αi. The cases of atomic formulas, Boolean connectives, and
X-operator are clear.

For the case of ϕj = ϕj1Uϕj2 : If (β(k))j2 = 1 then for all i ≤ k the entries for (β(i))j are
correct. Recall that ϕUψ ≡ ψ∨ (ϕ∧X(ϕUψ)). So if infinitely many k exist with (β(k))j2 = 1,
the entries (β(i))j are correct for all i. In the remaining case: Consider k with (β(l))j2 = 0
for all l ≥ k. Then show that for all l ≥ k the entry for (β(l))j is 0 (and hence correct).
Otherwise (β(l))j = 1 and (β(l))j2 = 0 for all l ≥ k, which poses a contradiction to (∗).
Recall the definition of (∗): there is no k such that for all l ≥ k: (β(l))j = 1 and (β(l))j2 = 0.

�

Proof of Theorem 2.17 The desired generalized Büchi automaton Aϕ just has to check
those compatibility conditions. It is defined as follows:

State set Q := {q0} ∪ Bn+m, initial state q0.

Transitions (for ~b = (b1, . . . , bn) and ~c = (c1, . . . , cm)):

q0
~b

(~b ~c), where (~b ~c) satisfies the Boolean compatibility conditions, and cm = 1
(ϕ should be checked to be true).

(~b ~c)
~b′

(~b′ ~c′), where ~b,~c,~b′,~c′ satisfy all compatibility conditions except of (∗).

Final state sets For the until-subformula ϕj = ϕj1Uϕj2 the final state-set Fj contains all
states with j-component 0 or j2-component 1. If there is no until-subformula, then
every state is a final state.

This definition ensures that Aϕ accepts α iff for some Aϕ-run ρ ∈ (Bn+m)ω, each Fj is visited
infinitely often (i.e. the j-component = 0 or the corresponding j2-component = 1 infinitely
often).

This means it does not happen that from some time k onwards, the j-component stays 1
and the j2-component stays 0.

Therefore (∗) is guaranteed. Recall (∗): there is no k such that for all l ≥ k: (β(l))j = 1
and (β(l))j2 = 0. Consequence:

Aϕ accepts α

iff the (unique) accepting run β of Aϕ on α is the ϕ-expansion of α, and moreover at time
0 the (n+m)-th component of the state is 1 (signaling ϕn+m = ϕ to be true)

iff α |= ϕ.



24 CHAPTER 2. TEMPORAL LOGIC AND MODEL CHECKING

Summary of LTL-Model-Checking Check whether a pointed Kripke structure (M, s)
satisfies the LTL-formula ϕ:

1. Transform the given pointed Kripke structure (M, s) into a Büchi automaton AM,s.

2. Transform the formula ¬ϕ into an equivalent generalized (and then standard) Büchi
automaton A¬ϕ.

3. Construct a Büchi automaton B which recognizes L(AM,s) ∩ L(A¬ϕ), i.e. accepts all
label sequences through (M, s) which violate ϕ.

4. Check B for nonemptiness; if L(B) 6= ∅ then answer “(M, s) does not satisfy ϕ”, other-
wise “(M, s) satisfies ϕ”.

Note that items 1., 3., and 4. are all done in polynomial time.

Item 2. needs exponential time in the size of the formula (number of occurring atomic
formulas, connectives, and operators)

Summary: The LTL-model-checking problem “(M, s) |= ϕ?” is solvable in polynomial
time in the size of M and in exponential time in the size of ϕ.

Further questions:

1. Is this exponential complexity avoidable?

2. Given that LTL-formulas are translatable into Büchi automata, what about the con-
verse? (Answer: No)

3. Is there a logic which is equivalent in expressive power to Büchi automata (the logic
S1S over ω-sequences)?

Theorem 2.20. The LTL-model-checking problem LTL-MC “(M, s) |= ϕ?” is NP-hard.

Remark 2.21. One can even show PSPACE-completeness of LTL-MC.

Proof of Theorem 2.20 For the NP-complete problem SAT(3) we show:

SAT(3) ≤P LTL-MC

More precisely: A propositional formula ψ in conjunctive normal form with three literals per
clause can be transformed in polynomial time into a pointed Kripke structure (M, s)ψ and a
LTL-formula ϕψ such that

ψ is satisfiable iff not (M, s)ψ |= ϕψ.

First, let us consider an example of constructing an equivalent LTL-model-checking problem
for a SAT(3) formula.

Example 2.22. ψ = (x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) (satisfiable with the assignment
x1 7→ 1, x2 7→ 0, x3 7→ 0)

Model (M, s)ψ:



2.5. FROM LTL TO BÜCHI AUTOMATA 25

x1

(1

0)

x2

(0

0)

x3

(1

0)

y0

(0

0)

y1

(0

0)

y2

(0

0)

y3

(0

0)

¬x1

(0

1)

¬x2

(1

1)

¬x3

(0

1)

LTL-formula ϕψ(p1, p2) := G¬p1 ∨ G¬p2 �

General construction Given ψ = C1 ∧ . . . ∧ Cn (the Ci are clauses), with Ci = χi1 ∨
χi2 ∨ χi3, where χij is a literal, i.e. either xk or ¬xk, xk ∈ {x1, . . . , xm}.

Define (M, s)ψ over p1, . . . , pn, M = (S,R, λ) with

S = {y0, . . . , ym, x1, . . . xm,¬x1, . . .¬xm}

and R with the edges (yi, xi+1), (yi,¬xi+1), (xi, yi), (¬xi, yi) and (ym, ym). The labeling func-
tion λ : S → Bn is given by

λ(yi) = 0n,

(λ(xi))j = 1 iff xi is literal of Cj , and

(λ(¬xi))j = 1 iff ¬xi is literal of Cj .

The LTL-formula is ϕψ = G¬p1 ∨ . . .G¬pn.

We have to show that ψ is satisfiable iff not (M, s)ψ |= ϕψ. Take the example ψ =
(x1 ∨ ¬x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3).

x1

(1

0)

x2

(0

0)

x3

(1

0)

y0

(0

0)

y1

(0

0)

y2

(0

0)

y3

(0

0)

¬x1

(0

1)

¬x2

(1

1)

¬x3

(0

1)

An assignment A : {x1, . . . , xm} → B defines a path through M. Therefore

ψ is satisfiable

iff some assignment makes each Ci true

iff some path through M meets a 1 in each component

iff not for all paths there is a component which is constantly 0

iff not (M, s)ψ |= G¬p1 ∨ G¬p2 (= ϕψ). �

The translation from LTL to Büchi automata showed:

Each LTL-definable ω-language is Büchi recognizable.



26 CHAPTER 2. TEMPORAL LOGIC AND MODEL CHECKING

We show that Büchi automata are (strictly) more expressive than LTL-formulas:

Theorem 2.23. There are ω-languages which are Büchi recognizable but not LTL-definable.

The general idea for proving this theorem is to show that LTL-formulas cannot describe
“modulo-counting”. As an example language we take L = (00)∗1ω. L is obviously Büchi
recognizable:

1

0

1

0

We will proceed as follows:

1. Introduce the language property “non-counting”.

2. Show that L = (00)∗1ω does not have this property.

3. Show that each LTL-definable ω-language has this property.

Definition 2.24. Call L ⊆ Σω non-counting if

∃n0 ∀n ≥ n0 ∀u, v ∈ Σ∗ ∀β ∈ Σω : uvnβ ∈ L ⇔ uvn+1β ∈ L.

This means for n ≥ n0 either all uvnβ are in L, or none is. L is not non-counting (short: L
is counting) iff

∀n0 ∃n ≥ n0 ∃u, v, β : (uvnβ ∈ L and uvn+1β 6∈ L) or (uvnβ 6∈ L and uvn+1β ∈ L).

Claim: L = (00)∗1ω is counting.

Given n0 take n = next even number ≥ n0 and u = ε, v = 0, β = 1ω. Then uvnβ =
0n1ω (∈ L), but uvn+1β = 0n+11ω (6∈ L). �

Proposition 2.25. Each LTL-definable ω-language L is non-counting:

∃n0 ∀n ≥ n0 ∀u, v ∈ Σ∗ ∀β ∈ Σω : uvnβ ∈ L ⇔ uvn+1β ∈ L

Proof by induction on LTL-formulas ϕ.

ϕ = pi : Take n0 = 1. Whether uvnβ ∈ L only depends on first letter. This is the same
letter as in uvn+1β. So uvnβ ∈ L iff uvn+1β ∈ L.

ϕ = ¬ψ : The claim is trivial. [ uvnβ 6∈ L ⇔ uvn+1β 6∈ L ]

ϕ = ψ1 ∧ ψ2 : ψ1, ψ2 define non-counting L1, L2 (with n1, n2) by induction hypothesis. Take
n0 = max(n1, n2). Then the claim is true for L1 ∩ L2, defined by ψ1 ∧ ψ2.

ϕ = Xψ : By induction hypothesis assume ψ defines non-counting L with n1.

Take n0 := n1 + 1, at least n0 ≥ 2.

For n ≥ n0 we have to show: uvnβ |= Xψ iff uvn+1β |= Xψ.



2.5. FROM LTL TO BÜCHI AUTOMATA 27

If u 6= ε, say u = au′, then use the above induction hypothesis:

u′vnβ |= ψ iff u′vn+1β |= ψ.

If u = ε and v = av′ then use (for n ≥ n0)

vnβ |= Xψ iff v′vn−1β |= ψ iff v′vnβ |= ψ iff vn+1β |= Xψ.

ϕ = ψ1Uψ2 : ψ1, ψ2 defining non-counting L1, L2 (with n1, n2) by induction hypothesis.
Take n0 := 2 · max(n1, n2). We have to show: for all n ≥ n0:

uvnβ |= ψ1Uψ2 iff uvn+1β |= ψ1Uψ2.

More precisely:

for some j: (uvnβ)j |= ψ2 and for every i < j: (uvnβ)i |= ψ1

iff for some j: (uvn+1β)j |= ψ2 and for every i < j: (uvn+1β)i |= ψ1.

Since both sides of the equivalence are symmetric, we only consider the proof from left
to right. Therefore we have to show:

if for some j: (uvnβ)j |= ψ2 and for every i < j: (uvnβ)i |= ψ1

then for some j: (uvn+1β)j |= ψ2 and for every i < j: (uvn+1β)i |= ψ1

Case 1: (uvnβ)j contains ≥ max{n1, n2} v-segments

n+ 1 :

n :
u

u

v

v v

v v

v v

v v

v v

v

v

β

β

≥ max{n1, n2}

i j

ji

Then for every i ≤ j (uvnβ)i also contains ≥ max{n1, n2} v-segments. Hence by the
induction hypothesis we know that

(uvnβ)i |= ψ1 ⇔ (uvn+1β)i |= ψ1

for every i < j and

(uvnβ)j |= ψ2 ⇔ (uvn+1β)j |= ψ2.

Therefore

uvnβ |= ψ1Uψ2 ⇔ uvn+1β |= ψ1Uψ2.

Case 2: (uvnβ)j contains < max{n1, n2} v-segments

Then by the choice of n0 (uvnβ)[0 . . . j] has ≥ max{n1, n2} + 1 v-segments.



28 CHAPTER 2. TEMPORAL LOGIC AND MODEL CHECKING

j

n+ 1 :

n :
u v

v

v v v v v

v v v v v v

u · v

u

β

β
ψ1

ψ1

≥ max{n1, n2} + 1

j + |v|

Consider now for i ≤ |uv| the words (uvnβ)i: Since each of these words contains ≥
max{n1, n2} v-segments, we know by the induction hypothesis

(uvnβ)i |= ψ1 ⇔ (uvn+1β)i |= ψ1.

For |uv| < i < j + |v| (uvnβ)i = (uvn+1β)i+|v| and hence

(uvn+1β)i |= ψ1 and (uvn+1β)j+|v| |= ψ2.

Therefore we obtain

uvnβ |= ψ1Uψ2 ⇔ uvn+1β |= ψ1Uψ2.

�

We have proven that LTL-formulas are less expressive than Büchi automata. Now we are
going to introduce a logic which can define the same class of languages as Büchi automata.

2.6 S1S (Second-Order Theory of One Successor)

The idea is to use the following elements

• variables s, t, . . . for time-points (positions in ω-words),

• variables X,Y, . . . for sets of positions,

• the constant 0 for position 0, the successor function ′, equality =, and the less-than
relation <,

• the usual Boolean connectives and the quantifiers ∃, ∀.

For clarification we compare LTL-formulas to S1S-formulas.

Example 2.26. (LTL-formulas and their translation to S1S)

GFp1 : ∀s∃t(s ≤ t ∧X1(t))
XX(p2 → Fp1) : X2(0

′′) → ∃t(0′′ ≤ t ∧X1(t))
F(p1 ∧ X(¬p2Up1)) : ∃t1(X1(t1) ∧ ∃t2(t′1 ≤ t2 ∧X1(t2)∧

∀t((t′1 ≤ t ∧ t < t2) → ¬X2(t))))



2.6. S1S (SECOND-ORDER THEORY OF ONE SUCCESSOR) 29

Let us define a counting language using S1S: L = (00)∗1ω

∃X ∃t(X(0) ∧ ∀s(X(s) ↔ ¬X(s′)) ∧X(t) ∧ ∀s(s < t→ ¬X1(s)) ∧ ∀s(t ≤ s→ X1(s)))

�

There are three points that we need to address, in order to prove equality in expressiveness
between S1S and Büchi automata.

1. Syntax and semantics of S1S.

2. Expressive power: Büchi recognizable ω-languages are S1S-definable.

3. S1S-definable ω-languages are Büchi recognizable (Preparation).

Syntax and Semantics of S1S

Definition 2.27. (Syntax of S1S) S1S-formulas are defined over variables:

• first-order variables s, t, . . . , x, y, . . . (ranging over natural numbers, i.e. positions in
ω-words),

• second-order variables X,X1, X2, Y, Y1, . . . (ranging over sets of natural numbers).

Terms are

• the constant 0 and first-order variables,

• for any term τ also τ ′ (the successor of τ).

For instance, consider the terms: t, t′, t′′, 0, 0′, 0′′. We can now define four classes of S1S-
formulas:

• Atomic formulas: X(τ), σ < τ , σ = τ for terms σ, τ . Note that the atomic formula
X(τ) is also denoted by τ ∈ X.

• First-order formulas (S1S1-formulas) are built up from atomic formulas using Boolean
connectives and quantifiers ∃,∀ over first-order variables.

• S1S-formulas are built up from atomic formulas using Boolean connectives and quanti-
fiers ∃,∀ over first-order variables and second-order variables.

• Existential S1S-formulas are S1S1-formulas preceded by a block ∃Y1 . . .∃Ym of existen-
tial second-order quantifiers.

Example 2.28. First-order formulas:

ϕ1(X) : ∀s∃t(s < t ∧X(t))

ϕ2(X1, X2) : X2(0
′′) → ∃t(0′′ ≤ t ∧X1(t))

ϕ3(X1, X2) : ∃t1(X1(t1) ∧ ∃t2(t′1 ≤ t2 ∧X1(t2) ∧
∀t((t′1 ≤ t ∧ t < t2) → ¬X2(t))))

An existential second-order formula:

ϕ4(X1) : ∃X ∃t(X(0) ∧ ∀s(X(s) ↔ ¬X(s′)) ∧X(t)

∧∀s(s < t→ ¬X1(s)) ∧ ∀s(t ≤ s→ X1(s)))

�



30 CHAPTER 2. TEMPORAL LOGIC AND MODEL CHECKING

Notation: ϕ(X1, . . . , Xn) indicates that at most the variables X1, . . . , Xn occur freely in ϕ,
i.e. are not in the scope of a quantifier.

Definition 2.29. (Semantics of S1S) We need a mathematical structure over which S1S-
formulas can be interpreted. We will

• use N as the universe for the first-order variables,

• use 2N (the powerset of N) as the universe for the second-order variables,

• apply the standard semantics for Boolean connectives and quantifiers.

We write (N, 0,+1, <, P1, . . . , Pn) |= ϕ(X1, . . . , Xn) if ϕ is true in this semantics, with P1 ⊆
N, . . . , Pn ⊆ N as interpretations of X1, . . . , Xn. Therefore we need only specify P =
P1, . . . , Pn. P can be coded by the ω-word α(P ) ∈ ((Bn)ω defined by

i ∈ Pk ⇐⇒ (α(i))k = 1.

Then we simply write: α(P ) |= ϕ(X1, . . . , Xn).

Example 2.30. (Satisfaction of a S1S-formula)

ϕ3(X1, X2) : ∃t1(X1(t1) ∧ ∃t2(t′1 ≤ t2 ∧X1(t2) ∧
∀t((t′1 ≤ t ∧ t < t2)︸ ︷︷ ︸

t1<t<t2

→ ¬X2(t))))

Let P1 be the set of even numbers, P2 be the set of prime numbers.

α(P1, P2) :

t 0 1 2 3 4 5 6 . . .

P1 1 0 1 0 1 0 1 . . .
P2 0 0 1 1 0 1 0 . . .

t1 t2

The time t1 and t2 instances fulfill ϕ3 for P1 and P2: α |= ϕ3(X1, X2) �

Definition 2.31. (S1S-definable languages) An ω-language L ⊆ (Bn)ω is S1S-definable if for
some S1S-formula ϕ(X1, . . . , Xn) we have

L = {α ∈ (Bn)ω | α |= ϕ(X1, . . . , Xn)}.

We similarly define first-order definable, existential second-order definable.

Example 2.32. (Some ω-languages defined by S1S)

1. L = {α ∈ Bω | α has infinitely many 1} is first-order definable by

∀s∃t(s < t ∧X1(t)).

2. (00)∗1ω is existential second-order definable by

ϕ4(X1) : ∃X ∃t(X(0) ∧ ∀s(X(s) ↔ ¬X(s′)) ∧X(t)

∧∀s(s < t→ ¬X1(s)) ∧ ∀s(t ≤ s→ X1(s))).

�



2.6. S1S (SECOND-ORDER THEORY OF ONE SUCCESSOR) 31

From Büchi automata to S1S Before showing that Büchi automata can be translated to
S1S-formulas, we prove the latter for LTL.

Theorem 2.33. A LTL-definable ω-language is S1S1-definable.

For an illustration of the proof let us recall the example translations from the beginning of
the section:

GFp1 : ∀s∃t(s ≤ t ∧X1(t))
XX(p2 → Fp1) : X2(0

′′) → ∃t(0′′ ≤ t ∧X1(t))
F(p1 ∧ X(¬p2Up1)) : ∃t1(X1(t1) ∧ ∃t2(t′1 ≤ t2 ∧X1(t2)∧

∀t((t′1 ≤ t ∧ t < t2) → ¬X2(t))))

In general, the idea is to describe the semantics of the temporal operators in S1S. Once this
is done, Theorem 2.33 can be proven inductively (Exercise).

Theorem 2.34. A Büchi-recognizable ω-language is S1S-definable.

Idea: For Büchi automaton A over the input alphabet Bn find a S1S-formula ϕ(X1, . . . , Xn)
such that

A accepts α iff α |= ϕ(X1, . . . , Xn).

We express in ϕ(X1, . . . , Xn): “There is a successful run of A on the input given byX1, . . . , Xn”.
But how to express the existence of a run? Assume A has m states q1, . . . , qm (q1 initial)
Then a run ρ(0)ρ(1) . . . is coded by m sets Y1, . . . , Ym with

i ∈ Yk ⇐⇒ ρ(i) = qk.

Example 2.35. (Transformation of a Büchi automaton to a S1S-formula)

q1
1

q2
1

0 q3 1

Input 1 1 1 0 1 1 1

Run Y1 1∗ 0 1∗
Y2 0 1∗ 0 ∗
Y3 0 0 0 ∗ ∗ ∗

The stars mark the state at the given point of the input word. Naturally the automaton can
only be in one state for each point of time. Therefore there is just one 1 in every column
of the run. How can we describe a successful run? That is, how do we set constraints to
X1, . . . , Xn? Consider the formula

ϕ(X1) = ∃Y1Y2Y3 (Partition(Y1, . . . , Ym) ∧ Y1(0) ∧
∀t((Y1(t) ∧X1(t) ∧ Y2(t

′)) ∨ (Y2(t) ∧X1(t) ∧ Y1(t
′))

∨(Y2(t) ∧ ¬X1(t) ∧ Y3(t
′)) ∨ (Y3(t) ∧X1(t) ∧ Y3(t

′)))

∧∀s∃t(s < t ∧ Y3(t))).

Partition is an expression for the above mentioned unambiguous of the automaton state.
Since there is just one 1 in every Y-bitvector, Y1, Y2, Y3 have to form a partition of N.

Y1(0) states that the automaton starts in q1. The following subformulas in the scope of
the first ∀-quantifier represent the transition relation. The last subformula demands that the
automaton enters the final state infinitely often. �



32 CHAPTER 2. TEMPORAL LOGIC AND MODEL CHECKING

Proof of Theorem 2.34 In order to be able to translate an Büchi automata with m states,
some formulas, which are needed, have to be prepared:

Preparation 1: Partition(Y1, . . . , Ym) := ∀t (∨m
i=1 Yi(t)) ∧ ∀t

(
¬∨

i6=j(Yi(t) ∧ Yj(t))
)
.

Preparation 2: For a ∈ Bn, say a = (b1, . . . , bn), we write Xa(t) as an abbreviation for

(b1)X1(t) ∧ (b2)X2(t) ∧ . . . ∧ (bn)Xn(t)

where (bi) = ¬ if bi = 0, and bi is empty if bi = 1. For instance a = (1, 0, 1) : Xa(t) =
X1(t) ∧ ¬X2(t) ∧X3(t).

Now we can translate any Büchi automaton to an equivalent S1S-formula: Given the
Büchi automaton A = (Q,Bn, 1,∆, F ) with Q = {1, . . . ,m}, define

ϕ(X1, . . . , Xn) = ∃Y1 . . . Ym

(
Partition(Y1, . . . , Ym) ∧ Y1(0)

∧ ∀t
( ∨

(i,a,j)∈∆

(Yi(t) ∧Xa(t) ∧ Yj(t′))
)

∧ ∀s∃t
(
s < t ∧

∨

i∈F

Yi(t)
))
.

Obviously this is just a generalization of Example 2.35. The first line gives the partitioning
of N and the start state 1. Line 2 describes all transitions of A and line 3 the acceptance
condition.

We conclude: A Büchi recognizable ω-language is existential second-order definable (within
S1S). �

In order to prove the reverse direction, we need more automata theory, which we will develop
in the next chapter.

2.7 Exercises

Exercise 2.1. Consider the lift system from the introduction, now with only 4 floors. Present
a set of propositions (10 are enough) needed to describe the following properties as LTL-
formulas, and give the corresponding LTL-formulas:

(a) Every requested floor will be served sometime.

(b) Again and again the lift returns to floor 1.

(c) When the top floor is requested, the lift serves it immediately and does not stop on the
way there.

(d) While moving in one direction, the lift will stop at every requested floor, unless the top
floor is requested.

Exercise 2.2. Construct a Büchi automaton, which recognizes the set of ω-words α ∈
({0, 1}2)ω with

α |= G(p1 → X(p2Up1)).

Exercise 2.3. Show that there is no Büchi automaton with less than three states that
recognizes the set of ω-words α ∈ ({0, 1}2)ω with α |= G(p1 → XFp2).



2.7. EXERCISES 33

Exercise 2.4. Let φ, ψ and χ be LTL-formulas. Consider the following equivalences:

(a) FGφ ≡ GFφ,

(b) X(φ ∧ ψ) ≡ Xφ ∧Xψ,

(c) (φ ∨ ψ)Uχ ≡ φUχ ∨ ψUχ, and

(d) (φUψ)Uχ ≡ φU(ψUχ).

Prove or disprove their correctness.

Exercise 2.5. Consider the LTL-formula φ = p1U(Xp2).

(a) Let α ∈ ({0, 1}2)ω. Formulate the compatibility conditions for the φ-expansion of α in
the present case.

(b) Construct, using the procedure from Theorem 3.1, a generalized Büchi automaton A
which is equivalent to φ. First derive from (a) the set of compatible states, and then the
transition graph of A. What are the final states of A?

(c) Construct directly a Büchi automaton recognizing L := {α ∈ ({0, 1}2)ω | α |= φ}.
Exercise 2.6.

(a) Show that the ω-language L1 := (01)ω is non-counting.

(b) Show that the ω-language L2 := 01(0101)∗0ω is counting.

Exercise 2.7. An ω-language L ⊆ Σω is called strictly Büchi recognizable if there is a Büchi
automaton A = (Q,Σ, q0,∆, F ) such that

L = {α ∈ Σω | there is a run of A on α visiting precisely the states in F infinitely often}.

Prove, or give a counter-example, for each direction of the following equivalence:

L is Büchi recognizable ⇐⇒ L is strictly Büchi recognizable.

Exercise 2.8. Let φ, ψ be LTL-formulas. We define new operators for LTL:

(a) “at next” φAXψ: At the next time where ψ holds, also φ does.

(b) “while” φWψ: φ holds at least as long as ψ does.

(c) “before” φBψ: If ψ holds sometime, φ does so before.

Show that adding these operators to LTL does not increase the expressive power, i.e. find for
every formula from above an equivalent (ordinary) LTL-formula.

Exercise 2.9. Let A be the following Büchi automaton:

q0
1 q1

1

0

q2
0

Construct, using the method from the lecture, a S1S-formula φ(X) such that α ∈ {0, 1}ω
satisfies φ iff A accepts α.



34 CHAPTER 2. TEMPORAL LOGIC AND MODEL CHECKING

Exercise 2.10. Give S1S-formulas φ1(X1, X2) and φ2(X1, X2) for the following ω-languages:

(a) L1 :=
(

1
1

)(
1
0

)∗( 1 0
1 0

)ω

(b) L2 :=
(

1 1 1
1 1 1

)∗( 0
1

)ω

Explain the purpose of the main subformulas of φ1(X1, X2) and φ2(X1, X2).

Exercise 2.11. Consider the following Büchi automaton:

A : q0
1

q1
1

0

q2
0

(a) Construct a S1S1-formula equivalent to A.

(b) Construct a LTL-formula equivalent to A.



Chapter 3

Theory of Deterministic
Omega-Automata

3.1 Deterministic Omega-Automata

In this chapter we are going to deal with the theory of deterministic ω-automata, as it was
developed in the 1960s by Muller, McNaughton, and Rabin. The crucial point of this
chapter is the transformation of nondeterministic Büchi automata into deterministic Muller
automata. We will follow the construction discovered by Safra in 1988.

Definition 3.1. Let Inf(ρ) = {q ∈ Q | q occurs infinitely often in ρ}. A deterministic ω-
automaton A = (Q,Σ, q0, δ,Acc) is called

Muller automaton if Acc is of the form F = {F1, . . . , Fk} with Fi ⊆ Q, and a run ρ is
successful if Inf(ρ) ∈ F .

Rabin automaton if Acc is of the form Ω = ((E1, F1), (E2, F2), . . . , (Ek, Fk)) with Ei, Fi ⊆
Q, and a run ρ is successful if

∨k
i=1(Inf(ρ) ∩ Ei = ∅ ∧ Inf(ρ) ∩ Fi 6= ∅).

ρ acc
Inf(ρ)

E2

F1
F2

E1

Q

acc

A Büchi automaton is a special case of a Rabin automaton. That Rabin automaton would
have Ω = ((E1, F1)) with E1 = ∅ and F1 = set of final states.

Lemma 3.2. L ⊆ Σω is deterministically Muller recognizable ⇔ L is a Boolean combination
of deterministically Büchi recognizable ω-languages.

Proof Let the Muller automaton A = (Q,Σ, q0, δ,F) recognize L. Then the following holds:



36 CHAPTER 3. THEORY OF DETERMINISTIC OMEGA-AUTOMATA

α ∈ L⇔ A accepts α
⇔ ex. F ∈ F : A on α visits the F -states infinitely often.
⇔ ∨

F∈F

(
∧
q∈F

∃ωi : δ(q0, α(0) . . . α(i)) = q︸ ︷︷ ︸ ∧ ∧

q∈Q\F

¬∃ωi : δ(q0, α(0) . . . α(i)) = q︸ ︷︷ ︸)

α satisfies this condition iff ditto
the Büchi automaton

(Q,Σ, q0, δ, {q}) accepts α.

Therefore L is a Boolean combination of deterministically Büchi recognizable ω-languages.
The reverse direction can be shown by induction over the composition of Boolean combi-

nations. The beginning of the induction is clear since every deterministic Büchi automaton is
a special case of a deterministic Muller automaton. For the induction step, we need to show
that the class of deterministically Muller recognizable languages is closed under complement,
intersection, and union.

A part of the induction step: L ⊆ Σω det. Muller recognizable ⇒ Σω\L det. Muller recog-
nizable. If L is recognized by (Q,Σ, q0, δ,F) then Σω \L will be recognized by (Q,Σ, q0, δ, 2

Q\
F). �

3.2 McNaughton’s Theorem, Safra Construction

We show the equivalence between nondeterministic Büchi and deterministic Muller automata.
This was first shown by McNaughton in 1966. One direction is easy:

Theorem 3.3. L Muller recognizable ⇒ L nondeterministically Büchi recognizable.

Proof Let A = (Q,Σ, q0, δ,F) recognize L with F = {F1, . . . , Fk}. The structure of an
accepting run looks like the following:

States that are
visited only finitely
often

. . . δ

α

Fi
Fi

Fi

Idea for the Büchi automaton B: B guesses the position on the input from which onwards A

only enters states in Inf(ρ). B also guesses the index i of the final set Fi und asserts whether
Fi is entered again and again.

• QB = Q ∪ (Q× 2Q × {1, . . . , k})

• qB
0 = q0

• FB = {(p, ∅, j)|p ∈ Q, j ∈ {1, . . . , k}}

• ∆B contains (for all j ∈ {1, . . . , k})

(p, a, q) and (p, a, (q, ∅, j)) if δ(p, a) = q,
((p, P, j), a, (q, P ∪ {q}, j)) if δ(p, a) = q and P ∪ {q} $ Fj ,
((p, P, j), a, (q, ∅, j)) if δ(p, a) = q and P ∪ {q} = Fj . �



3.2. MCNAUGHTON’S THEOREM, SAFRA CONSTRUCTION 37

c

4

a,c

c

a,b

3c

0

1

a,c

a,c

a,b,c

0

0

0

0

00

00 0

0

0

1 1

1 3 3

3

1

3

1

3

1

3

Branch final

delete

Mark off

Branch final

0

2

0

3 1

2

3

1

2 2 2

Power set

Power set

states

Power setBranch final

states empty

Power set

node

Delete

empty

Delete

states

Power set

states

3

b

b

c

c

0,1,3,4

0,1,3,4

0,1,3,4

0,30,3

0,30,3 0,3

0,1,3

0,1,3

1 1

1 3 3

4

3

3

3

3

3

3

3

1 c

0,1,3,4

0

0,3

1,4

3,4

1,4 3 !3,4

Figure 3.1: The column on the right, read top down, is the sequence of Safra trees for the
given automaton on ccbcb. The intermediate steps are shown on the left. Within a node, the
name of the node is on the left and the label on the right.

Theorem 3.4. (McNaughton’s Theorem) L nondeterministically Büchi recognizable ⇒ L is
deterministically Muller recognizable.

Before proving the theorem, let us consider an example which shows that the powerset con-
struction, as known from finite automata theory, does not work.

A “macro state” is a set of states of the given Büchi automaton A = (Q,Σ, q0,∆, F ). If
we apply the powerset construction on the following Büchi automaton, the new automaton
will also accept the word (ab)ω, since some macro state which contains a final state is entered
infinitely often.

a,b b
b

1 2 Input a b a b a b . . .

macro state 1 1 1,2 1 1,2 1 1,2 . . .

To show McNaughton’s Theorem we use a generalized powerset construction that is based on
a construction by Safra (1988). In this construction, the macro states are not sets of states
but rather trees, whose nodes are labeled with sets of states of the Büchi automaton. The
powerset construction is performed on each node and new child nodes are branched off for
final states. A state that is contained in several childs of a node, will remain in the oldest
child only. Nodes with empty labels are removed (except the root node). If the union of the
labels of the childs of a node is equal to the label of that node, then all children and their
descendants are deleted und that node will be marked with “!”. An example can be seen in
Figure 3.1.

Definition 3.5. A Safra tree over Q is an ordered finite tree with node names in {1, . . . , 2|Q|},
whose nodes are each labeled with a nonempty subset R of Q (R = ∅ is only allowed in the
root node) or with a pair (R, !). The state sets of brother nodes are disjoint and the union of
the labels of child nodes is a proper subset of the label of the parent node.



38 CHAPTER 3. THEORY OF DETERMINISTIC OMEGA-AUTOMATA

Remark 3.6. Since Q is finite, the set of Safra trees over Q is also finite.

Notation: P
w
 R (P,R ⊆ Q) denotes: ∀r ∈ R : ∃p ∈ P A : p

w→ r.

Remark 3.7. Let

R0
u1
 P1

v1
 R1!

u2
 P2

v2
 R2! . . . Pi

vi
 Ri!

⊆ = ⊆ = ⊆ =

F1
v1
 Q1 F2

v2
 Q2 Fi

vi
 Qi

where Fi = set of final states of Pi.

Then ∀r ∈ Ri ∃p ∈ R0 : A reaches from p via input u1v1u2v2 . . . uivi state r with ≥ i visits
in final states.

This is made clear by retracing a run from Ri! over the stages Qi, Fi, Pi, Ri−1!, Qi−1, . . . .

Lemma 3.8. (König’s Lemma) A finitely branching, infinite tree contains an infinite path.

Proof Let t be a finitely branching, infinite tree. Define a path π that ensures the following
property for every node v of π: there are infinitely many children of v in t.

The root node fulfills this by definition. This property can be transferred to a child node
v′ of v, because the tree is finitely branching (at v). �

Lemma 3.9. Let R0
u1v1
 R1!

u2v2
 R2! . . . Ri!

ui+1vi+1

 . . . as defined in Remark 3.7. Then there
is a successful run of the nondeterministic Büchi automaton A on u1v1u2v2 . . . , beginning with
a state in R0.

Proof Consider the tree of states that is formed by runs from R0 to r via u1v1 . . . uivi, for
each state r ∈ Ri. These runs form an infinite and finitely branching tree. Then by König’s
Lemma there is an infinite path in this tree. This path describes an infinite (successful) run
of A during which A enters a final state after each prefix u1v1 . . . uivi. �

Proof of Theorem 3.4: Definition of the desired Muller automaton B for a given Büchi
automaton A:

• QB := Set of Safra trees over Q.

• q0B := Safra tree consisting of just the root with label {q0}.

• For the definition of δB: Compute δB(s, a) for the Safra tree s, a ∈ A in four stages:

1. For every node with a label that contains final states, introduce a new child node
with a label that only consists of these final states. Take a free number from 2|Q|
as the name for that node. We will show in the next section that a Safra tree has
got at most |Q| nodes. Since at most one child node is introduced for every node,
2|Q| node names suffice.

2. Apply the powerset construction to each node label for the input letter a: R →
{r′ | ∃(r, a, r′) ∈ ∆, with r ∈ R}.



3.3. COMPLEXITY ANALYSIS OF THE SAFRA CONSTRUCTION 39

3. Cancel the state q from a node and from all nodes in its subtree if it also occurs
in an older brother node. Cancel a node and its descendants if it carries the label
∅ (unless it is the root).

4. Cancel all sons and their descendants if the union of their labels is the parent label.
In this case mark the parent node with “!”.

• Definition of the system F of final state sets:

A set S of Safra trees is in F ⇔ there exists a node name that appears in each s ∈ S,
and if in some tree s ∈ S, the label of this node name carries the marker “!”.

Now we need to show: L(A) = L(B).

⊇ Let the constructed Muller automaton B accept α. Consider the run of Safra trees of B

on α. Then there is a node k which, by definition of F , occurs in every Safra tree from
some point onwards and is marked with “!” infinitely often. Hence, for a suitable R, R!
occurs again and again as a label of k.

Then we have, according to Remark 3.9, a successful run of A on α. Therefore α is
accepted by A.

⊆ Let the Büchi automaton A accept α. Trace a successful run of B on α, in which a final
state q is visited infinitely often. Observe in which Safra trees (of the unambiguous run
of B) this state q occurs.

If the root is labeled with “!” infinitely often, then α will be accepted by B.

Otherwise consider the first occurence of a final state in the Büchi run after the root
was marked off with “!” for the last time. From this point onwards the current state
is always in the label of one of the child nodes of the root. That will eventually be a
fixed child node k1, since states can only be transferred to older child nodes. Now we
can apply the same line of reasoning to the node k1 as we did for the root: Either k1

will be marked infinitely often, or we will find a child k2 of k1 that will from some point
onwards contain the current state of the Büchi run. Thus we obtain a sequence of nodes
k1, k2, . . ..

As Safra trees are limited in depth, a node ki must eventually be marked infinitely often
and therefore B accepts.

�

3.3 Complexity Analysis of the Safra Construction

Remark 3.10. Let |Q| = n. Then every Safra tree over Q has got at most n nodes.

Proof by induction over the height of Safra trees.

Height 0: The Safra tree has got one node (≤ n). Assumption clear.



40 CHAPTER 3. THEORY OF DETERMINISTIC OMEGA-AUTOMATA

Height h+1: Safra tree

QkQ2Q1 . . .

Q0

Q0 ⊆ Q, and Q1, . . . Qk are disjoint and the union of them is a proper subset of Q0. The
subtrees are Safra trees over Q1, . . . Qk (say |Qi| = ni), at each case with ≤ n1, . . . ,≤ nk
nodes by induction hypothesis. The number of nodes of the Safra tree of height h + 1
is therefore ≤ n1 + · · · + nk + 1 ≤ |Q|.

�

To simplify the description of Safra trees we introduce the notion of the characteristic node
of a state q ∈ Q. This is the node with q in its label and whose children are not labeled with
a set containing q. The labeling of a Safra tree is uniquely determined by the assignment q 7→
name of the characteristic node of q.

Consequently, a Safra tree s is specified by four functions:

1. Assignment of the characteristic nodes Q → {0, . . . , 2n}, where q 7→ 0 ⇔ q is not
contained in the tree.

2. “!”-Marking: {1, . . . , 2n} → {0, 1} (value = 1 iff label has “!”).

3. Father function: {1, . . . , 2n} → {0, . . . , 2n}, where Father(i) = 0 ⇔ i is not contained
in s.

4. Brother function: {1, . . . , 2n} → {0, . . . , 2n}, where Brother(i) = 0 ⇔ i is not contained
in s.

The number of Safra trees is therefore ≤ number of quadrupels of those functions
≤ (2n+ 1)n · 22n · (2n+ 1)2n · (2n+ 1)2n

≤ (2n+ 1)7n ∈ 2O(n logn).

We obtain “more states” than by using the powerset construction (with 2n states).

The Muller acceptance condition, defined in the proof of Theorem 3.4, can be transformed
into an equivalent Rabin acceptance condition ((E1, F1), . . . , (Em, Fm)), where

Ek := Set of all Safra trees without the node k,
Fk := Set of all Safra trees with the node k marked with “!”.

Then the following holds:

Inf(ρ) ∈ F ⇔ for a node name k:
Inf(ρ) ∩ Ek = ∅ (k must occur in every s ∈ Inf(ρ) then)
Inf(ρ) ∩ Fk 6= ∅ (Marker ! occurs with k in a s ∈ In(ρ))

We can infer Safra’s Theorem:

Theorem 3.11. (Safra 1988) A Büchi automaton with n states is transformed by the Safra
construction into a deterministic Rabin automaton with 2O(n log n) states and O(n) accepting
pairs (Ek, Fk) (more precisely: 2n pairs).



3.3. COMPLEXITY ANALYSIS OF THE SAFRA CONSTRUCTION 41

One can show that this construction is optimal:

Theorem 3.12. (M. Michel 1988, C. Löding 1998) There is no translation of nondeter-
ministic Büchi automata with O(n) states into deterministic Rabin automata with 2O(n).

The upper bound of the powerset construction is always exceeded. Proof strategy:

1. Specify a family (Ln)n≥1 of ω-languages Ln ⊆ {1, . . . , n,#}ω, which is recognized by a
Büchi automaton with O(n) states.

2. Prove that Ln cannot be recognized by a deterministic Rabin automaton with 2O(n)

states.

For 1.: Define Ln by the Büchi automaton Bn, alphabet Σ = {1, . . . , n,#}. All states of Bn

are initial states.

1, . . . , n, #

. . .q0

1, . . . , n, # 1, . . . , n, #

1

2
n

q1 q2 qn

Remark 3.13. The alphabet depends on n. We can change it into a fixed alphabet {a, b,#} by
the correspondence 1 → ab, 2 → a2b, . . . , n→ anb, # → #. The following Büchi automaton,
where the states q0, q1, q2, . . . , qn are initial, recognizes Ln.

q′2

b,#

aa

q0 qn

a

a

a

a

a

b

b

b

. . .

. . .

. . .

q1

a

a

a

a a

b,#

q′1

b

q2

b,#

aa

q′n

Lemma 3.14. α ∈ Ln ⇔ (∗) there are pairwise distinct letters i1, . . . , ik ∈ {1, . . . , n},
such that the segments made up of letter
pairs i1i2, i2i3, . . . , ik−1ik, iki1 occur infinitely often in α.

Proof

⇐ Let (∗) hold for i1, . . . , ik. Find the successful run of Bn on α in the following way:

Go to qi1 and stay there until i1i2 occurs for the first time. Then do the following:

qi1
i1→ q0

i2→ qi2 . Similarly with i2i3, i3i4, . . . in the cycle i1, i2, . . . , ik, i1. Thereby we
obtain infinitely many visits to q0 and Bn accepts.

⇒ Assume Bn accepts α but (∗) fails. Pick a position p in α such that the letter pairs i1i2
occuring later will in fact occur infinitely often.

If the state qi 6= q0 is visited after p and q0 later than that, then no return to qi is
possible, since otherwise we would get a cycle as in (∗).
Since qi 6= q0 was arbitrary, the run would eventually stay in q0. Contradiction. �



42 CHAPTER 3. THEORY OF DETERMINISTIC OMEGA-AUTOMATA

Lemma 3.15. (Permutation Lemma) For every permutation (i1 . . . in) of (1, . . . , n) the ω-
Word (i1 . . . in#)ω is not in Ln.

To prove 2. we just need a remark on Rabin automata.

Lemma 3.16. (Union Lemma) Let R = (Q,Σ, q0, δ,Ω) be a Rabin automaton with Ω =
{(E1, F1), . . . , (Ek, Fk)}. Let ρ1, ρ2, ρ ∈ Qω be runs of R with Inf(ρ1) ∪ Inf(ρ2) = Inf(ρ). If
ρ1 and ρ2 are not successful, then ρ is not successful, either.

Proof Assume ρ1, ρ2 are not successful and ρ is successful. Then there exists an i ∈ {1, . . . , k}
with Inf(ρ)∩Ei = ∅ and Inf(ρ)∩Fi 6= ∅. Because of Inf(ρ1)∪ Inf(ρ2) = Inf(ρ), Inf(ρ1)∩Ei =
Inf(ρ2) ∩ Ei = ∅ holds, and also Inf(ρx) ∩ Fi 6= ∅ for a x ∈ {1, 2}. Thus ρx is successful.
Contradiction. �

Proof of Theorem 3.12 Let the deterministic Rabin automaton Cn recognize Ln. Claim:
Cn has got ≥ n! states.

Consider two different permutations (i1, . . . , in), (j1 . . . , jn) of 1, . . . , n. Then the ω-words
(i1 . . . in#)ω
︸ ︷︷ ︸

α

, (j1 . . . jn#)ω
︸ ︷︷ ︸

β

are not accepted by Cn. Let ρα, ρβ be the non-accepting runs of Cn

on α and β. Set R := Inf(ρα) and S := Inf(ρβ).

Claim: R ∩ S = ∅. From this follows (since there are n! permutations) that Cn has got at
least n! states and we are finished.

Assume q ∈ R ∩ S: From ρα, ρβ construct a new run of Cn, on the new input, that has
the following structure:

qq0

input segment i1 . . . in is processed at least once.

input segment j1 . . . jn is processed at least once.
S is completely visited at least once and
On segment of β, according to ρβ ,

R is completely visited at least once and
On segment of α, according to ρα,

Repeating these two loops in alternation, we get a new input word γ and a new run of Cn on
γ with Inf(ργ) = R ∪ S. According to Lemma 3.16, Cn does not accept γ.

Both i1 . . . in and j1 . . . jn occur infinitely often in γ. Since i1 . . . in 6= j1 . . . jn choose the
smallest k with ik 6= jk. Then we have the following situation:

i1 . . . ik−1 ik

= = 6=

j1 jk−1 jk

There has to be an il, l > k, with il = jk, as well as a jr, r > k, with jr = ik. We therefore
obtain a cycle that corresponds to the characterization of Ln.

ikik+1, . . . , il−1il , jkjk+1, . . . , jr−1jr , ikik+1, . . .
q q
jk ik



3.4. LOGICAL APPLICATION: FROM S1S TO BÜCHI AUTOMATA 43

Thus γ ∈ Ln which is a contradiction to our choice of Cn. Therefore Theorem 3.12 has been
proved. �

It is an open question whether there are ω-languages Ln that can be recognized by nondeter-
ministic Büchi automata with O(n) states and only by deterministic Muller automata with
≥ n! states.

Remark 3.17. The example languages Ln as defined for the proof of Theorem 3.12 are
recognized by deterministic Muller automata with O(n2) states.

3.4 Logical Application: From S1S to Büchi Automata

In the last chapter we tried to show the equivalence of the logic S1S and Büchi automata.
Now we have the tools ready to prove that every S1S definable language is Büchi recognizable.
As a consequence of McNaughton’s Theorem we see:

Theorem 3.18. The class of Büchi recognizable ω-languages is closed under complement.

Proof Given a Büchi automaton B, construct a Büchi automaton for the complement ω-
language as follows:

1. From B obtain an equivalent deterministic Muller automaton M by Safra’s construction.

2. In M declare the non-accepting state sets as accepting and vice versa and thus obtain
M′.

3. From M′ obtain an equivalent Büchi automaton B′.

�

We showed that a Büchi-recognizable ω-language is S1S definable. Now we prove the converse:

Theorem 3.19. An S1S-definable ω-language is Büchi recognizable.

There will be two stages in the proof:

1. Reduction of S1S to a simpler formalism S1S0.

2. Construction of an equivalent Büchi automata by induction on S1S0-formulas.

From S1S to S1S0 For simplification we eliminate some constructs from S1S:

• The constant 0 can be eliminated: Instead of X(0) write

∃t(X(t) ∧ ¬∃s(s < t)).

• The relation symbol < can be eliminated: Instead of s < t write

∀X(X(s′) ∧ ∀y(X(y) → X(y′)) → X(t))

(each set which contains s′ and is closed under successors must contain t).



44 CHAPTER 3. THEORY OF DETERMINISTIC OMEGA-AUTOMATA

• The successor function only occurs in formulas of type x′ = y: Instead of X(s′′) write

∃y∃z(s′ = y ∧ y′ = z ∧X(z)).

• Eliminate the use of first-order variables by using different atomic formulas:

X ⊆ Y, Sing(X), Succ(X,Y ),

meaning: “X is subset of Y ”, “X is a singleton set”, and “X = {x}, Y = {y} are
singleton sets with x+1 = y”. Now one can write X(y) as Sing(Y )∧Y ⊆ X and x′ = y
as Succ(X,Y ).

Example 3.20. Translation example: ∀x ∃y(x′ = y ∧ Z(y)) is written as

∀X(Sing(X) → ∃Y (Sing(Y ) ∧ Succ(X,Y ) ∧ Y ⊆ Z)).

�

Proof of Theorem 3.19 We can assume that S1S-formulas ϕ(X1, . . . , Xn) are rewritten as
S1S0-formulas. We show the claim by induction on S1S0-formulas. It suffices to treat

• the atomic formulas
X1 ⊆ X2, Sing(X1) , Succ(X1, X2),

• the connectives ∨ and ¬, and the existential set quantifier ∃.

We can easily specifiy Büchi automata for the atomic formulas (induction basis):

Atomic formula Corresponding Büchi automaton Recognized example word

X1 ⊆ X2

(0

0),(
0

1),(
1

1)

X1=001101...
X2=010101...

Sing(X1)

(0

∗
)

(1

∗
)

(0

∗
)

X1 = 000010000 . . .

Succ(X1, X2)

(0

0)

(1

0) (0

1)

(0

0)

X1=0001000...
X2=0000100...

Induction step:

1. Or connective: Consider ϕ1(X1, . . . , Xn) ∨ ϕ2(X1, . . . , Xn).
By induction hypothesis we have Büchi automata A1,A2 that are equivalent to ϕ1, ϕ2.
Take the Büchi automaton for the union as the one equivalent to ϕ1 ∨ ϕ2.

2. Negation: Consider ¬ϕ(X1, . . . , Xn).
By induction hypothesis there is a Büchi automaton equivalent to ϕ.

Apply the closure of Büchi recognizable ω-languages under complement, to obtain a
Büchi automaton equivalent to ¬ϕ.



3.5. COMPLEXITY OF LOGIC-AUTOMATA TRANSLATIONS 45

3. Existential quantifier: Consider ∃Xϕ(X,X1, . . . , Xn).
Assume A is a Büchi automaton equivalent to ϕ(X,X1, . . . , Xn). In A, change each
transition label (b, b1, . . . , bn) into (b1, . . . , bn); thus obtain A′. Then a transition via b
exists in A′ if there is a transition via (0, b) or (1, b) in A.

A′ accepts α ∈ (Bn)ω

iff there exists a bit sequence c0c1 . . . such that (c0, α(0)), (c1, α(1)) . . . is accepted by
A

iff ∃c0c1 . . . such that A accepts (c0, α(0)), (c1, α(1)) . . .

iff α |= ∃Xϕ(X,X1, . . . , Xn).

So the Büchi automaton A′ is equivalent to ∃Xϕ(X,X1, . . . , Xn). An example:

A :

(0

1)

(1

1)

(0

0)

(1

0)

A′ :

1

1

0

0

�

3.5 Complexity of Logic-Automata Translations

We have translated LTL- and S1S-formulas into Büchi automata. The complexity bounds are
very different. We define the k-fold exponential function gk by

g0(n) = n, gk+1(n) = 2gk(n).

Theorem 3.21. (Translation complexity of LTL and S1S)

1. An LTL formula of size n (measured in the number of subformulas) can be translated
into a Büchi automaton with 2n states.

2. There is no k such that each S1S formula of size n (measured in the number of subfor-
mulas) can be translated into a Büchi automaton with gk(n) states.

The case of sentences We will briefly mention a historical application of the translation
from S1S to Büchi automata. Consider sentences, which are formulas without free variables.

The translation of a sentence ϕ into a Büchi automaton Aϕ yields an automaton with
unlabeled transitions.

As we can now see, the sentence ϕ is true in the structure (N,+1, <, 0) iff the automaton
Aϕ has a successful run. The latter condition can be checked with the nonemptiness test.
Consequently, one can decide, for any given S1S-sentence ϕ, whether ϕ is true in (N,+1, <, 0)
or not.

The monadic second-order theory of (N,+1, <, 0) is the set of S1S-sentences that are true
in (N,+1, <, 0). This is written as MTh2(N,+1, <, 0).



46 CHAPTER 3. THEORY OF DETERMINISTIC OMEGA-AUTOMATA

Some example sentences:

∀X ∃Y (∀t(X(t) → Y (t))) true
∀X ∃t ∀s(X(s) → s < t) false
∀X(X(0) ∧ ∀s(X(s) → X(s′)) → ∀tX(t)) true

By applying the above mentioned translation into Büchi automata and by testing for
nonemptiness, we immediately see :

Theorem 3.22. (Büchi 1960) The theory MTh2(N,+1, <, 0) is decidable.

3.6 Classification of Omega-Regular Languages and Sequence
Properties

Up to now we have treated general logical and automata theoretical methods to describe
sequence properties (i.e. system properties). However the last section showed that taking too
broad a view results in computationally infeasible results.

In Section 2.2 we mentioned several interesting sequence properties, e.g. “safety”, “guar-
anty” and so on. We will now narrow our view of ω-languages to automata models which
correspond to those properties. Using those models we will prove certain relationships be-
tween those properties, i.e. can some property be expressed by some other property? This
will give us the tools to solve infinite games in the second part of this course.

So what are we going to do in this section?

1. Definition of a natural classification scheme based on deterministic automata.

2. Comparison of the levels of this classification.

3. Decision to which level a given property belongs.

The four basic types of sequence properties We have already seen a wide variety
of sequence properties in Section 2.2. The following four basic properties can be described
intuitively:

• Guaranty condition requires that some finite prefix has a certain property.

• Safety condition requires that all finite prefixes have a certain property.

• Recurrence condition requires that infinitely many finite prefixes have a certain
property.

• Persistence condition requires that almost all (i.e. from a certain point onwards all)
finite prefixes have a certain property.

We shall describe the prefix properties by deterministic automata.

Definition 3.23. Given a deterministic automaton A = (Q,Σ, q0, δ, F ) ,

• A E-accepts α⇔ exists a run ρ of A on α with ∃i : ρ(i) ∈ F .

• A A-accepts α ⇔ exists a run ρ of A on α, so that ∀i : ρ(i) ∈ F .



3.6. CLASSIFICATION OF OMEGA-REGULAR LANGUAGES 47

• A Büchi-accepts α ⇔ exists a run, so that ∀j∃i ≥ j : ρ(i) ∈ F .

• A co-Büchi-accepts α ⇔ exists a run ρ of A on α, so that for almost all i (except of
finitely many, written: ∀ωi ) ρ(i) ∈ F holds, i.e. from some point onwards only final
states will be visited.

The notions A-, E-, and co-Büchi automaton and A-, E-, and co-Büchi recognizable are defined
accordingly.

Example 3.24. Let Σ = {a, b, c}.
L1 = {α ∈ Σω | no c in α}. L1 is A-recognizable by

a,b

c

a,b,c

L2 = {α ∈ Σω | c only finitely often in α}. L2 is co-Büchi recognizable by

a,b
c

a,b

c

�

By intuition we can summarize some relationships between acceptance conditions on the one
side and sequence properties on the other side, in Table 3.1.

We want to show the following connections for specifications by automata:

• Guaranty and safety properties can be rewritten as recurrence and persistence proper-
ties.

• Guaranty properties cannot be described as safety properties (and vice versa).

• The same holds for recurrence and persistence properties.

These claims can be proven within the precise framework of ω-automata.

Theorem 3.25. Let L ⊆ Σω.

a) L deterministically E-recognizable ⇔ L = U · Σω for a regular U ⊆ Σ∗.

b) L deterministically Büchi recognizable ⇔ L = lim(U) for a regular U ⊆ Σ∗.

Proof Item (b) was shown earlier in the proof of Theorem 1.10 b). Proof of (a): Similar to
the proof of Theorem 1.10 b): Let U be recognized by the DFA A = (Q,Σ, q0, δ, F ) . Use A

as a deterministic E-automaton, now called B.

B accepts α
Def⇐⇒ The unambiguous run of B on α enters F at least once
⇐⇒ ∃i : A reaches a state in F after α(0) . . . α(i)
⇐⇒ ∃i : α(0) . . . α(i) ∈ U (according to the def. of A)
⇐⇒ α ∈ U · Σω.

�



48 CHAPTER 3. THEORY OF DETERMINISTIC OMEGA-AUTOMATA

Büchi acceptance co-Büchi acceptance

grasps “recurrence properties” grasps “persistence properties”

Illustration: F Illustration: F

System assumes desired states again and System finally assumes desired
again states only

E-acceptance A-acceptance

grasps “guaranty properties” grasps “safety properties”

Illustration: F Illustration: F

forbidden
area

System assumes desired state System is always in a desired
sometime state

Table 3.1: Overview

Lemma 3.26. (Complement Lemma) Let L ⊆ Σω. Then the following holds:

a) L is deterministically E-recognizable ⇔ the complement language Σω \ L is determinis-
tically A-recognizable.

b) L is deteterministically Büchi recognizable ⇔ the complement language Σω \L is deter-
ministically co-Büchi recognizable.

Proof Let A = (Q,Σ, q0, δ, F ) recognize L.
a) α ∈ Σω \ L ⇔ F is never reached during the unambiguous run ρ of A on α

⇔ Only states from Q \ F are assumed
during the unambiguous run ρ of A on α.

Thus A′ := (Q,Σ, q0, δ, Q \ F ) A-accepts Σω \ L. “⇐” can be shown analogously.

b) α ∈ Σω \ L ⇔ F is visited only finitely often
during the unambiguous run ρ of A on α

⇔ from some point onwards only states in Q \ F are assumed.
Thus A′ = (Q,Σ, q0, δ, Q \ F ) co-Büchi accepts Σω \ L. “⇐” can be shown
analogously.

�



3.6. CLASSIFICATION OF OMEGA-REGULAR LANGUAGES 49

Theorem 3.27. Let L ⊆ Σω.

a) L deterministically E-recognizable ⇒ L is deterministically Büchi recognizable.

b) The converse does not hold in general.

Proof

a) Given A = (Q,Σ, q0, δ, F ) construct a deterministic Büchi automaton by adding a state
qf . We are going to “divert” all transitions to F to the newly created state qf . We
define a new transition function δ′:

δ′(q, a) = δ(q, a) if q 6∈ F
δ′(q, a) = qf if q ∈ F
δ′(qf , a) = qf

Set B := (Q ∪ {qf},Σ, q0, δ′, {qf}). Then the new automaton B Büchi accepts the
ω-word α iff A E-accepts α.

b) :: Consider L = {α ∈ Bω | 1 appears infinitely often in α}. A deterministic Büchi
automaton which recognizes this language could look like this:

0 1

0

1

Assume: A deterministic E-automaton A recognizes L. According to Theorem 3.25
L = U ·Σω for a regular U ⊆ Σ∗. Since L is nonempty, U is also nonempty. Let u ∈ U .
Then u0ω ∈ U · Σω but u0ω /∈ L.

�

Lemma 3.28. There are languages which separate the above mentioned language classes:

1. B∗ · 1 · Bω is E-recognizable, but not A-recognizable.

2. {0ω} is A-recognizable but not E-recognizable.

3. (0∗1)ω is Büchi recognizable but not co-Büchi recognizable.

4. B∗0ω is co-Büchi recognizable but not Büchi recognizable.

Note that {0ω} = Bω \ (B∗ · 1 · Bω), B∗0ω = Bω \ (0∗1)ω.

Proof

1. E-recognizability is clear.
0

1

0,1

Assume B∗ · 1 · Bω is A-recognizable, say by A with n states.

Consider A on 0n10ω; all states of the run are final. Before input letter 1 there is a
state repetition (loop of final states). So with this loop A also accepts the input word
0ω, contradiction.



50 CHAPTER 3. THEORY OF DETERMINISTIC OMEGA-AUTOMATA

2. {0ω} being A-recognizable but not E-recognizable follows from the Complement Lemma,
since {0ω} = Bω \ (B∗ · 1 · Bω).

0

1

0,1

3. (0∗1)ω being Büchi recognizable was shown for Theorem 3.27(b). It is easy to show that
this language is not co-Büchi recognizable

4. B∗0ω being co-Büchi recognizable but not Büchi recognizable then follows from the
Complement Lemma and 3.

�

Theorem 3.29. (Hierarchy Theorem) The following diagram of inclusions holds for the
classes of ω-languages that can be recognized by deterministic automata with E-, A-, Büchi,
and co-Büchi acceptance conditions:

regular ω–languages

det.
A–recognizable

det.

det.

det.
co–Büchi recognizable

E–recognizable

Büchi recognizable

Proof (Inclusions)
L is det. E-recogn. }

⇒ L is det. Büchi recogn. ⇒ L is nondet. Büchi recogn.
L is det. A-recogn.

The implication L is det. E-recognizable ⇒ L is det. Büchi recognizable was already
shown (Theorem 3.27). Show: L is deterministically A-recognizable ⇒ L is deterministically
Büchi recognizable. Consider the automaton A = (Q,Σ, q0, δ, F ), which A-recognizes L and
modify it as follows:

p q

A

F

A
′

p q
q−q0q0

F

We replace every δ(p, a) = q, where p ∈ F, q /∈ F , by δ(p, a) = q−, and add δ(q−, a) = q− for
every a ∈ Σ. Then the A-run ρ only assumes final states on α

⇔ the corresponding A′-run ρ′ on α only assumes final states
⇔ (∗) the corresponding A′-run ρ′ on α infinitely often assumes final states.



3.6. CLASSIFICATION OF OMEGA-REGULAR LANGUAGES 51

For (∗): ⇐ If A′ infinitely often assumes a final state, then A′ follows no transition leading
out of F . Therefore A′ only enters final states, i.e. A′ Büchi recognizes L.

The claims

L is det. E-recognizable ⇒ }
L is det. co-Büchi recognizable,

L is det. A-recognizable ⇒
L is det. co-Büchi-recognizable ⇒ L is nondet. Büchi recognizable

will be proved in the exercises.

In order to show that these inclusions are proper, we need to consider seven different cases.
These are depicted in Figure 3.2. 4, 5, 6, and 7 have already been proved to be nonempty by

(1)
(4) (5)

(2)

(6) (7)

(3)

Figure 3.2: Seven inclusions

the languages B∗ · 1 · Bω, {0ω}, (0∗1)ω, and B∗0ω respectively in Remark 3.28.

(1) L1 := {1(0 + 1)ω} is det. E-recognizable and det. A-recognizable:

0

1

0,1

0,1

0

1

0,1

0,1

E-recognizes L1 A-recognizes L1

(2) L2 := {α ∈ Bω | 11 never occurs in α but 101 at least once}. This language is recog-
nized by the following det. Büchi automaton:

0
1 1

1
0

0

0

0,1

1

1
0

This det. Büchi automaton for L2 is at the same time the co-Büchi automaton for L2.

Assume 1: L2 is E-recognizable, say by A.

Consider A on the word 1010ω. This ω-word is accepted by the automaton. A final
state is visited not later than after the prefix 1010n. Therefore the ω-word 1010n110ω

is accepted. Contradiction.



52 CHAPTER 3. THEORY OF DETERMINISTIC OMEGA-AUTOMATA

Assume 2: L2 is A-recognizable, say by A with n states.

Consider A on 0n1010ω. The automaton accepts, i.e. it visits final states only. Because
of the repetition of states on 0n only final states are assumed on 0ω. Thus 0ω is accepted
but 0ω 6∈ L2. Contradiction.

(3) L3 := {α ∈ Bω | 00 occurs only finitely often in α, but 11 only finitely often}.
We will show in the exercises that L3 is nondeterministically Büchi recognizable but
neither deterministically Büchi nor deterministically co-Büchi recognizable.

�

3.7 Deciding the Level of Languages

For a given regular ω-language L (defined by, say, a Muller automaton) one can decide whether
L is det. Büchi recognizable or det. E-recognizable.

Let A = (Q,Σ, q0, δ,F) be a Muller automaton that has (w.l.o.g.) only reachable states.
A set S ⊆ Q is named loop if S 6= ∅ and ∀s, s′ ∈ S ∃w ∈ Σ+ δ(s, w) = s′. Thus loops are the
sets of states which can occur as Inf(ρ) of a run ρ. Let (w.l.o.g.) F consist of loops only.

Definition 3.30. Call F closed under reachable loops iff each loop S′ reachable from a loop
S ∈ F also belongs to F . Call F closed under superloops iff each loop S′ ⊇ S for a loop
S ∈ F also belongs to F .

F1 := {S ⊆ Q | S is a loop, S is reachable from a loop in F}
F2 := F ∪ {F ∪ E | F ∪ E is a loop with at least one state more than in F ∈ F}

= “proper superloop of F-loops”

Remark 3.31.

1. F is closed under reachable loops iff F = F1.

2. F is closed under superloops iff F = F2.

3. Each superloop of an F-loop is also reachable from an F-loop; so if F is closed under
reachable loops then it is also closed under superloops. So obviously F ⊆ F2 ⊆ F1 holds.

Theorem 3.32. (Landweber’s Theorem)

a) F = F1 ⇔ L(A) is deterministically E-recognizable.

b) F = F2 ⇔ L(A) is deterministically Büchi recognizable.

Proof of a)

⇒ Let F = F1. Define the E-automaton A′ = (Q,Σ, q0, δ,
⋃F).

A accepts α ⇐⇒ A eventually stays in a loop S ∈ F1 on α
DefF1⇐⇒ at some point A reaches a loop from F1 on α
⇐⇒ A′ E-accepts α.

Thus A and A′ are equivalent.



3.8. STAIGER-WAGNER AUTOMATA 53

⇐ Let the deterministic E-automaton B recognize L(A), w.l.o.g. let L(A) 6= ∅.
Show: F1 ⊆ F
Consider q ∈ S ∈ F . Show that all loops reachable from q are already in F .

Choose u ∈ Σ∗ with δA(q0, u) = q. Choose γ ∈ Σω, so that A on uγ assumes the loop
S. Since S ∈ F , uγ ∈ L(A) holds. The automaton B at some time reaches a final state
on uγ, say after uv. In A extend uv with w so that δA(q0, uvw) = q.

Let S′ be a loop, reachable from q, say via the input word uvwγ′. Since this ω-word
has got the prefix uv, B accepts uvwγ′. Therefore A also accepts uvwγ′. Thus the loop
S′ is also in F . �

Proof of b)

⇒ Let F = F2.

A accepts α
DefF2⇐⇒ A eventually assumes a superloop of an F-loop on α.

Construct a Büchi automaton A′ with the state set Q × 2Q and start state (q0, ∅).
The automaton accumulates the visited states in (q,R) until a F-loop is reached or
outnumbered. Then we reset R := ∅. The final states are all (q, ∅). So

A′ accepts α

iff of input α, A infinitely often passes through loops S′ ⊇ S where S ∈ F
iff (since only finitely many such S′ exist) for some S′ ⊇ S with S ∈ F , precisely the

states of S′ are visited infinitely often

iff (since F is closed under superloops) for some S ∈ F , precisely the states of S are
visited infinitely often

iff A accepts α.

⇐ Let the det. Büchi automaton B with final state set F recognize L(A).

Show: The system of accepting loops of A is closed under superloops (F2 ⊆ F).

So we have to find α ∈ L(A) which finally lets A cycle through S′. For that matter pick
q ∈ S, reached by A via w. Continue w by γ such that A loops through S and hence
accepts. So B on wγ infinitely often visits F , say first after wu1. Continuation via v1
through S leads A back to q, then a travel through the superloop S′ via x1 again back
to q.

Repetition yields wu1v1x1u2v2x2 . . . such that B assumes a final state after each ui; so
A accepts, and due to the xi, A visits the S′-states again and again. �

3.8 Staiger-Wagner Automata

For a run ρ ∈ Qω let Occ(ρ) := {q ∈ Q | ∃i : ρ(i) = q}. Guaranty and safety conditions can
be described with Occ(ρ).



54 CHAPTER 3. THEORY OF DETERMINISTIC OMEGA-AUTOMATA

Guaranty condition: ∃iρ(i) ∈ F ⇔ Occ(ρ) ∩ F 6= ∅

Safety condition: ∀iρ(i) ∈ F ⇔ Occ(ρ) ⊆ F

Definition 3.33. A Staiger-Wagner automaton (SW-automaton) is of the form A = (Q,Σ, q0, δ,Acc)
with Q,Σ, q0, δ as defined earlier and Acc is a family F of sets of states (Notation: F =
{F1, . . . , Fk}, Fi ⊆ Q).

A accepts α :⇔ Occ(ρ) ∈ F (i.e. Occ(ρ) = F1 or . . . or Occ(ρ) = Fk)
holds for the unambiguous run ρ of A on α.

Idea: The Staiger-Wagner condition grasps options for state sets in accepting runs.

Remark 3.34. The accepting component F of a Staiger-Wagner automaton only needs to
include sets F which consist of

• a strongly connected component (SCC) P ,

• a path from q0 to P .

Remark 3.35. Deterministic E- and A-automata are special cases of SW-automata.

Proof

a) Let A = (Q,Σ, q0, δ, F ) be an E-automaton. Then the SW-automaton A′ = (Q,Σ, q0, δ,F)
with F = {P ⊆ Q | P ∩ F 6= ∅} is equivalent to A.

b) Let A be an A-automaton as above. Then the SW-automaton A′′ = (Q,Σ, q0, δ,F ′) with
F ′ = {P ⊆ Q | P ⊆ F} is equivalent to A.

�

Question: Why is it not sufficient to define the SW-automaton as A′′ = (Q,Σ, q0, δ, {F})?
That would not be correct, because then a visit to every state in F would be mandatory,
which is not always necessary.

Theorem 3.36. The acceptance conditions, made up of Boolean combinations of guaranty
conditions (or safety conditions), are exactly those which can be described by SW-conditions.

Proof Consider the state space Q.

⇐ Consider the condition Occ(ρ) ∈ F , say for F = {F1, . . . , Fk}, i.e. Occ(ρ) = F1 ∨ · · · ∨
Occ(ρ) = Fk.

Occ(ρ) = Fj is equivalent to
∧
q∈Fj

∃iρ(i) = q︸ ︷︷ ︸∧
∧

q∈Q\Fj

¬ ∃iρ(i) = q︸ ︷︷ ︸
∃iρ(i) ∈ {q} ∃iρ(i) ∈ {q}

We obtain a Boolean combination of guaranty conditions of the form ∃iρ(i) ∈ {q}.

⇒ Consider a Boolean combination of guaranty conditions ∃ρ(i) ∈ Pk (or Occ(ρ) ∩ Pk 6= ∅)
for suitable sets Pk ⊆ Q. The DNF yields disjunction of conditions of the following kind
(we denote the jth element of the disjunction with (∗)j):
Occ(ρ)∩Pj1 6= ∅∧· · ·∧Occ(ρ)∩Pjmj 6= ∅∧Occ(ρ)∩Pjmj+1

= ∅∧· · ·∧Occ(ρ)∩Pjnj = ∅
Call F ⊆ Q good for the index j, if F , substituted for Occ(ρ), fulfills the condition (∗)j .
Set F := {F ⊆ Q | F is good for an index j}. The SW-automaton with this F accepts
iff the given Boolean combination is fulfilled.



3.8. STAIGER-WAGNER AUTOMATA 55

�

Example 3.37. Let L′
4 = {α ∈ Bω | 11 never occurs in α, or 101 occurs ≥ one time}. We

want to define the acceptance condition of A, so that L′
4 is recognized.

d e

a b c

0
1 1

0

1

0
0

0,1

1

A has got the following properties:

• If 101 occurs, then e is reached.

• If 101 does not occur, then the occurence of 11 is signaled by reaching c.

So we need to require that either e is visited or that c is never visited. Thus the system F of
accepting sets precisely contains {a}, {a, b, d}, {a, b, d, e}, {a, b, c, d, e}. �

Remark 3.38. There are SW-recognizable languages which cannot be recognized by a SW-
automaton with only one set in its accepting component.

Before proving the remark we give an example for which the reduction to an accepting com-
ponent {F} succeeds. Let Σ = {a, b, c}, L = {α ∈ Σω | b or c occur in α}.

3

1

2

a

a

a
b

b

b

c

cc
F = {{1, 2}, {1, 3}, {1, 2, 3}}

In this case there are more than just one set F . But another SW-automaton only requires an
simpler F :

1 2

a a,b,c
b,c F = {{1, 2}}

Proof of Remark 3.38 Consider L = {0ω, 1ω}.

1

2

3

4
0 1

01

0

1

0,1
F = {{1, 2}, {1, 3}}

Assume: The SW-automaton A = (Q,B, q0, δ, {F}) recognizes L, say with n states. Consider
the run ρ0 on 0ω, which visits exactly the F -states. After 0n, p ∈ F is reached, and every
state that is visited on 0ω has already been visited. 1ω is also accepted. Therefore exactly
the F -states are visited, i.e. also p. From the state p := δ(q0, 0

n) on the word 1ω a subset of
F is visited. Consider 0n1ω. For this word precisely F is visited and therefore the word is
accepted. Contradiction. �

Theorem 3.39. (Staiger, Wagner 1977) An ω-language L ⊆ Σω is SW-recognizable iff it
is deterministically Büchi recognizable and deterministically co-Büchi recognizable.



56 CHAPTER 3. THEORY OF DETERMINISTIC OMEGA-AUTOMATA

From Staiger-Wagner to Büchi Proof idea: Given a Staiger-Wagner automaton with
state-set Q and acceptance component F = {F1, . . . , Fk}, we introduce an automaton A′

with state space Q× 2Q.
In the first component, A′ simulates A. In the second component, A′ accumulates the

visited states. If this set coincides with some Fi, the state is declared final. Formally, a state
(q,R) is declared final in A′ if for some i we have R = Fi. We show

A accepts α iff A′ Büchi-accepts α iff A′ co-Büchi-accepts α.

A′ accepts α

iff A′ on α visits infinitely often a final state

iff in the run of A′ on α, infinitely often there is some i such that the visited states form
the set Fi

iff for some i, infinitely often the visited states form the set Fi

iff A accepts α.

Note: Infinitely often the visited states form the set Fi iff from some point onwards the
visited states form the set Fi. So for A′ one may as well use the co-Büchi condition without
changing the recognized ω-language.

For the converse we need some preparation:
Recall: A strongly connected component (SCC) of (the transition graph of) A is a maximal

strongly connected set, in other words a maximal loop of A.

Remark 3.40. The SCC’s and the singletons which do not belong to a SCC form a partial
order under the reachability relation.

Example 3.41. The numbers indicate SCCs.

2

2 2 5

1 5

3 4 5

The partial order can be illustrated as follows:

2

1 5

3 4

�

Remark 3.42. If F is closed under superloops and under subloops, then all loops of a SCC
are accepting (in F) or all rejecting (not in F).

Given a loop of F in the SCC S, S itself belongs to F (since F is closed under superloops)
and hence all loops within S belong to F (since F is closed under subloops).

Call an SCC S accepting if all its loops are accepting.



3.9. PARITY CONDITIONS 57

From Büchi and co-Büchi to Staiger-Wagner Assume L is deterministically Büchi
recognizable and deterministically co-Büchi recognizable.

Let A be a Muller automaton recognizing L, say with acceptance component F . By
Landweber’s Theorem, F is closed under superloops and under subloops.

Any run ρ will finally remain within a certain SCC S.

For any SCC S, let S+ be the set of states outside S and reachable from S by a single
transition.

The run ρ will eventually stay in S if some state of S is visited in ρ but no state of S+

is visited in ρ. So the Muller automaton A accepts α iff the run ρ of A on α satisfies the
following:

ρ reaches an accepting SCC S but does not visit one of the states in S+.

So we may change the acceptance condition to the Staiger-Wagner condition with the following
system F ′:

R ∈ F ′ :⇔ for some accepting SCC S, R ∩ S 6= ∅
but R ∩ S+ = ∅

�

3.9 Parity Conditions

In a Muller automaton the accepting loops are enumerated (in an acceptance component
F). In a Rabin automaton the accepting loops are fixed by “bounds” (S is accepting iff S
intersects some Fi but is disjoint from the corresponding Ei). Can one fix the accepting loops
by a condition on their individual states? We use a “coloring” of states by numbers:

Definition 3.43. A coloring of Q is a function c : Q → {0, . . . , k}. For a run ρ let c(ρ) be
the sequence of associated colors:

c(ρ) = c(ρ(0))c(ρ(1)) . . .

Definition 3.44. (Weak and Strong Parity Automata) A (deterministic) parity automaton
is an ω-automaton of the form A = (Q,Σ, q0, δ, c), where the acceptance component is a
coloring c : Q→ {0, . . . , k} for some natural number k.

A weak parity automaton is a parity automaton where a

run ρ is successful if the maximal color occurring in ρ is even
(formally: max(Occ(c(ρ))) is even).

A strong parity automaton (sometimes just “parity automaton”) is a parity automaton
where a

run ρ is successful if the maximal color occurring infinitely often in ρ is even
(formally: max(Inf(c(ρ))) is even).



58 CHAPTER 3. THEORY OF DETERMINISTIC OMEGA-AUTOMATA

Example 3.45. (Special cases)
An E-automaton with state set Q and final state set F amounts to a weak parity automa-

ton with a coloring c : Q→ {1, 2}:

c(q) =

{
1 for q 6∈ F

2 for q ∈ F

A Büchi automaton can be presented similarly as a strong parity automaton with the same
coloring.

An A-automaton (Q and F as before) amounts to a weak parity automaton with coloring
c : Q→ {0, 1}:

c(q) =

{
0 for q ∈ F

1 for q 6∈ F

�

Lemma 3.46. Every deterministic parity automaton is equivalent to a deterministic Rabin
automaton.

Proof Given the parity automaton A = (Q,Σ, q0, δ, c) with c : Q → {0, . . . , k}, w.l.o.g. let k
be odd. We write Ci = {q | c(q) = i}.

We define the sets F0, E0, . . . , Fk, Ek according to the following scheme:

C0 C1 C2 C3 C4 C5

E1

F0

E0

F1

F2

E2

thus Fj = {q ∈ Q | c(q) ≥ 2j}
}

j = 0 . . . k
Ej = {q ∈ Q | c(q) ≥ 2j + 1}

The maximal infinitely often visited color is then = 0, if Inf(ρ) ∩ F0 6= ∅, Inf(ρ) ∩ E0 = ∅,
= 1, if Inf(ρ) ∩ F1 = ∅, Inf(ρ) ∩ E1 6= ∅,
...

Therefore F0 ⊇ E0 ⊇ F1 ⊇ E1 ⊇ · · · ⊇ Fk ⊇ Ek holds and

max(Inf(c(ρ))) even ⇔
r∨

j=0

(Inf(ρ) ∩ Fj 6= ∅ ∧ Inf(ρ) ∩ Ej = ∅).



3.9. PARITY CONDITIONS 59

We obtain an equivalent Rabin automaton B = (Q,Σ, q0, δ,Ω) (Ω = {(E0, F0), . . . , (Ek, Fk)}).
Because of the inclusion chain Fi, Ei also called Rabin chain automaton with accepting com-
ponent Ω = ((E0, F0), . . . , (Er, Fr)). �

Aim:

• Weak parity automata have the same expressive power as Staiger-Wagner automata.

• Strong parity automata have the same expressive power as Muller automata.

From Parity to Staiger-Wagner and Muller Consider an automaton with coloring
c : Q→ {0, . . . , k}. Let Ci = {q ∈ Q | c(q) = i}.

The weak parity condition is a Boolean combination of E-acceptance conditions for a run
ρ: ∨

j even

∃i
(
ρ(i) ∈ Cj ∧ ¬∃iρ(i) ∈ Cj+1 ∪ . . . ∪ Ck

)

Similarly the strong parity condition is a Boolean combination of Büchi acceptance conditions.
Consequences:

• A weak parity automaton can be simulated by a Staiger-Wagner automaton.

• A strong parity automaton can be simulated by a Muller automaton.

Theorem 3.47. (From Staiger-Wagner to weak parity) For a Staiger-Wagner automaton
one can construct an equivalent weak parity automaton.

Proof Let A = (Q,Σ, q0, δ,F) be a Staiger-Wagner automaton. We define an equivalent
weak parity automaton A′ = (Q′,Σ, q′0, δ

′, c). Set Q′ = Q× 2Q, q′0 = (q0, {q0}).
Idea: Collect the visited states in the second component. Define δ′((p,R), a) = (δ(p, a), R∪

{δ(p, a)}).
The coloring c is defined by

c(p,R) =

{
2 · |R| if R ∈ F
2 · |R| − 1 if R 6∈ F

Colors of a run increase monotonically, and from some point onwards stay constant (when
all visited states have been seen at least once).

The maximal color is even iff the set of visited states belongs to F . So A′ is equivalent to
A. �

Theorem 3.48. (From Muller automata to parity automata) For a Muller automaton one
can construct an equivalent strong parity automaton.

Proof Idea: Extend the idea of “recording past states”. Remember not only the set of visited
states, but also the order of their last occurrence. The data structure for this information
is called “Order vector” (McNaughton 1965), “Latest appearance record”, short “LAR”
(Gurevich, Harrington 1982).

The vector has the current state on position 1, the next previous state on position 2, etc.
The position where the current state was taken from is marked as “hit position”.

The complete proof will be given later on.



60 CHAPTER 3. THEORY OF DETERMINISTIC OMEGA-AUTOMATA

Example 3.49. Q = {1, 2, 3, 4}

run ρ: LAR-run ρ′: underlined: hit
1 1234
3 3124
4 4312
2 2431
3 3241
1 1324
3 3124
3 3124
1 1324

�

3.10 Exercises

Exercise 3.1. Consider the Büchi automaton A = ({0, 1, 2}, {a, b}, 0,∆, {1}) with ∆ given
by the following transition table:

a b

0 0,1 0
1 2
2 2 1

Construct, using the Safra construction, an equivalent deterministic Muller automaton.

Exercise 3.2. Let L ⊆ Σω be an ω-language. We define the right congruence ∼L⊆ Σ∗ × Σ∗

by
u ∼L v iff ∀α ∈ Σω : uα ∈ L⇔ vα ∈ L.

(a) Show that every deterministic Muller automaton recognizing L needs at least as many
states as there are ∼L equivalence classes.

(b) Show that there is a non-regular ω-language L such that ∼L has finite index. (So the
Nerode characterization of regular languages does not generalize to ω-languages.)
Hint: Let β be an ω-word which is not ultimately periodic and consider

L(β) := {α ∈ Σω | α and β have a common suffix}.

Exercise 3.3. Starting from Exercise 3.2 define a family of ω-languages (Ln)n≥2 with the
following properties.

1. Ln is recognized by a nondetermistic Büchi automaton with O(n) states.

2. Every deterministic Muller automaton that recognizes Ln has got at least 2n states.

Exercise 3.4. Let UP be the set of all ω-words over {0, 1} that are ultimately periodic.
Show that UP is not regular.

Exercise 3.5. Show that there is a regular ω-language L ⊆ {a, b}ω, which cannot be recog-
nized by a deterministic Muller automaton A = (Q, {a, b}, q0, δ,F) with |F| = 1.



3.10. EXERCISES 61

Exercise 3.6. Let A1 = (Q1,Σ, q
1
0, δ1, F1) and A2 = (Q2,Σ, q

2
0, δ2, F2) be deterministic co-

Büchi automata.

(a) Show that the product automaton A of A1 and A2 with final states (F1×Q2)∪ (Q1×F2)
does in general not recognize the language L(A1) ∪ L(A2).

(b) Correct the construction from (a) such that the new automaton A′ recognizes L(A1) ∪
L(A2).

Exercise 3.7. Let L ⊆ Σω be an ω-language. Show:

(a) If L is deterministically A-recognizable, then L is deterministically co-Büchi recogniz-
able.

(b) If L is deterministically E-recognizable, then L is deterministically co-Büchi recogniz-
able.

(c) If L is deterministically co-B”uchi recognizable, then L is nondeterministically Büchi
recognizable.

Exercise 3.8. Consider the ω-language

L3 := {α ∈ {0, 1}ω | α contains 00 infinitely often, but 11 only finitely often}.

(a) Show that L3 is Büchi recognizable.

(b) Show that L3 is neither recognizable by a deterministic Büchi automaton nor by a deter-
ministic co-Büchi automaton.

Exercise 3.9. Let U ⊆ Σ∗ be a finite language, and L := U · Σω.

(a) Show that L is both E- and A-recognizable.

(b) Show the converse: If an ω-language L ⊆ Σω is both E- and A-recognizable then there is
finite language U ⊆ Σ∗ such that L = U · Σω.

This shows that bounded specifications are captured by ω-languages which are both E- and
A-recognizable.
Hint: For (b) it is useful to show that the complement of L is also E-recognizable. Then
consider, for a proof by contradiction, Σ∗ as a |Σ|-branching tree and apply König’s Lemma.

Exercise 3.10. The inclusion diagram shows the LTL-definable languages inside the hierar-
chy of ω-languages.

A

LTL

E

regular

det. co-Büchidet. Büchi



62 CHAPTER 3. THEORY OF DETERMINISTIC OMEGA-AUTOMATA

(a) Show that the languages L4 := B∗1Bω, L5 := {0ω}, L6 := (0∗1)ω, and L7 := B∗0ω are
LTL-definable, i.e. these languages are located in the inner part of the diagram.

(b) Partly verify the inclusion diagram by providing ω-languages for the two language classes
marked by dots.
Hint: Find counting versions of the appropiate LTL-definable ω-languages mentioned in
(a).

Exercise 3.11.

(a) Construct Staiger-Wagner automata accepting the ω-languages

L1 := {α ∈ {a, b, c}ω | if a occurs in α then b occurs later on}

and
L2 := {α ∈ {a, b, c}ω | α contains aa and before that

b only occurs in blocks of length ≤ 2}.

(b) Let A1 = (Q1,Σ, q
1
0, δ1,F1) and A2 = (Q2,Σ, q

2
0, δ2,F2) be Staiger-Wagner automata.

Construct the Staiger-Wagner product automaton A3 recognizing L(A1)∪L(A2). Verify
your construction.

Exercise 3.12. Show that for every n ≥ 1 there is an ω-language Ln which can be recognized
by a Staiger-Wagner automaton with n state sets as its accepting component. Also show that
the language cannot be recognized by a Staiger-Wagner automaton with less than n state sets
in its accepting component.

(a) For that matter use the alphabet Σn = {a1, . . . , an} and the language Ln = aω1 +· · ·+aωn.

(b) Extend the result of (a) to languages over an alphabet with two elements.

Exercise 3.13. Show that the language, which is defined by the ω-regular expression (0∗1)ω,
is not Staiger-Wagner recognizable. (Consider, assuming that such an SW-automaton with n
states exists, the ω-word (0n1)ω in order to derive a contradiction.)

Exercise 3.14. Directly construct an equivalent deterministic Büchi automaton B for a
Staiger-Wagner automaton A = (Q,Σ, q0, δ,F). Hint: In order to simulate A, B needs to
memorize the visited states.

Exercise 3.15. A set F ⊆ 2Q is closed under subloops if every subloop S′ ⊆ S of a loop
S ∈ F also belongs to F . Let A = (Q,Σ, q0, δ,F) be a Muller automaton. Show that

L(A) is co-Büchi recognizable ⇐⇒ F is closed under subloops.

Exercise 3.16. Decide whether the language recognized by the following Muller automaton
is E-recognizable or Büchi recognizable. Let F = {{2}, {1, 2, 3}}.

2

b

a

1

a

b

3
a

b

If your answer is positive specify suitable automata with E- and Büchi acceptance conditions.



3.10. EXERCISES 63

Exercise 3.17.

(a) Find an ω-language that is recognized by a parity automaton with colorset {1, 2, 3} but
not by a parity automaton with a colorset {1, 2}. (Hint: Landweber’s Theorem 3.32 for
(deterministic) Büchi automata).

(b) Propose a family Ln of ω-languages, such that Ln is recognized by a parity automaton
with colorset {1, . . . , n} but not by parity a automaton with color set {1, . . . , n− 1}.

Exercise 3.18.

(a) Present (by direct construction) weak parity automata recognizing the ω-languages L1, L2

from Exercise 3.11.

(b) Show that L1 cannot be recognized by a weak parity automaton with only two colors.



64 CHAPTER 3. THEORY OF DETERMINISTIC OMEGA-AUTOMATA



Chapter 4

Games and Winning Strategies

4.1 Basic Terminology

Definition 4.1. A game graph is a tuple G = (Q,E) with vertex set Q = Q0∪̇Q1, and edge
relation E ⊆ Q × Q, which is complete in the following sense: for all q ∈ Q ∃p : (q, p) ∈ E
(i.e. every q has got an outgoing edge).

We define a play as a sequence ρ = r0r1r2 . . . with (ri, ri+1) ∈ E.

A game is a tuple (G,ϕ) consisting of a game graph G and a winning condition ϕ for
Player 0. A game ρ ∈ Qω is won by Player 0, if ρ fulfills ϕ. ϕ is usually specified by some
requirement on Occ(ρ), Inf(ρ) or, after specifying a coloring c : Q → C (C a finite color set)
of the vertices, some requirement on Occ(c(ρ)) or Inf(c(ρ)). The set Win ⊆ Qω denotes the
set of the plays won by Player 0.

We will consider the following problem: Given a game graph G = (Q,E) and a set Win ⊆ Qω

of the plays won by Player 0, specify the set of vertices of G from which Player 0 can guaranty
winning the game, and compute a winning strategy for Player 0 .

Definition 4.2. A strategy for Player 0 starting at vertex q0 is a function f : Q+ → Q that
assigns to each play prefix q0 . . . qk, with qk ∈ Q0, a vertex r ∈ Q with (qk, r) ∈ E.

A play ρ = q0q1 . . . started in q0 is played according to f if for every qi ∈ Q0, qi+1 =
f(q0 . . . qi) holds.

A strategy f is a winning strategy from q0 for Player 0 if every play played according to
f is in Win. Winning strategies for Player 1 are defined analogously.

Strategies f for Player 0 and g for Player 1 define exactly one play from a vertex q. Both
players cannot have a winning strategy from q ∈ Q at the same time. Proof: Choose a
winning strategy f for Player 0 and g for Player 1 respectively (starting from q). Consider
the resulting play ρ. Since f is a winning strategy for Player 0 , ρ ∈ Win holds and, since g
is a winning strategy for Player 1 , ρ 6∈ Win also holds. Contradiction.

Example 4.3. We will usually denote vertices of the game graph, which belong to Player
0, by circles and vertices, which belong to Player 1, by boxes. Consider the following game
graph:



66 CHAPTER 4. GAMES AND WINNING STRATEGIES

G:
1 32

657

4

Winning condition 1 (for Player 0): Occ(ρ) ⊇ {2, 6}. This condition is fulfilled by the
following strategy: Player 0 moves from 1 to 2 first, to 7 later, from 3 always to 4, and from
5 always to 6. If we want to describe this strategy as a function f0 we obtain the following
definition:

f0(w1) =

{
2 if 1 does not occur in w

7 if 1 occurs in w.

f0(w3) = 4
f0(w5) = 6

As one can see, f0 is a winning strategy starting from every vertex.
Winning condition 2 : Occ(ρ) = {1, . . . , 7}.

Player 1 obtains a winning strategy f1 starting from 1, 2, 4, 5, 6, 7, by choosing the follow-
ing: from 2 move to 5, from 4 move to 1, 6 move to 4, and from 7 move to 5. Starting from
vertex 3 Player 0 has got a winning strategy: f0 defined as above. �

Definition 4.4. For a game graph G and a winning set Win let

W0 := {q ∈ Q | Player 0 has got a winning strategy starting from q}

be the winning region of Player 0 . The winning region W1 of Player 1 is defined accordingly.

Example 4.5. The winning regions of Example 4.3:
Winning condition 1: W0 = Q,W1 = ∅
Winning condition 2: W0 = {3},W1 = Q \ {3} �

Remark 4.6. For any game W0 ∩W1 = ∅ holds, since we already showed there can be no q
such that both players have winning strategies from q.

Question: Does W0 ∪W1 = Q always hold?

Definition 4.7. A game is determined if every vertex of the game graph is either in W0 or
in W1.

We will see later on that there are games that are not determined. So the answer to the above
question is ‘No’.

4.2 Special Strategies, Strategy Automata

We initially consider the case where no “memory of the past” is needed.

Definition 4.8. A strategy f for Player 0 is called positional (or local, memoryless) if the
value of f(q0 . . . qk) depends on qk ∈ Q0 only, i.e. the strategy can be described by a function
F : Q0 → Q. Conversely, a strategy for Player 1 is called positional if the value of f(q0 . . . qk)
depends on qk ∈ Q1 only.



4.2. SPECIAL STRATEGIES, STRATEGY AUTOMATA 67

Remark 4.9. A positional strategy for Player 0 can be described by a subset of the set of
edges E, where exactly one vertex of the edges is in Q0:

{(q, p) ∈ E | q ∈ Q0, f(q) = p} ⊆ E.

Analogously for Player 1.

Some strategies need a finite memory in order to be implemented. Such strategies can be
specified by finite automata which generate output. The output corresponds to the choice of
the next vertex by the player.

Definition 4.10. A strategy automaton (Mealy automaton) for Player 0 for the game graph
G = (Q,E) is a of the form A = (S,Q, s0, σ, τ) with

S: finite memory
Q: input alphabet
s0 ∈ S: initial state
σ : S ×Q→ S memory update function
τ : S ×Q0 → Q transition choice function

A delivers a strategy fA : Q+ → Q for every vertex q ∈ Q as follows:
Extend σ from S ×Q → S to S ×Q∗ → S with σ(s, ε) = s and σ(s, wq) = σ(σ(s, w), q).

Therefore σ(s, w) is the content of the memory obtained from s by by reading input w. The
strategy computed by A is: fA(q0 . . . qk) = τ(σ(s0, q0q1 . . . qk−1), qk). A strategy f is called
automaton strategy if f = fA holds for a suitable strategy automaton A.

An automaton strategy (for Player 0) can be displayed by a transition graph S · G. The
transition graph S ·G consists of the set of vertices S×Q and the set of edges (s, q) → (s′, q′)
which satisfy: if q ∈ Q0, then σ(s, q) = s′, τ(s, q) = q′ (in particular we have (q, q′) ∈ E), and
if q ∈ Q1, then σ(s, q) = s′, (q, q′) ∈ E.

Notice that in the transition graph for Player 0 over S×Q an automaton strategy is given
by the set of edges. In this graph only one edge leads out of every S ×Q0 vertex.

Example 4.11. The automaton strategy of f0 in Example 4.3 can be displayed as follows.
The edges leading from Q1 vertices are dotted whilst the edges leading from Q0 vertices
(strategy edges) are solid.

1 32

657

4

1 32

657

4

0 0

0

000

0 1 1 1

1

111

Memory content: 1Memory content: 0

Therefore A is defined by S = {0, 1}, Q = {1, . . . , 7}, s0 = 0. The output function is given by

τ(0, 1) = 2, τ(1, 1) = 7 and τ(0, q) = τ(1, q) =

{
4 if q = 3
6 if q = 6.

A memory update is performed only if Player 0 is at vertex 1 for the first time: then σ(0, 1) =
1. Otherwise σ(s, q) = s. �



68 CHAPTER 4. GAMES AND WINNING STRATEGIES

4.3 Guaranty and Safety Games

Theorem 4.12. Let G = (Q,E) be a game graph, F ⊆ Q with the winning condition

ρ ∈ Win :⇔ ∃i : ρ(i) ∈ F (guaranty game).

Then the winning regions W0,W1 of players 0 and 1 can be computed in polynomial time as
well as corresponding positional winning strategies.

Proof For i = 0, 1, 2, . . . construct the sets Attri0(F ) where

Attri0(F ) = {q ∈ Q | starting from q Player 0 can force a visit to F in ≤ i moves}.

Inductive construction over i:

q ∈ Attr00(F ) ⇔ q ∈ F

q ∈ Attri+1
0 (F ) ⇔ q ∈ Attri0(F )

or q ∈ Q0, and there exist (q, r) ∈ E, such that r ∈ Attri0(F )
or q ∈ Q1, and all (q, r) ∈ E lead to r ∈ Attri0(F )

Obviously Attr00(F ) ⊆ Attr10(F ) ⊆ Attr20(F ) ⊆ . . . holds. Hence for an l ≤ |Q| Attrl0(F ) =
Attrl+1

0 (F ) holds, i.e. the sequence of inclusions becomes static.

Set Attr0(F ) :=

|Q|⋃

i=0

Attri0(F )

The set Attr0(F ) is called 0-attractor of F . Claim: W0 = Attr0(F ), W1 = Q \ Attr0(F ), and
there are positional winning strategies for Player 0 on W0, and Player 1 on W1. The proof is
derived from the following two remarks. Define

dist(q, F ) :=

{
min{i | q ∈ Attri0(F )} if q ∈ Attr0(F )

∞ if q 6∈ Attr0(F )

Reachability remark:

a) q ∈ Attr0(F ) \ F, q ∈ Q0 ⇒ ∃(q, r) ∈ E with dist(r, F ) < dist(q, F )

b) q ∈ Attr0(F ) \ F, q ∈ Q1 ⇒ ∀(q, r) ∈ E : dist(r, F ) < dist(q, F ) holds

According to part a, Player 0 can choose edges from the set Attr0(F )\F such that with every
move the distance to F is reduced. According to part b, the distance to F is also reduced by
every move of Player 1. Therefore F is eventually reached.

Avoidance remark:

a) q 6∈ Attr0(F ), q ∈ Q0 ⇒ ∀(q, r) ∈ E: r 6∈ Attr0(F ) holds

b) q 6∈ Attr0(F ), q ∈ Q1 ⇒ ∃(q, r) ∈ E with r 6∈ Attr0(F )

According to part b, Player 1 can choose an edge that in turn leads back to Q \Attr0(F ).
According to part a, every move of Player 0 also leads back to Q \ Attr0(F ), so that the set
F is avoided (distance to F remains ∞). The game is won by a player on his winning region
following the attractor strategy defined below. �



4.3. GUARANTY AND SAFETY GAMES 69

Definition 4.13. The attractor strategy of Player 0 is defined as follows: from a vertex in
Attri+1

0 \ Attri0 go to a vertex in Attri0. Define the strategy function f such that for every
q ∈ Q0 ∩ (Attri+1

0 \ Attri0) f(q) ∈ Attri0 holds.

The attractor strategy for Player 1 is exactly the opposite: from a vertex in Q \ Attr0
return to a point in Q \ Attr0.

Example 4.14. The vertices in the following game graph marked with
√

are in the 0-
attractor of the gray vertices.

�

We give an algorithm for determining the setsW0,W1 and the sets of edges E0, E1 by backward
breadth-first search.

Given G = (Q,Q0, E) and F ⊆ Q.

1. Preprocessing: Compute outdegree out(q) of each vertex q ∈ Q1.

2. Set n(q) := out(q) for each q ∈ Q1.

3. Perform breadth-first search backwards from F with the following conventions:

• Mark all q ∈ F .

• Mark q ∈ Q0 if reached backwards from marked vertex.

• At visit of q ∈ Q1 from marked vertex: set n(q) := n(q) − 1.

• Mark q ∈ Q1 when n(q) = 0.

The marked vertices are the ones in Attr0(F ).

Lemma 4.15. The given algorithm on (Q,Q0, E) computes the winning regions and strategies
in time O(|Q| + |E|).

For safety games we obtain the same result: Given the safety game over G = (Q,E) with
winning condition ρ ∈ Win ⇔ ∀iρ(i) ∈ F , consider the guaranty game over G with the new
winning condition ρ ∈ Win′ ⇔ ∃iρ(i) ∈ Q \ F . The winning region W ′

1 for Player 1 is the
winning region W0 for Player 0 in the given safety game.



70 CHAPTER 4. GAMES AND WINNING STRATEGIES

4.4 Weak Parity and Staiger-Wagner Games

Definition 4.16. Let G = (Q,E) be a game graph and c a function c : Q → {0, . . . k},
also called coloring. A play ρ = ρ(0)ρ(1)ρ(2) . . . delivers a sequence of colors c(ρ) =
c(ρ(0))c(ρ(1))c(ρ(2)) . . . . The weak parity condition defines the set of plays won by Player 0
by

ρ ∈ Win :⇔ max(Occ(c(ρ))) is even.

Thus it is demanded that the maximal color occurring in ρ is even. These games are also
called weak parity games.

First we classify guaranty and safety games within this framework.

Remark 4.17. A guaranty game over G with ρ ∈ Win ⇔ ∃iρ(i) ∈ F can be described as a
special weak parity game over G with coloring

c(q) =

{
2 for q ∈ F

1 for q 6∈ F

A safety game with ρ ∈ Win ⇔ ∀iρ(i) ∈ F can be specified analogously by the coloring

c(q) =

{
0 for q ∈ F

1 for q 6∈ F

Example 4.18. Player 0 has got a winning strategy starting from the vertices marked with
+. Starting from the vertices marked with −, Player 1 has got a winning strategy.

+

- --

++

+

0 1 2 3Color:

�

Definition 4.19. (Staiger-Wagner Game) A game is called Staiger-Wagner game or obli-
gation game if for F = {F1, . . . , Fk}, with Fi ⊆ Q its winning condition is of the form
ρ ∈ Win ⇔ Occ(ρ) ∈ F .

Remark 4.20. Weak parity games are a special case of the SW-games. For G = (Q,E)
with c : Q → C (and ρ ∈ Win ⇔ max(Occ(c(ρ))) even) one can specify F ⊆ 2Q (and
ρ ∈ Win ⇔ Occ(ρ) ∈ F) by setting F := {P ⊆ Q | max(c(P )) is even}.

Theorem 4.21. For weak parity games the winning regions W0,W1 can be computed and
corresponding positional winning strategies can be specified.

Proof Let G = (Q,E), c : Q → {0, . . . , k} with k w.l.o.g. even (else swap players). Set
Ci := {q ∈ Q | c(q) = i}. We calculate the sets Ak, Ak−1, . . . , A0:



4.4. WEAK PARITY AND STAIGER-WAGNER GAMES 71

Ak := Attr0(Ck)

Ai :=

{
Attr0(Ci \ (Ai+1 ∪ · · · ∪Ak)) if i even

Attr1(Ci \ (Ai+1 ∪ · · · ∪Ak)) if i odd
for i ≤ k − 1

Visualization (for k = 4):

C4C0 C1 C2 C3

A2 = A3 =A0 = rest

A1 =

(A2 ∪A3 ∪A4))

Attr0(C2\
(A3 ∪A4))

A4 = Attr0(C4)

Attr1(C3 \A4)

Attr1(C1\

Every vertex is in one of the sets A0, . . . , Ak.
Claim:

W0 =
⋃

i even

Ai W1 =
⋃

i odd

Ai

and the union of the associated attractor strategies are positional winning strategies for
Player 0 on W0 and Player 1 on W1 respectively.

We prove this by induction over j, i.e. we show for j ≤ k

k⋃

i=k−j
i even

Ai ⊆W0 and

k⋃

i=k−j

i odd

Ai ⊆W1

with the attractor strategies defined as above. We assume k to be even. The case “k odd” is
dual.

Induction base: j = 0: Ak = Attr0(Ck) ⊆W0 is clear.

Induction step: Consider Ak−(j+1), w.l.o.g. k − (j + 1) even. Let i = k − (j + 1). Show:
From q ∈ Ai Player 0 wins by attractor strategy (and hence we verify the claim q ∈W0).

Case 1: The attractor strategy for Ai either produces a visit to Ai+2 or Ai+4 . . . Ak
(from a Q1-vertex); then Player 0 wins by induction hypothesis.

Case 2: Ci (color i) is visited. Ensure that then only colors ≤ i are visited. Consider a
vertex q after color i is visited. If q ∈ Q0, then not all edges lead to higher colors;
otherwise q ∈ Aj for a higher j, contradiction.

If q ∈ Q1 then all edges lead to vertices of color ≤ i, because otherwise

(a) Any edge to higher colors must lead to Aj with even j (this is Case 1).

(b) If there were edges to colors > i in Aj with odd j, then q would already be in
this Aj . �



72 CHAPTER 4. GAMES AND WINNING STRATEGIES

Considering an example, we will see that in order to win Staiger-Wagner games we need
more than just positional winning strategies.

Example 4.22.

G0 : q p r Q = {q, p, r}
ρ ∈ Win ⇔ Occ(ρ) = {q, p, r}

There are exactly two positional strategies for Player 0 (choose edge from p to r or q respec-
tively). None of them is a winning strategy on W0 = {q, p, r}. An automaton strategy with
an additional bit as memory (which will guaranty alternating transitions to q and r) will give
us a winning strategy.

The appropriate strategy automaton is A = ({0, 1}, Q, 0, σ, τ) with σ : (b, q) → 1, (b, r) →
0, (b, p) → b and τ : (0, p) → q, (1, p) → r. From that we can derive the following transition
graph:

q p r

q p r
0 0 0

1 1 1

Color 1 Color 2

Color 1

�

4.5 Game Reductions

In order to solve SW-games we introduce the notion of a game reduction.

Definition 4.23. (Game Reduction) Let G = (Q,E) and G′ = (Q′, E′) be game graphs
with winning conditions ϕ and ϕ′. The game (G,ϕ) is reducible to (G′, ϕ′), written (G,ϕ) ≤
(G′, ϕ′), iff the following conditions are satisfied.

1. Q′ = Q× S for a finite set S.

2. Every play ρ over G is translated into a play ρ′ over G′ by

(a) a function f : Q→ Q× S (the beginning of ρ′)

(b) ∀(q, s) ∈ Q× S ∀p : (q, p) ∈ E ⇒ exists exactly one s′ with ((q, s), (p, s′)) ∈ E′

(c) ∀((q, s), (p, s′)) ∈ E′ : (q, p) ∈ E

3. For ρ and ρ′, according to 2, ρ ∈ Win ⇔ ρ′ ∈ Win′ holds.

Theorem 4.24. Let (G,ϕ) ≤ (G′, ϕ′) as above. If Player 0 wins the game (G′, ϕ′) starting
from f(q) with a positional strategy then Player 0 wins the game (G,ϕ) from q using an
automaton strategy.



4.5. GAME REDUCTIONS 73

Proof For Player 0 construct an automaton winning strategy in (G,ϕ). This is accomplished
by the strategy automaton A = (S,Q, s0, σ, τ) where s0 = second component of f(q) and

σ : S ×Q0 → Q σ(s, q) := 1st component p of target vertex reached from (q, s) by
applying the positional strategy.

τ : S ×Q→ S τ(s, q) := 2nd component s′ (unique by part 1 of the definition) of
the vertex (p, s′) which is reached from (q, s) as above.

G

q

p?

(q,s)

G′

(p, s′)

A implements a winning strategy: The constructed play ρ (starting from q) is equivalent to a
play ρ′ starting from (q, s0) in G′. Player 0 wins ρ′ because of the positional winning strategy.
That satisfies part 3 of the definition and we are done. �

Theorem 4.25. Let (G,ϕ) ≤ (G′, ϕ′), and let Player 0 and Player 1 win on the winning
regions W ′

0 and W ′
1 of G′ by positional strategies. Then from W ′

0,W
′
1 one can determine the

winning regions W0,W1 for (G,ϕ) and construct for q ∈W0 (or respectively W1) correspond-
ing automata strategies.

Proof For q ∈ Q determine f(q) ∈ Q′ and verify whether f(q) ∈W ′
0. If so then q ∈W0 holds

and there is an automaton strategy according to Theorem 4.24. Analogously for Player 1 . �

This theorem allows us to migrate from positional to automaton winning strategies. We will
now apply this theorem to solve SW-games.

Theorem 4.26. Staiger-Wagner games can be reduced to weak parity games and thus the
winning regions and corresponding automata strategies for SW-games can be computed.

Proof Let (G,ϕ) be a SW-game, defined by the family F ⊆ 2Q with ρ ∈ Win ⇔ Occ(ρ) ∈ F .
One can specify a weak parity game (G′, ϕ′) with (G,ϕ) ≤ (G′, ϕ′).

Idea: G′-vertices are of the form (p,R) with R ⊆ Q. This is to express that R∪{p} is the
set of “vertices visited so far” in Q. Therefore begin with a vertex of the form (p, ∅). For the
weak parity condition fix an even color for (p,R) if R ∪ {p} ∈ F .

Thus define G′ = (Q′, E′) and the coloring c : Q′ → {0, . . . , k} as follows:

• Q′ = Q× 2Q

• E′ = {((p,R), (q,R ∪ {p})) | (p, q) ∈ E,R ⊆ Q}

• c(p,R) =

{
2 · |R ∪ {p}| if R ∪ {p} ∈ F
2 · |R ∪ {p}| − 1 if R ∪ {p} 6∈ F

Now check parts 1, 2, and 3 of Definition 4.23. For 1 and 2 use S = 2Q and f : q → (q, ∅).
For 3 consider a play ρ over G and the corresponding induced play ρ′ over G′.



74 CHAPTER 4. GAMES AND WINNING STRATEGIES

At some time in ρ, a prefix is reached that contains all states in Occ(ρ). From that point
onwards in ρ′, the second component is constant (= Occ(ρ)). Thus the maximal visited color
is even iff Occ(ρ) ∈ F , i.e. ρ ∈ Win ⇔ ρ′ ∈ Win′. �

Example 4.27. Consider the game with the first winning condition from Example 4.3
(page 65).

A positional winning strategy over Q× 2Q: Example colors:

from (1, R) : to 2 if 1 6∈ R
to 7 if 1 ∈ R

(3, R) : to 4
(5, R) : to 6

Color

(1, ∅) 1
(1, {2, 3, 4}) 7
(1, {1 . . . , 7}) 14

�

Result: In order to win SW-games over graphs with n vertices, automata with ≤ 2n states
suffice. We show that this upper bound cannot be improved.

Theorem 4.28. There is a family G1, G2, G3, . . . of game graphs with SW-winning condition,
such that the number of vertices of Gn in Occ(ρ) increases linearly in n, and there is an
automaton winning strategy (from suitable vertices) but only for an automaton with at least
2n states.

Proof We consider the following game graph Gn with the winning condition

ρ ∈ Win ⇔ (for i = 1, . . . , n i ∈ Occ(ρ) ⇔ i′ ∈ Occ(ρ) holds)

. . . . . .

q0

1 2 n

*

1′ 2′ n′

There is an automaton winning strategy starting from q0 which is specified by an automaton
with 2n states (“memorize the set of visited vertices of {1, . . . , n}”).

Assume there is an automaton with < 2n states that implements a winning strategy from
q0. Then there are two play prefixes w1 6= w2 which lead to the same state at vertex ∗. The
rest of the play is unambiguous. Thus w1ρ and w2ρ are played according to the automaton
strategy, but only one of them is winning. Contradiction. �

Problem 1 The state set 2Q of the strategy automaton is too big in general. It would be
more sensible to introduce states only when needed. One approach derives the attractor
set decomposition for weak parity games directly from the specification of the SW-game.
Minimization can be done in time O(n log(n)).

Problem 2 The SW-condition is disjunctive: F = {F1, . . . , Fk} “Occ(ρ) = F1∨· · ·∨Occ(ρ) =
Fk”. A conjunctive winning condition requires preprocessing. Question: Is there a direct
construction of a conjunctive winning condition from a strategy automaton?



4.6. BÜCHI GAMES 75

The goal of the rest of this chapter is to find the winning regions W0,W1 of the players for
a given game graph G = (Q,E) with Büchi, parity, Muller, and Rabin winning conditions.
Furthermore we want to construct winning strategies (positional, if possible) for both players
on their respective winning regions.

4.6 Büchi Games

Let G = (Q,E) be a graph with Q = Q0∪̇Q1 and F ⊆ Q. In addition let the winning
condition ϕ of Player 0 for the play ρ be

ϕ : ρ ∈ Win :⇔ Inf(ρ) ∩ F 6= ∅.
Such a game (G,ϕ) is called a Büchi game. The approach to determine the winning region
of Player 0 is to determine, for i ≥ 1, those q ∈ F from which Player 0 can force at least i
revisits to F . Thus

F ⊇ Recur10(F )︸ ︷︷ ︸
one revisit

⊇ Recur20(F )︸ ︷︷ ︸
two revisits

⊇ . . .

holds. Define Recur0(F ) :=
⋂
i≥1

Recuri0(F ) and then W0 = Attr0(Recur0(F )).

Preparation for the definition of Recuri0(F ): We define

A0
0 = ∅,

Ai+1
0 = Ai0 ∪ {q ∈ Q0 | ∃(q, r) ∈ E : r ∈ Ai0 ∪ F},

∪{q ∈ Q1 | ∀(q, r) ∈ E : r ∈ Ai0 ∪ F}
Attr+0 (F ) =

⋃
i≥0

Ai0.

With this definition we set

Recur00(F ) := F ,

Recuri+1
0 (F ) := F ∩ Attr+0 (Recuri0(F )),

Recur0(F ) :=
⋂
i≥0

Recuri0(F ).

Remark 4.29. Recuri+1
0 (F ) ⊆ Recuri0(F ).

Proof i = 0 : OK

i+ 1 : Recuri+2
0 (F ) = F ∩ Attr+0 (Recuri+1

0 (F ))
I.H.
⊆ F ∩ Attr+0 (Recuri0(F ))

= Recuri+1
0 (F )

�

Remark 4.30. On Recur0(F ) Player 0 has a positional winning strategy.

Proof On Recur0(F ) ∩ Q0 it is possible to choose an edge back to Recur0(F ) and on
Recur0(F ) ∩ Q1 there are only edges back to Recur0(F ). Thus Attr0(Recur0(F )) ⊆ W0

holds.
Let i be such that Recuri0(F ) = Recuri+1

0 (F ) = F ∩ Attr+0 (Recuri0(F )) holds. Therefore
choosing the edges according to the attractor strategy gives a positional winning strategy for
Player 0 . �



76 CHAPTER 4. GAMES AND WINNING STRATEGIES

Lemma 4.31. Let G = (Q,E) be a game graph with a Büchi winning condition F . Player 1
has got a positional winning strategy on Q \Attr0(Recur0(F )). Thus W0 = Attr0(Recur0(F ))
and W1 = Q \ Attr0(Recur0(F )).

Proof It suffices to show that Player 1, onQ\Attr0(Recuri0(F )), can (by following a positional
strategy) force F to be visited ≤ i times. Prove that by induction on i:

i = 0 Consider Q \ Attr0(F ). Player 1 can avoid a visit to Attr0(F ) (and thus to F ).

i+ 1 Consider Q \ Attr0(Recuri+1
0 (F )).

If the play is already within Q \ Attr0(Recuri0(F )), then Player 1 can, by induction
hypothesis, force F to be visited ≤ i < i+ 1 times.

Otherwise the play is within Q \ Attr0(Recuri+1
0 (F )) and not in Q \ Attr0(Recuri0(F )).

Thus it is within Attr0(Recuri0(F )) \ Attr0(Recuri+1
0 (F )). Consequently, Player 1 can

avoid Attr0(Recuri+1
0 (F )).

Case 1 This play is never in F . Then we are finished.

Case 2 If this play visits F , then it will visit F \ Recuri+1
0 (F ). F \ Recuri+1

0 (F ) =
F \ Attr+0 (Recuri0(F )) holds. According to the induction hypothesis Player 1 can,
while being in Q\Attr0(Recuri0(F )), force F to be visited at most i times. In total
there are ≤ i+ 1 visits to F .

�

Corollary 4.32. The winning regions W0,W1 are computable in Büchi games (and form a
partition of the vertices of the game graph) and Player 0 as well as Player 1 have positional
winning strategies.

4.7 Parity Games

Given game graph G = (Q,E), a coloring c : Q → {1, . . . , k} with k even and Ci := {q |
c(q) = i} define the winning condition

ϕ : ρ ∈ Win ⇔ max(Inf(c(ρ))) even

Such a game is called a parity game.

C0 C6C5C4C3C2C1

The following approach to solve parity games exploits the fact that if the play ρ visits Ck,
then Player 0 wins. Idea:



4.7. PARITY GAMES 77

C6

Attr0(q)
q

Theorem 4.33. Let G = (Q,E) be a game graph with coloring c : Q→ {0, . . . , k} and parity
winning condition. Then

1. every vertex in Q belongs to either W0 or W1, i.e. parity games are determined (see
Definition 4.7).

2. If G is finite one can determine the winning regions W0,W1 (with W0 ∪W1 = Q) and
corresponding positional winning strategies for Player 0 and Player 1.

Proof (1. Determinacy of Parity Games) Given G = (Q,Q0, E) with coloring c :
{0, . . . , k}, we prove the result by induction over the number of colors. For k = 0 clearly
W0 = Q holds with any strategy.

In the induction step assume that the maximal color k is even (otherwise switch the roles
of Players 0 and 1 below). Let P1 be the set of vertices from which Player 1 has a positional
winning strategy, and let f be a uniform positional winning strategy for Player 1 on P1.

Show that from each vertex in Q\P1, Player 0 has a positional winning strategy. For that
matter consider the subgame with vertex set Q \ P1

Case 1: Q \ P1 does not reach the maximal color k.

kQ \ P1

P1

W ′

1

W ′

0

Q \ P1 defines a subgame. The induction hypothesis applies on this region, since it does not
reach color k. Q \ P1 can therefore be partitioned into winning regions W ′

0 and W ′
1 in which

positional winning strategies exist for both Players by induction hypothesis.

Now the winning region of Player 1 is W1 = P1∪W ′
1 and the winning region of Player 0 is

W0 = W ′
0. Therefore the whole game graph is partitioned into winning regions with respective

positional strategies.

Case 2: Q\P1 contains vertices of maximal (even) color. We claim that Player 0 can guaranty
that, starting from a vertex in Q \ P1, the play remains there.



78 CHAPTER 4. GAMES AND WINNING STRATEGIES

k

P1

W ′

1

W ′

0

Attr0(Ck \ P1)

Ck

Either the play stays in (Q \ P1) \ Attr0(Ck \ P1) or it visits Attr0(Ck \ P1) infinitely often.
In the first case Player 0 wins by induction hypothesis with a positional strategy. In the

second case Player 0 wins by infinitely many visits to the highest (even) color, also with a
positional strategy.

Altogether: Player 0 wins from each vertex in Q \ P1 with a positional strategy. �

Proof (2. Algorithmic Solution) The algorithm is defined inductively over n := |Q|:

n = 1: The game graph is of the form or . Then the color of the vertex

determines whether Q = W0 or Q = W1.

n+ 1: We assume that the maximal color which occurs in the game graph is even. In the
other case the induction step is analogous, if the Players are swapped.

Choose q with (even) maximal color. Notice that Q \ Attr0({q}) gives a game graph
with ≤ n vertices.

The induction hypothesis gives a partition of Q\Attr0({q}) into winning regions U0, U1

of Player 0 / Player 1 and corresponding positional winning strategies.

k

q

U0

U1

Attr0({q})

Case 1: Player 0 can guaranty transitions from q to U0 ∪ Attr0({q}). That means

a) q ∈ Q0 and ex. (q, r) ∈ E with r ∈ U0 ∪ Attr0({q})
or b) q ∈ Q1 and all (q, r) ∈ E fulfill r ∈ U0 ∪ Attr0({q}).

Claim

(i) U0 ∪ Attr0({q}) ⊆W0

(ii) U1 ⊆W1

(Since U0 ∪U1 ∪Attr0({q}) = Q, then W0 = U0 ∪Attr0({q}) and W1 = U1 holds.)
Thus the positional strategy for Player 0 on U0 ∪ Attr0({q}) is:



4.7. PARITY GAMES 79

1. On U0 play according to the positional strategy given by the induction hy-
pothesis.

2. On Attr0({q}) play according to the attractor strategy. Then eventually reach
q.

3. From q “move back” to U0 ∪ Attr0({q}).
For Player 1 use the positional strategy on U1 given by the induction hypothesis.

Proof of the claim: (ii) is clear, since starting in U1 Player 1 can guaranty that the
play remains U1. That is because from 1-vertices one edge leads to U1, and from
0-vertices every edge leads to U1.

For (i): The play ρ remains in U0 ∪ Attr0({q}) ⊆ W0, if the rule of vertex p ∈
U0 ∪ Attr0({q}) is followed. If ρ eventually remains in U0, then Player 0 will win
by induction hypothesis. If ρ passes through q again and again, then Player 0 will
win, as q has the maximal even color.

Case 2: Player 1 can guaranty transitions to U1 from q, i.e.

a’) q ∈ Q0 and all (q, r) ∈ E fulfill r ∈ U1

or b’) q ∈ Q1 and ex. (q, r) ∈ E with r ∈ U1.

Thus q ∈ Attr1(U1). Q \ Attr1(U1) forms a game graph with < n vertices. The
induction hypothesis gives winning regions V0, V1 and corresponding positional
strategies in the game (Q \Attr1(U1), E1), where E1 is the restriction of the set of
edges to Q \ Attr1(U1).

k

U1

V1

V0

Attr1(U1)

q

Claim:

(i) V0 ⊆W0 for the given positional winning strategy.

(ii) V1 ∪ Attr1(U1) ⊆W1

(i) is clear, since Player 0 can guaranty the play to stay within V0.

For (ii): Player 1 can move to U1 from p ∈ Attr1(U1) and there he can guaranty
the play to remain in U1. From p1 ∈ V1 Player 0 can choose to move either to V1

or Attr(U1). In both cases the play is won by Player 1 .

From (i) and (ii) we can derive W0 = V0 and W1 = V1 ∪ Attr1(U1). �

Remark 4.34. The inductive proof leads to a recursive procedure which needs to be called
2n times for a game graph with n vertices if case 1 persists. The running time is therefore
estimated to be exponential in the number of vertices of the game graph.

Result: The synthesis problem for winning strategies in parity games can be solved in
exponential time.



80 CHAPTER 4. GAMES AND WINNING STRATEGIES

Lemma 4.35. (Merging Lemma) Given a parity game over G = (Q,Q0, E), there is a single
positional strategy f such that from each q ∈ W0 the strategy f is a winning strategy for
Player 0 from q.

Proof Number the states by natural numbers (if G is finite) or more generally by ordinal
numbers (if G is infinite). Denote by qi the state with number i. For qi ∈ W0 choose a
corresponding positional winning strategy fi.

Let Fi be the set of vertices reachable by plays from qi according to fi (Note: Fi ⊆ W0

and qi ∈ Fi). Define f on W0 as follows:

f(q) = fi(q) for the smallest i such that q ∈ Fi.

Show that f is a winning strategy from any q ∈W0.
Applying f during a play means to apply strategies fi where i is weakly decreasing.
From some point k onwards, index i stays constant, i.e. the f -values coincide with the

fi-values. The highest color occurring infinitely often in the play is thus determined by the
fixed strategy fi. Since fi is a winning strategy, Player 0 wins the play. �

Definition 4.36. A strategy f of Player 0 is called a uniform strategy for Player 0 if f is a
winning strategy for all plays started in vertices which belong to the winning region of Player
0.

Remark 4.37. The problem

Given: graph (Q,E), coloring c : Q→ {0, . . . , k}, vertex q ∈ Q.
Question: Is q ∈W0?

is in NP ∩ co-NP. Whether this problem is in P, is an open question.

Proof To show that the problem is in NP, nondeterministically guess a uniform strategy for
Player 0 (which is a subset of vertices such that every 0-vertex has an unique outgoing edge).
With the chosen strategy it can be verified in polynomial time whether q is in the winning
region as follows: q ∈ W0 ⇔ in the strategy transition graph (one edge from 0-vertices and
all edges from 1-vertices) Player 0 cannot enter a loop from q such that the maximal color is
odd.

k even

q

od
d

od
d

For that matter verify for the graphs over (C0 ∪ · · · ∪Ck−1), (C0 ∪ · · · ∪Ck−3), . . . , (C0 ∪C1),
whether they contain a SCC1 reachable from q which intersects the colors k− 1, k− 3, . . ., 1
(k − 1 is the maximal odd color).

1SCC = strongly connected component



4.8. MULLER GAMES AND LAR-CONSTRUCTION 81

The complementary problem “q ∈ Q \W0” can be formalized as “q ∈ W1” and is in NP
due to the same argument when the players are swapped. �

4.8 Muller Games and LAR-Construction

In this section we will consider Muller games:

Definition 4.38. A game consisting of a game graph G = (Q,E) and F = {F1, . . . , Fk},
Fi ⊆ Q with the winning condition

ρ ∈ Win ⇔ Inf(ρ) ∈ F

is called a Muller game.

The solutions (winning regions for Player 0 / Player 1 and corresponding winning strategies)
can be computed as follows:

To solve Muller games we will reduce them to parity games. We begin with an introductory
example:

Example 4.39. (Dziembowski, Jurdziński, Walukiewicz)
Let the game graph Gn = (Qn0 ∪Qn1 , En) be defined by

Qn0 = {−1, . . . ,−n},
Qn1 = {+1, . . . ,+n},
En = {(−i, j) | i, j ∈ {1, . . . , n}}∪

{(i,−j) | i, j ∈ {1, . . . , n}}.

-1

-2

-3

-4

1

2

3

4

with the winning condition ϕn : ρ ∈ Winn :⇔ |Inf(ρ) ∩ {−1, . . . ,−n}| = max(Inf(ρ) ∩
{1, . . . , n}), i.e. “The maximal vertex i that is visited infinitely often gives the number of
minus-vertices that are visited infinitely often.”

Examples for accepting runs:

• Exactly -1, -3, -4 are visited infinitely often: 3 infinitely often, 4 only finitely often.

• Eventually only -4 is visited: infinitely often through 1, only finitely often through 2,3,4.

The winning condition can be reformulated as a Muller condition:

F ∈ F :⇔ |F ∩ {−1, . . . ,−n}| = max(F ∩ {1, . . . , n}).

�

To reduce Muller games to parity game we introduce the following datastructure:

Definition 4.40. For Q = {1, . . . , n} let LAR(Q) be the set of pairs ((i1 . . . ik), h) with
nonempty records of i1 . . . ik pairwise different states, and h ∈ {0, . . . , n} (=hitvalue or hit).

Notation: (i1 . . . ih . . . ik). We call {i1, . . . , ih} the hit-segment of of (i1 . . . ik, h) and
(ih+1 . . . ik) the share of the past of (i1 . . . ik).



82 CHAPTER 4. GAMES AND WINNING STRATEGIES

We consider the transformation of a play of Example 4.39 into an LAR-play. We apply this
transformation to the sequence of visited minus-vertices.

LAR

-1 -1 -2 -3 -4
-3 -3 -1 -2 -4
-3 -3 -1 -2 -4
-4 -4 -3 -1 -2
-2 -2 -4 -3 -1
-4 -4 -2 -3 -1
-3 -3 -4 -2 -1
-4 -4 -3 -2 -1

The underlining indicates the hitvalue. If exactly -3, -4 occur
infinitely often then the maximal infinitely often visited hitvalue
is 2. In this case Player 0 has to pass through 2 infinitely often
and only finitely often through 3 and 4.

We can generally say that, if exactly k minus-vertices are visited infinitely often, then the
maximal infinitely often assumed hitvalue is k.

We exploit this observation to find an automaton strategy of Player 0. Use the LAR
of the minus-states as states of the strategy automaton and in each case go to the vertex
whose name is equal to the current hit. We define the strategy automaton A as follows.
A = (S,Q, s0, σ, τ), with:

S = LAR(−1, . . . ,−n)
s0 = (−1, . . . ,−n)
Q = {−1, . . . ,−n, 1, . . . , n}
σ(s,−i) = the LAR obtained by prepending −i to s.
σ(s, i) = s
τ(s, i) = hitvalue(s)

Result: In this game over Gn, the winning region of Player 0 is the set Q and A is the
corresponding automaton strategy.

In order to solve Muller games in general, we need to know more about the transformation
of Muller automata to parity automata. We first formally define the notion of an LAR-run.

Definition 4.41. For ρ ∈ Qω the LAR-run ρ′ ∈ (LAR(Q))ω is defined by: ρ′(0) = ((1 . . . n, 1), 1).
If ρ′(i) = ((i1 . . . ik), h), ρ(i + 1) = l, then ρ′(i + 1) is defined as follows: if l = ih′ then
ρ′(i+ 1) := ((ih′i1 . . . ih′−1ih′+1 . . . ik), h

′).

Lemma 4.42. (LAR-Lemma) Inf(ρ) = F with |F | = m iff

1. in ρ′ the hit is > m only finitely often,

2. in ρ′ the hit-segment is = F infinitely often.

Proof

⇒ Let Inf(ρ) = F , |F | = m. Choose k and k′ > k, such that ρ(j) ∈ F holds for all j ≥ k
and {ρ(k), . . . , ρ(k′ − 1)} = F holds.

By the construction of ρ′, the F -elements {i1, . . . , im} = F are at the beginning of ρ′(k′)
(corresponding to the hit-segment) and for every k ≥ k0 (for some k0 big enough) the
hit is always ≤ m (∗). For the hit equal to m the hit-segment must be the set F . Thus
part 1 is proven. For part 2 it suffices to show (because of (∗)) that the hit is equal



4.8. MULLER GAMES AND LAR-CONSTRUCTION 83

to m infinitely often. If the hit was equal to m only finitely often, then eventually the
LAR-entries im, im+1, . . . , ik would not be changed anymore. Then |Inf(ρ)| < m would
hold, which would be a contradiction to Inf(ρ) = F and |F | = m.

⇐ Let 1 and 2 hold.

Because of part 1, the LAR-entries im+1 . . . ik in ρ′ are fixed from some point j0 onwards.
The states im+1, . . . , ik are not visited again after j0. Thus, because of part 2, the LAR-
entries are not in F from position m+ 1 onwards.

Now, show that Inf(ρ) = F .

1. Inf(ρ) ⊆ F is clear, since states, which are not in F , are not visited again after j0.

2. F ⊆ Inf(ρ): Assume q ∈ F , but q 6∈ Inf(ρ). Then from some point onwards
q can only stay in the same position in the LAR or go to the right. The final
position is a position k < m. That contradicts part 2, since then the hit-segment
is {i1, . . . , ik} 6= F .

�

The datastructure LAR will now be used for the transformation of Muller automata into
parity automata.

Theorem 4.43. For every deterministic Muller automaton one can construct an equivalent
deterministic parity automaton.

Proof Given the Muller automaton A = (Q,Σ, q0, δ,F). We set A′ :=
(LAR(Q),Σ, ((1 . . . n), 1), δ′, c) and still need to define δ′ and c. The approach for c is to
let the colors denote the length of the hit-segments. The length is even if the hit-segment is
in F (2 · h), and it is odd, iff the hit-segment is not in F (2 · h− 1). Therefore the maximal
color occurring in the run ρ is 2 · |Inf(ρ)| or 2 · |Inf(ρ)| − 1 respectively.

Formal definition of δ′: δ′(((i1 . . . ik), h), a) = (j1 . . . jh′ . . . jk′ , h
′), where the right side of

the equation is obtained as follows: δ(i1, a) ∈ {i1, . . . , ik}: Then h′ is equal to the position
of δ(i1, a) in i1 . . . ik and j1 . . . j

′
k is created from i1 . . . ik by bringing forward δ(i1, a) as in

Definition 4.41. We define c : LAR(Q) → {1, . . . , 2n} by

c((i1 . . . ik, h)) =

{
2h− 1 hit-segment {i1, . . . , ih} 6∈ F
2h hit-segment {i1, . . . , ih} ∈ F

�

Example 4.44. Let Σ = {a, b, c}, L = {α ∈ Σω | if a infinitely often in α, then also b}. The
corresponding Muller automaton has got the states qa, qb, qc, each of them having x-transitions
to qx. F = {{qb}, {qc}, {qb, qc}, {qa, qb}, {qa, qb, qc}}.

Input: c b c c a a c b a a a b a b

Muller run qa qc qb qc qc qa qa qc qb qa qa qa qb qa qb

LAR-run
qa qc qb qc qc qa qa qc qb qa qa qa qb qa qb
qb qa qc qb qb qc qc qa qc qb qb qb qa qb qa
qc qb qa qa qa qb qb qb qa qc qc qc qc qc qc

Hit: 0 0 0 2 1 3 1 2 3 3 1 1 2 2 2
Color: 1 1 1 4 2 6 1 3 6 6 1 1 4 4 4



84 CHAPTER 4. GAMES AND WINNING STRATEGIES

�

Theorem 4.45. (Büchi, Landweber 1969) In a Muller game over a finite graph G = (Q,E)
one can efficiently determine the winning regions W0,W1 and for every q ∈ Wi construct an
automaton winning strategy for Player i from q.

Proof We use the same approach as for Staiger-Wagner games: a game reduction to parity
games.

• Specify a parity game (G′, ϕ′) with (G,ϕ) ≤ (G′, ϕ′) according to Definition 4.23.

• Use Theorem 4.33 for parity games (positional winning strategy).

• Theorem 4.25 for game reductions gives an automaton winning strategy.

Construction of G′ = (Q′, E′) and ϕ′:

• Q′ = LAR(Q)

• f : q → ((q, 1, . . . , q − 1, q + 1, . . . , |Q|), 1) the initiailization function.

• ((q, s), (r, s′)) ∈ E′ :⇔ LAR s′ is obtained from LAR s by shifting r to the front.

• Definition of the coloring c : LAR(Q) → {0, . . . , 2|Q|} by

c(q, s) =

{
2h hitsection ∈ F
2h− 1 hitsection 6∈ F

According to Theorem 4.43 on the transformation of Muller into parity automata, the follow-
ing holds: (∗) Inf(ρ) ∈ F ⇔ max(Inf(c(ρ′))) is even.

For G′ define the parity winning condition ϕ′ by ρ ∈ Win :⇔ max(Inf(c(ρ′))) even.

Therefore ρ ∈ Win ⇔ Inf(ρ) ∈ F (∗)⇔ max(Inf(c(ρ′))) even ⇔ ρ′ ∈ Win′ holds.
The positional winning strategy for Player 0 / Player 1 from f(q) gives an automaton

winning strategy for Player 0 / Player 1 from q. Therefore:

f(q) ∈W ′
0 ⇒ q ∈W0,

f(q) ∈W ′
1 ⇒ q ∈W1.

Thus q ∈W0 ⇔ f(q) ∈W ′
0.

According to the theorem on parity games, the regions W ′
0,W

′
1 (consisting of the vertices

f(q), q ∈ Q) in G′ can be determined. Set W0 = {q | f(q) ∈ W ′
0}, W1 = {q | f(q) ∈ W ′

1}.
With the theorem on game reductions we can derive an automaton winning strategy (from
q) for Player 0 / Player 1 from the positional winning strategy of Player 0 / Player 1 (from
f(q)). �

Example 4.46. G :

4

1

3

2



4.9. OPTIMALITY OF THE LAR-CONSTRUCTION 85

Winning condition:
ϕ : ρ ∈ Win ⇔ Inf(ρ) ⊇ {2, 4}, thus F = {{2, 4}, {1, 2, 4}, {3, 2, 4}, {1, 2, 3, 4}}.

Example play LAR-play

ρ : 1 ρ′ : 1 2 3 4
2 2 1 3 4
1 1 2 3 4
3 3 1 2 4
4 4 3 1 2
1 1 4 3 2
2 2 1 4 3

Approach for the automaton strategy:

from 1, alternately go to 2 and 3,
from 3, always go to 4.

Another strategy according to the proof using LAR gives:

from 1, coming from 4, go to 2,
coming from 2, go to 3,

from 3, always go to 4.

The graph G′ where only the first two entries of the LARs, reachable from 12, are considered:

21

43

12

13

14

31

32

The automaton winning strategy starting from 12 uses A = (S, Q0︸︷︷︸
{1,3}

, s0, σ, τ). In our example

S = Q′, s0 = 12 suffices, e.g. τ( 14︸︷︷︸
memory

, 12︸ ︷︷ ︸
current

Q0−state

) = 2, σ(14, 12) = 21. �

4.9 Optimality of the LAR-Construction

Theorem 4.47. (Dziembowski, Jurdziński, Walukiewicz) In the game (Gn, ϕn) of Ex-
ample 4.39, with the winning condition ϕn : ρ ∈ Winn ⇔ |Inf(ρ) ∩Qn0 | = max(Inf(ρ) ∩Qn1 ),
W0 = Q holds and every automaton winning strategy for Player 0 has got ≥ n! memory states.

Proof Show by induction over n ≥ 1: Let An = (S,Q0, s0, σ, τ) be a strategy automaton
which implements a winning strategy for Player 0 from −1 in the game (Gn,Winn). Then
there is a state s and an input word w ∈ Q∗

0 such that the following holds.



86 CHAPTER 4. GAMES AND WINNING STRATEGIES

1. In An the state s is reached again from s by w.

2. Every state −i in Q0 occurs in w.

3. The number of states in the cycle as in 1 is ≥ n!.

n = 1: G1: -1 1 Claim is clear.

n > 1: We assume that w.l.o.g. the transition graph of An is strongly connected. If not
partition the graph into strongly connected components, which constitutes an acyclic
graph. Choose a last SCC Z and a state s1 ∈ Z. The restriction of A to a last SCC Z
with initial state s1 is in turn a winning strategy automaton, now strongly connected.

s0

s1
Z

Let now Hn
i be the subgame obtained from Gn by deleting −i. Let An

i have the input
alphabet Qn0 \ {−i}. An

i implements a winning strategy in Hn
i . An

i does not output n. Hence
we can delete the vertex n and obtain a graph Hn

i which is isomorphic to Gn−1. By induction
hypothesis 1, 2, and 3 hold for An

i , i = 1, . . . , n.
Choose si ∈ An

i and wi according to the induction hypothesis. Let Si be the set of states

that are visited by An
i during the cycle si

wi−→ si. We show: i 6= j ⇒ Si ∩ Sj = ∅.
Assume s ∈ Si ∩ Sj . Then

An
i : s0

u1−→ si

wi︷ ︸︸ ︷
u1−→ s

v1−→ si
An
j : sj

u2−→ s
v2−→︸ ︷︷ ︸

wj

sj

for suitable u1, v1, u2, v2.
Then form a path in An with the input u0u1(v2u2v1u1)

ω. All states −i (i = 1, . . . , n) are
occurring infinitely often in this play. An

i ,A
n
j do not output n, thus n − 1 is the maximal

output value given infinitely often by An on u0u1(v2u2v1u1)
ω. This shows i 6= j ⇒ Si∩Sj = ∅.

Now use the fact that An is strongly connected for the induction hypothesis. Choose s as
the initial state and an input word w that leads An back to the initial state, uses every input
letter, and passes through every state.

Then obtain that the number of states of An is |An|
I.H.(3)

≥ |S1|︸︷︷︸
≥(n−1)!

+ · · · + |Sn|︸︷︷︸
≥(n−1)!

≥ n! �

4.10 Minimization of Strategy Automata

Example 4.48. Consider the game in Example 4.46. The improved LAR-construction gives
seven states. But two states already suffice:



4.10. MINIMIZATION OF STRATEGY AUTOMATA 87

3

1

4

1 2

4

/

/

/

/

3

3

“1 coming from 2”

s
“1 coming from 4”

s’

�

Theorem 4.49. A strategy automaton of the form A = (S,Q, s0, σ, τ) with

τ(s, q)

{
∈ Q if q ∈ Q0

= ∗ if q ∈ Q1

can be transformed (in polynomial time) into a minimal automaton, which is unique up to
isomorphism.

Proof For a given strategy automaton A define the function fA : Q∗ → (Q∪{∗})∗ inductively
by

fA(ε) = ε,
fA(uq) = fA(u) τ(σ(s0, u), q)︸ ︷︷ ︸

∈Q∪{∗}

.

1. Minimization step: Elimination of the unreachable states.

2. Minimization step: Merging of equivalent states.

s ∼A s
′ :⇔ for As,As′ (A with s or s′ as initial states) fAs = fAs′

holds

Obviously, ∼A is an equivalence relation. For s ∈ S let [s] denote the equivalence class of
s and let [S] denote the set of all these equivalence classes, thus [S] = {[s] | s ∈ S}. The
reduced automaton is built with state set [S] and initial state [s0]. The memory update
function [σ] : [S] ×Q→ [S] is defined by

[σ]([s], q) := [σ(s, q)], and

the output function [τ ] : [S] ×Q→ Q ∪ {∗} is defined by

[τ ]([s], q) := [τ(s, q)] (independent of the representative).

We define Ared = ([S], Q, [s0], [σ], [τ ]) which obviously computes fA.
Let now f be computable by an automaton A). We can derive a canonical automaton

Af that computes f . We show that Af has got the minimal number of states among those
automata that compute f , and also show that every automaton Ared that computes f is
isomorphic to Af .

Let f : Q∗ → (Q ∪ {∗})∗ be computable by an automaton. For u, v ∈ Q∗ define

u ∼f v :⇔ ∀w ∈ Q∗ : f(uw) and f(vw) share the same suffix

after the prefixes f(u) and f(v) respectively.

Obviously ∼f is an equivalence relation. The equivalence class of u ∈ Q∗ is denoted by <u>.
Thus A computes f ⇒ ∼A has got at least as many states as ∼f .

Define the automaton Af with



88 CHAPTER 4. GAMES AND WINNING STRATEGIES

States := ∼f -classes
Initial state := <ε>
Memory update function σf (<u>, q) :=<uq>
Output function τf (<u>, q) := suffix (i.e. letter) of f(uq) after prefix f(u).

It is easy to show that Af computes the function f and that it has the minimal number of
states.

Define an isomorphism from the reduced automaton Ared, which computes f , to Af . Since
all states of Ared are reachable (say q0, . . . , qk) there is in each case a ui with qi = σ(q0, ui).

Consider the states <u0>, . . . , <uk> of Af . The mapping I : qi →<ui> is an isomorphism.
�

Thus we can always find an optimal implementation of a given automaton strategy. A
transformation of such a strategy into another strategy with an even smaller automaton is
outlined in the following section.

4.11 Strategy Improvement

Preparation If Players 0 and 1 fix positional strategies f and g, then from each vertex q a
play ρq(f, g) is fixed, ending in a certain loop whose maximal color decides the winner. From
ρq(f, g) a value v(q) is determined. Here v is a valuation function v : Q→ D into some value
domain D, which is ordered by a preference order ≺.

Algorithm for Strategy Improvement Given: Colored game graph G, valuation func-
tion v.

1. Pick two strategies f, g for Players 0 and 1.

2. Determine the values v(q) for all q ∈ Q, referring to the plays ρq(f, g).

3. Change strategy f of Player 0 by local improvement: For each Q0-vertex, choose the
out-edge leading to the neighbor vertex with highest value (by preference order).

4. Given the new f find the optimal response strategy of Player 1 and use it as new strategy
g.

5. If the new strategies coincide with the previous strategies, then stop; otherwise go back
to step 2.

Assume: The vertices are numbered, and the numbers are the colors. For our example we
define a preference order ≺ for vertices 1, . . . , 8 (from the viewpoint of Player 0):

7 ≺ 5 ≺ 3 ≺ 1 ≺ 2 ≺ 4 ≺ 6 ≺ 8

Naturally, the odd numbers, especially the high ones, are unfavorable for Player 0, whereas
the high even numbers are the most favorable.

Definition 4.50. Let f, g be strategies for Player 0 and 1 for the game graph G = (Q,E),
and q ∈ Q. The most relevant vertex of ρq(f, g) is the vertex with the highest color in the
loop of ρq(f, g). The play profile of ρq(f, g) is the triple (r, P, d), where



4.11. STRATEGY IMPROVEMENT 89

• r is the most relevant vertex of ρq(f, g),

• P is the set of higher valued vertices on the path from q to (and excluding) r,

• d is the distance between q and r on this path.

Example 4.51. Consider the following game graph, where the solid edges form the initial
strategies of the Players. Notice the play profiles for the states.

(5, ∅, 3) (5, ∅, 2) (5, ∅, 1) (5, ∅, 0)

3 2 4 5

7 8 6 1

(5, {7}, 4) (5, {6, 8}, 3) (5, {6}, 2) (5, ∅, 1)

�

Definition 4.52. (Comparison of Play Profiles) The preference order, defined above, is ex-
tended from vertices to play profiles:

(r, P, d) ≺ (r′, P ′, d′) iff

1. r ≺ r′, or

2. r = r′ and the highest vertex in the symmetric difference of P, P ′ is even and belongs
to P ′, or is odd and belongs to P , or

3. r = r′ and P = P ′ and d < d′ if r is odd, or d′ < d if r is even.

Example 4.53. (Example 4.51 continued) Local improvement by Player 0: The strategy of
Player 0 can be improved at two states. In state 4 Player 0 should choose the edge leading
to state 2 instead of state 5, since (5, ∅, 0) ≺ (5, ∅, 2). The same applies for state 1; Player 0’s
new choice is the edge leading to state 6 (((5, ∅, 0) ≺ (5, {6}, 2)).

(5, ∅, 3) (5, ∅, 2) (5, ∅, 1) (5, ∅, 0)

3 2 4 5

7 8 6 1

(5, {7}, 4) (5, {6, 8}, 3) (5, {6}, 2) (5, ∅, 1)



90 CHAPTER 4. GAMES AND WINNING STRATEGIES

The optimal response by Player 1 and its corresponding valuation:

(3, ∅, 0) (3, ∅, 1) (3, {4}, 2) (3, {4, 5, 6}, 5)

3 2 4 5

7 8 6 1

(3, {7}, 1) (3, {4, 6, 8}, 4) (3, {4, 6}, 3) (3, {4, 6}, 4)

Player 0 can in turn improve his strategy by redirecting the outgoing edge at state 4 to state
5 ((3, ∅, 1) ≺ (3, {4, 5, 6}, 5)). A response by Player 1 will not change the strategy. No further
local improvement by Player 0 is possible. We obtain a game graph, which is partitioned into
winning regions W0 = {2, 3, 7} and W1 = {1, 4, 5, 6, 8}:

(3, ∅, 0) (3, ∅, 1) (6, ∅, 3) (6, ∅, 2)

3 2 4 5

7 8 6 1

(3, {7}, 1) (6, {8}, 1) (6, ∅, 0) (6, ∅, 1)

�

Theorem 4.54. (Vöge, Jurdzinski) With the valuation by play profiles, the strategy algo-
rithm terminates producing strategies f and g for Players 0 and 1 such that

• q ∈W0 (q ∈W1) iff the play ρq(f, g) ends in a loop with even (respectively, odd) highest
vertex,

• f and g are winning strategies for Player 0, respectively 1, from the vertices in W0,
respectively W1.

Thus the algorithm produces valid output. But at what cost? The time complexity of this
algorithm has got an exponential upper bound. Further complexity properties:

• Each improvement round costs polynomial time.

• The number of improvement steps is bounded by the number of possible strategies.

• In experiments, only linearly many improvement steps have been observed.



4.12. RABIN AND STREETT GAMES 91

4.12 Rabin and Streett Games

Goal: We want to show that Rabin games allow Player 0 to construct positional winning
strategies on his winning region.

Definition 4.55. (Rabin Game) Let Ω = ((E1, F1), (E2, F2), . . . , (Ek, Fk)) with Ei, Fi ⊆ Q.
Then a game (G,Ω) with the winning condition

ρ ∈ Win ⇔
k∨

i=1

(Inf(ρ) ∩ Ei = ∅ ∧ Inf(ρ) ∩ Fi 6= ∅)

for Player 0 is called Rabin game.

Theorem 4.56. Player 0 wins in a Rabin game in his winning region by using a positional
winning strategy.

Proof Let G = (Q,E) be the game graph and let q ∈ Q. Show: if Player 0 has got no
positional winning strategy from q, then he has got none at all, i.e. q ∈W1.

Proof by induction over the number n = |E ∩ (Q0 ×Q)| of edges available to Player 0.
Then n ≥ |Q0|, i.e. we choose the induction basis at n = |Q0|.

n = |Q0|: Every strategy of Player 0 is positional. Thus the claim holds.

n > |Q0|: Choose a vertex p with two exiting edges e1, e2. Instead of the original graph
G = (Q,E) consider the graphs G1 = (Q,E \ {e1}) and G2 = (Q,E \ {e2}).
Consider q ∈ Q, such that Player 0 does not have a positional winning strategy from q.
Then in G1 and G2 Player 0 does not have a positional winning strategy from q, either
(fewer edges).

The induction hypothesis for G1, G2 therefore gives q ∈ W1 for G1, G2. Let f1 be a
winning strategy for Player 1 from q in G1 and let f2 be a winning strategy for Player 1
from q in G2.

The remaining task is to construct, from f1, f2, a winning strategy f for Player 1 from
q in G (then q ∈W1, and we are finished).

Case 1: No play played according to f1 (or f2 resp.) starting from q reaches vertex p.
Then choose f = f1 (or f = f2 resp.) and obtain a winning strategy for Player 1
from q in G.

Else: Player 1 wins, starting from p, with f1 in G1 and with f2 in G2. Fix f : Play
according to f1 till the first visit to p.

From p, after choosing an edge 6= e1 (in G1), play according to f1 till the next visit
to p. From p, after choosing an edge e1 (in G2), play according to f2 till the next
visit to p.

Show that every play played according to f is won by Player 1 .

Case A: The play ρ visits p only finitely often. Then the play will eventually be
in G1 (or G2 resp.) according to f1 (or f2 resp.) and will be won by Player 1
according to the choice of f1 (or f2 resp.).

Case B: The play ρ visits p infinitely often.



92 CHAPTER 4. GAMES AND WINNING STRATEGIES

• Player 0 eventually chooses only the edge e1 in p. Then, as above, he will
eventually be in G2 and Player 1 wins the play.

• Player 0 eventually chooses only edges 6= e1 in p. Analogously, we are
finished.

• Player 0 chooses the edge e1 and edges 6= e1 again and again in p.

q −→ pe1 −→ pe1 −→ p 6=e1 −→ p . . .

Extract two plays ρ1, ρ2 in which the p −→ p-segments are gathered according
to the edge with which they are entered is equal to e1 or not equal to e1.

ρ1 is played in G1 according to f1 hence Player 1 wins.
ρ2 is played in G2 according to f2 hence Player 1 wins.

According to Lemma 3.16 ρ will not be successful either. Thus Player 1 wins
the play ρ.

�

We will now consider Streett games. This is mainly motivated by a weakness of Staiger-Wagner
conditions and of Muller conditions; both of them are disjunctive. For F = {F1, . . . , Fk}, the
Muller condition reads

Inf(ρ) = F1 or Inf(ρ) = F2 or . . . or Inf(ρ) = Fk.

In practical situations, conjunctions of conditions arise more naturally. An important example
is the “Streett condition”. It is called a strong fairness condition and is derived from the
negation of the Rabin condition.

Definition 4.57. (Rabin and Streett Condition) Given a state set Q and a family Ω of pairs
(E1, F1), . . . , (Ek, Fk) with Ei, Fi ⊆ Q, a sequence ρ ∈ Qω satisfies the Rabin condition for Ω
if

k∨

i=1

(Inf(ρ) ∩ Ei = ∅ ∧ Inf(ρ) ∩ Fi 6= ∅)

and a sequence ρ ∈ Qω satisfies the Streett condition for Ω if it satisfies the negation of the
Rabin condition:

k∧

i=1

(Inf(ρ) ∩ Ei 6= ∅ ∨ Inf(ρ) ∩ Fi = ∅).

This condition is equivalent (B ∨A ≡ ¬A→ B) to

k∧

i=1

(Inf(ρ) ∩ Fi 6= ∅ → Inf(ρ) ∩ Ei 6= ∅).

In other words: For all i = 1, . . . , k: if Fi is visited infinitely often then Ei is visited infinitely
often.

The necessary datastructures for solving Street games by a reduction to parity games are
“index appearance records” (IAR).



4.12. RABIN AND STREETT GAMES 93

Definition 4.58. An index appearance record IAR over r is a triple (π, e, f) where π is a
permutation of (1 . . . r), e, f ∈ {1, . . . , r}. IAR(r) := set of IARs over r.

Lemma 4.59. For a Streett game (G,ϕ) over G = (Q,E) with pairs (E1, F1), . . . , (Er, Fr),
one can construct a parity game (G′, ϕ′) with (G,ϕ) ≤ (G′, ϕ′).

Corollary 4.60. For Streett games with Ω = ((E1, F1), . . . , (Er, Fr)) over finite graphs one
can compute the winning regions and determine automata winning strategies for both Players
with memory size r! · r2.
Proof of Lemma 4.59 Given: the game graphG = (Q,E) and the Streett pairs (E1, F1), . . . ,
(Er, Fr) (with Er = Fr = Q). Define G′ over the set of vertices Q × IAR(r). The trans-
formation ρ (over G) → ρ′ (over G′) according to Definition 4.23 is given by f : q →
(q, ((1 . . . r), r, r)) and the following edge relation: For an IAR (q, (π, e, f)) and (q, q′) ∈ E we
introduce the edge ((q, (π, e, f)), (q′, (π′, e′, f ′))) ∈ E′. π′ is obtained from π by shifting all j
with q′ ∈ Ej to the left (thus the j with q′ /∈ Ej stand on the right), and for π = (j1 . . . jr)
and π′ = (j′1 . . . j

′
r) setting e′ := the last k with q′ ∈ Ejk (Notice that the position k refers to

the previous permutation π) and f ′ := the last k with q′ ∈ Fj′k (in this instance k refers to
the current permutation π′).

The coloring c : Q× IAR(r) → {1, . . . , 2r} is defined by

c((q, ((j1 . . . jr), e, f))) =

{
2e if e ≥ f

2f − 1 if e < f

The winning condition for ρ′ is: ρ′ ∈ Win′
0 :⇔ max(Inf(c(ρ′))) even.

Claim: ρ ∈ Win0︸ ︷︷ ︸
Streett

⇔ ρ′ ∈ Win′
0︸ ︷︷ ︸

parity

.

This claim will be shown by the following observations. Subsequent to the proof we will
consider an example for the transformation of a play into the corresponding IAR-play.

(i) In the play ρ′ a suffix im+1 . . . ir of the IAR-component eventually remains fixed. It
consists of the j, such that Ej-vertices are visited only finitely often (“suffix part of the
IAR’s”). Let m be the maximal position in front of this suffix part. Therefore from
some point onwards: e-value ≤ m.

(ii) Player 1 wins the play ρ in G (Streett condition violated).

⇐⇒ exists j with Ej visited only finitely often, Fj visited infinitely often (in
ρ).

(i)⇐⇒ exists j, which eventually stands in the suffix part of the IAR’s of ρ′,
such that Fj is visited infinitely often.

⇐⇒ Infinitely often in ρ′ the f -value is > m (= maximal position k with the
current state ∈ Fjk).

⇐⇒ Infinitely often f > m holds.

In Example 4.61: m = 3. At vertex 5 f = 4 > 3 = m holds.

(iii) Player 1 wins the play ρ.

(ii)⇐⇒ Infinitely often in ρ′: f > m.
⇐⇒ Infinitely often in ρ′: f > m ≥ e-value (Choice of m in (i)).
⇐⇒ in ρ′ an odd color 2f − 1 > 2m is reached infinitely often.



94 CHAPTER 4. GAMES AND WINNING STRATEGIES

(iv) Player 0 wins the play ρ.

(ii)⇐⇒ f ≤ m eventually holds in ρ′ and infinitely often e = m.
⇐⇒ In ρ′ the maximal odd color eventually is ≤ 2m − 1 and maximal even

color is = 2m.

Altogether the following holds

Player 0 wins ρ ⇔ max(Inf(c(ρ′))) even ⇔ Player 0 wins ρ′.

�

Example 4.61. Consider the following schematically represented game graph, with edges
(i, (i+ 1) mod 7).

2 1

3

4 5

6

F2

F3

E2

F1

E3

0

E1

Let E4 = F4 = Q. Consider the play ρ = (0 . . . 6)ω. In the IAR’s, always those j with
q /∈ Ej are underlined. In this example m = 3 (from (i) of the proof) and at the vertex 5
f = 4 > 3 = m holds. The values for the IAR, e, and f in the first line are initial values and
do not have a special meaning.

ρ′ q IAR e f

0 1234 4 4
1 4123 4 3
2 4123 2 3
3 4123 2 3
4 4123 2 1
5 4123 1 4
6 4213 3 1
0 4213 1 1
1 4213 1 3

�



4.13. SOLVING GAMES WITH LOGICAL WINNING CONDITIONS 95

4.13 Solving Games with Logical Winning Conditions

We now extend the results of the previous sections to games where we have more freedom in
defining the acceptance condition.

Theorem 4.62. Given a finite game graph G and a winning condition ϕ expressed in the
logic S1S or the logic LTL, the corresponding game can be solved effectively, i.e. one can
compute the winning regions of the two players, as well as corresponding finite-state winning
strategies.

The formulas may either refer to the names of the vertices or to a coloring of a game graph.

Example 4.63. We use vertex names 1, . . . , n. Consider the winning condition:

“Between any two visits of vertex 2, at least one visit of state 1 occurs.”

An equivalent S1S-formula:

∀t1∀t2(t1 < t2 ∧X2(t1) ∧X2(t2) → ∃s(t1 < s ∧ s < t2 ∧X1(s))

An equivalent LTL-formula:

G(p2 ∧ XFp2 → X(¬p2U(p1 ∧ ¬p2))

�

The game can be solved by reduction. Recall that LTL-formulas can be written as S1S-
formulas. Now consider a game graph G and a S1S-winning condition ϕ. Transform ϕ into a
Büchi automaton and after that into a Muller automaton.

This yields a game reduction (G,ϕ) < (G′, ϕ′) where ϕ′ is a Muller condition. Another
game reduction (G′, ϕ′) < (G′′, ϕ′′) yields a parity game.

The solution of the parity game gives a solution of (G,ϕ) by finite-state strategies. But
there is one essential problem: The blow-up of the size of the game graph.

Let us consider the algorithm in more detail:
Given: Game graph G = (Q,Q0, E) with Q = {1, . . . , n} and an S1S formula ϕ(X1, . . . Xn)

expressing the winning condition for Player 0. (Here the Xi are assumed to define a partition:
Each position in an ω-word belongs precisely to one Xi.) Consider the Muller automaton
A = (S, {1, . . . , n}, s0, δ,F) equivalent to ϕ. We define a game reduction (G,ϕ) ≤ (G′, ϕ′),
with transformation of plays ρ over G into a play ρ′ over G′, such that ρ satisfies ϕ iff ρ′

satisfies ϕ′:
Given A = (S, {1, . . . , n}, s0, δ,F) equivalent to ϕ, establish a game reduction (G,ϕ) ≤

(G′, ϕ′) as follows:

• G′ = (S ×Q,S ×Q0, E
′)

• E′ with edges ((s, p), (δ(s, p), q)) for (p, q) ∈ E

• the initialization function f : q 7→ (s0, q)

• ϕ′ as the Muller condition on sequences ρ′ ∈ (S×Q)ω using F and the first components
in S



96 CHAPTER 4. GAMES AND WINNING STRATEGIES

Then ρ |= ϕ(X1, . . . , Xn) iff ρ′ defined by 2 and 3 satisfies the Muller condition ϕ′.
S1S formulas can be transformed into nondeterministic Büchi automata. Why not use

them instead of Muller automata? Player 0 could be asked

• to make his moves,

• to simultaneously build up a successful run of the Büchi automaton equivalent to the
S1S-formula,

and thus play a Büchi game. Later on we shall see that (and why) this cannot work.

4.14 Exercises

Consider the following game graph for Exercise 4.1 and 4.2:

1 2 3

4 5 6

7

Exercise 4.1. Let the winning conditions for Player 0 be

(a) |Occ(ρ))| ≤ 2, and

(b) |Occ(ρ))| ≤ 3.

Find for each winning condition the winning region for Player 0 and describe (informally) a
winning strategy. Hint: positional strategies suffice.

Exercise 4.2. Let the winning condition for Player 0 be Occ(ρ) = {1, 2, 3, 4, 5, 6, 7}.

(a) Find the winning region for Player 0 and describe a winning strategy.

(b) Show that there is no positional winning strategy for Player 0 in this game.

Exercise 4.3. Consider the following weak parity game, where vertex i with color j is denoted
by i/j.

2/1 5/2 8/3

1/0 3/1 6/2 9/3 11/4

4/1 7/2 10/3 12/4

Compute the winning regions, and the corresponding positional winning strategies, for Player
0 and 1.



4.14. EXERCISES 97

Exercise 4.4. Let G be a game graph for a weak parity game and let W0 be the winning
region of Player 0 . For all q ∈W0 let Player 0 have a positional winning strategy fq starting
from q. From these winning strategies construct a “uniform” positional strategy f which is a
winning strategy from q for every q ∈W0 (up to now only such uniform strategies have been
used). The strategy f , constructed from the strategies fq, means that for every p ∈ Q there
is a q ∈ Q with f(p) = fq(p).

Exercise 4.5. (a) Specify an ω-language L, such that L can be recognized by a weak parity
automaton with 3 colors but not by a weak parity automaton with 2 colors.

(b) Generalize the result of (a) in the following sense. Specify a family (Ln)n≥1 of ω-
languages, such that Ln ⊆ Σω

n can be recognized by a weak parity automaton with n
colors but not with n− 1 colors. The alphabets Σn may grow with n.

Exercise 4.6. Give a SW-game in which Player 0 has got a positional winning strategy fq
from q for every vertex q but no uniform positional winning strategy f .

Exercise 4.7. For n ≥ 1 specify game graphs Gn with O(n) vertices, a marked vertex q0,
and a SW-winning condition, so that the following holds:

(1) Player 0 wins over Gn starting from q0 using a strategy automaton An that has got n
states. (Specify this automaton.)

(2) No strategy automaton with < n states implements a winning strategy over Gn for
Player 0 starting from vertex q0.

Exercise 4.8. A conjunctive guaranty condition is given by sets G1, . . . , Gk ⊆ Q, and the
winning condition for Player 0 in a conjunctive guaranty game is

Occ(ρ) ∩Gi 6= ∅ for every i ∈ {1, . . . k}.

(a) Construct a game graph and a conjunctive guaranty condition such that the winning
region for Player 0 in the conjunctive guaranty game is not

⋂k
i=1 Attr0(Gi).

(b) Show that if a winning strategy for Player 0 exists then a memory of size 2O(k) suffices
to implement an automaton winning strategy for Player 0.

Exercise 4.9. Find a family of game graphs (Gn)n≥1 with designated sets (Fn)n≥1 (and
Büchi winning condition) such that Recuri+1

0 (Fn) $ Recuri0(Fn) for i = 1, . . . , n.

Exercise 4.10. Show: For a game over the graph G = (Q,E) with a subset F ⊆ Q and co-
Büchi winning condition (ρ ∈ Win ⇔ Inf(ρ) ∩ F = ∅) one can compute the winning regions
W0,W1 and specify positional winning strategies for Player 0 / Player 1 .

Exercise 4.11. Let G = (Q = Q0 ∪̇ Q1, E) be a game graph with F ⊆ Q. Let W0 and W1

be the winning regions of Player 0 and Player 1 in the Büchi game for G and F . Prove or
disprove:

(a) The winning set of Player 0 in the safety game for G and W0 is W0.

(b) If f0 is a winning strategy for Player 0 in the safety game for G and W0, then f0 is also
a winning strategy for Player 0 in the Büchi game for G and F .



98 CHAPTER 4. GAMES AND WINNING STRATEGIES

(c) The winning set of Player 1 in the guaranty game for G and W0 is W1.

(d) If f1 is a winning strategy for Player 1 in the guaranty game for G and W0, then f1 is
also a winning strategy for Player 1 in the Büchi game for G and F .

Exercise 4.12.

Consider the game graph G on the right, and the Muller condition
F = {{2, 4, 5, 7}, {1, 2, 3, 4, 5, 6, 7}}.
Find an automaton winning strategy for Player 0 in the Muller
game with as few states as possible, and show that any other
automaton strategy with less states is not winning for Player 0.

7

5 2 4

6 1

3

Exercise 4.13.

(a) Find a family (Gn,Fn)n∈N such that for every n ∈ N Player 0 has a winning strategy in
the Muller game (Gn,Fn) which can be realized by a strategy automaton with n states,
but there is no winning strategy which can be realized by a strategy automaton with less
than n states.

(b) Modify your family from (a) such that Player 0 has two winning strategies f1, f2 and the
minimal automaton implementing f2 needs n more states than the minimal automaton
implementing the strategy f1.

Exercise 4.14. Consider the DJW game over the graph with vertices {A,B,C,D, 1, 2, 3, 4}
as given in Example 4.39. We propose the following latest appearance queue (LAQ) strategy
for Player 0, initializing the queue with ABCD.

• Add the current vertex at the front of the LAQ, delete the last vertex.

• Move to the vertex whose number is the number of different vertices in the current
LAQ.

The following table shows the evolution of the LAQ for an example sequence of visited letter
states:

A C C D B D C D D . . .
ABCD AABC CAAB CCAA DCCA BDCC DBDC CDBD DCDB DDCD . . .

Decide whether the new LAQ strategy is a winning strategy for Player 0. Prove this or
give a counter-example.

Exercise 4.15. Let G = (Q,E) with Q = Q0∪̇Q1 a be game graph. A nondeterministic
positional strategy (NPS) for Player 0 in G is a relation R ⊆ (Q0×Q)∩E. A play q0, q1, . . . is
played according to R if for all qi ∈ Q0 we have (qi, qi+1) ∈ R. Let φ be a winning condition.
An NPS R is a nondeterministic winning strategy for player 0 from q if all plays from q played
according to R satisfy φ.

Decide whether the union of two winning NPS from q is again a winning NPS from q for



4.14. EXERCISES 99

(a) Büchi conditions (φ = ∀i∃j > i ρ(i) ∈ F ).

(b) Reachability conditions (φ = ∃i ρ(i) ∈ F ).

Exercise 4.16. Let A = (Q,Σ, q0, δ,F) be a deterministic Muller automaton. A set W ⊆ Q
is called a set of relevant states if for every loop F ∈ F and every loop F ′ ∈ 2Q \ F we have
that W ∩ (F M F ′) 6= ∅, i.e. whether a loop belongs to F can be decided by just looking at
the states of W . (Here F M F ′ := (F \F ′)∪ (F ′ \F ) denotes the symmetric difference of the
sets F and F ′.)

(a) Show that a run ρ of A is accepting iff Inf(ρ) ∩W = F ∩W for an F ∈ F .

(b) Show that one can construct a parity automaton B equivalent to A that uses as set of
states Q× LAR(W ) (instead of the set of LARs over Q).

Exercise 4.17. Let G = (Q,Q0, E) be a game graph and F a Muller condition such that

∀P1, P2 ⊆ Q P1, P2 /∈ F ⇒ P1 ∪ P2 /∈ F .

Find a Rabin condition equivalent to F .
Hint: Use for every accepting loop P in (G,F) a Rabin pair. To find this pair consider the
union of all non-accepting loops contained in P .
Comment: In the lecture the Union Lemma was shown for the Rabin condition. Here we
show a converse statement.

Exercise 4.18. Let G = (Q,E) be a game graph. A liveliness condition is given by a set
Ω = {(E1, F1), . . . , (Er, Fr)} of pairs of state sets (like a Rabin condition). Player 0 wins a
play ρ in the liveliness game (G,Ω) iff

r∧

i=1

∀x (ρ(x) ∈ Fi → ∃y > x (ρ(y) ∈ Ei)) .

Specify a reduction of liveliness games to parity or Büchi games.

Exercise 4.19. Let A be a strategy automaton. Solve either (a) or (b).

(a) Specify an algorithm, which gives the divides the states of A into ∼A-classes.

(b) Show (using the properties of Ared and Af as in Section 4.10) that the function I :
Q(Ared) → Q(Af ), defined in Section 4.10, is a bijection.

Exercise 4.20. Let A = (Q,Σ, q0, δ, c) with c : Q→ {1, . . . , k} be a parity automaton. Con-
struct a Streett automaton B = (Q,Σ, q0, δ,Ω) equivalent to A which has the same transition
structure as A.



100 CHAPTER 4. GAMES AND WINNING STRATEGIES



Chapter 5

Tree Automata and the Logic S2S

5.1 Trees and Tree Automata

In Chapter 2 we specified sequence properties in a linear way. We developed a linear-time
specification of infinite behavior by setting the same conditions on every infinite path through
a system which was modeled by a pointed Kripke structure.

Now we want to be able to set global conditions on the structure of all possible paths of
a system. Namely, we are going to specify properties of the computation trees of a system.
This will entail the branching-time specifications, which are conditions on the structure of the
tree formed by all paths through a Kripke structure.

Definition 5.1. If (M, s0) is a pointed Kripke structure, t(M,s0) is the tree of runs from s0.

This tree will also be called unraveling of M from s0

Example 5.2. Consider the Kripke structure M and its labeled tree of runs t(M,s0).

s3
(
1
1

)

s0

s1

s2

(
0
0

)

(
1
0

)

(
0
1

)

(
0
0

)

(
1
0

) (
0
1

)

· · ·· · ·· · ·

M : t(M,s0) :

�

In order to achieve the above mentioned goals, we are going to do the following: We will specify
properties of infinite trees instead of properties of infinite words. For these specifications we
will use automata accepting trees, and logic formulas which will be evaluated over trees.

We will introduce

• trees and tree languages

• automata accepting tree languages



102 CHAPTER 5. TREE AUTOMATA AND THE LOGIC S2S

and study the expressive power of tree automata.

The application of these new concepts will yield very strong decidability results in logic
and verification.

Definition 5.3. Let the words u ∈ {0, 1}∗ denote the nodes of the unlabeled infinite binary
tree, where ε is the root of the tree and v0 denotes the left child of the node v ∈ {0, 1}∗ and
vice versa. A Σ-valued binary tree is a function t : {0, 1}∗ → Σ, i.e. at node u ∈ {0, 1}∗ the
value of t is t(u).

Some additional tree terminology will be needed later on:

Definition 5.4. (Tree Terminology)

• TωΣ is the set of all Σ-valued binary trees.

• A set T ⊆ TωΣ is called tree language (of Σ-valued binary infinite trees).

• A path through a tree t is a sequence π = u0u1u2 . . . of tree nodes with u0 = ε (root of
the tree) and ui+1 = ui0 or ui+1 = ui1 for i ≥ 0.

• The ω-word determined by π is t|π = t(u0) t(u1) t(u2) . . . .

Now we will define automata that can accept binary trees.

Definition 5.5. (Tree Automaton) A tree automaton (over Σ-valued binary trees) is of the
form A = (Q,Σ, q0,∆,Acc), where

• Q is the finite set of states, q0 the initial state,

• ∆ ⊆ Q× Σ ×Q×Q is the transition relation,

• Acc is the acceptance component.

A transition (q, a, q1, q2) allows the automaton in state q at an a-labeled node u to proceed
to states q1, q2 at the successor nodes u0, u1.

The automaton is deterministic if for any (q, a) ∈ Q× Σ at most one transition exists in
∆ whose first two components are q and a.

Definition 5.6. A run of A on t is an assignment of states to tree nodes, i.e. a tree ρ :
{0, 1}∗ → Q with

• ρ(ε) = q0

• (ρ(u), t(u), ρ(u0), ρ(u1)) ∈ ∆ for all u ∈ {0, 1}∗

Example 5.7. We assume that the following transitions are allowed in a tree automaton:
(q0, a, q0, q0), (q1, a, q1, q1), (q0, b, q1, q0), (q1, b, q1, q1). The following picture shows a run ρ (on
the right) on the tree t on the left.



5.1. TREES AND TREE AUTOMATA 103

q0

q0 q0

q1 q0 q0q0

· · ·

a

a

b a bb

b

· · ·

t : ρ :

�

Definition 5.8. (Acceptance of Trees) Let A be an acceptance condition for ω-automata.
The tree automaton run ρ is successful for condition A if each path of ρ is successful with
respect to A.

This is applied to any acceptance condition A known from ω-automata theory. Thus we get
Büchi tree automata, Muller tree automata, Rabin tree automata etc. For instance a Büchi
tree automaton A = (Q,Σ, q0,∆, F ) accepts the tree t if there exists a run ρ of A on t such
that on each path of ρ a state from F occurs infinitely often.

Definition 5.9. The tree language recognized by the tree automaton A, denoted T (A), is
the set of all trees accepted by A with the acceptance condition A under consideration.

Example 5.10. Let T1 = {t ∈ Tω{a,b} | exists path through t with infinitely many b}, in

short: T1 = {t ∈ Tω{a,b} | ∃π∃ωi t|π(i) = b}.
We define the following Büchi tree automaton A1:

• State set Q = {qa, qb, q+}, initial state qa,

• Final state set F = {qb, q+},

• Transition relation ∆ :

qa

qa q+

a qa

qa qaq+ q+ q+

qb qb

qa

a a a

with state qb at the bottom

analogous for input b

q+

q+

q+

a/b

A run of A1 will necessarily “guess” a path by assuming states qa, qb there. All other paths
will finally have state q+ only (accepting). State qa signals input label a, qb signals input
label b.

Acceptance on the path with states qa, qb requires infinitely many visits to qb, i.e infinitely
many b on the path have to be assumed. So the Büchi tree automaton A1 recognizes T1 �

Example 5.11. Let T2 = {t ∈ Tω{a,b}| each path through t has only finitely many b}. Define

a Muller tree automaton A2 = (Q, {a, b}, qa,∆,F) with state set Q = {qa, qb}, F = {{qa}}
and transition relation ∆ :



104 CHAPTER 5. TREE AUTOMATA AND THE LOGIC S2S

qa/b

qbqb

qa/b

qa qa

a b

Then for the unique run ρ on t and for all paths π: t|π has infinitely many b iff ρ|π has
infinitely many qb. The acceptance condition requires Inf(ρ|π) = {qa} for all π. So A2 accepts
precisely the trees in T2. �

In contrast to the ordinary ω-automata, deterministic Muller tree automata and nondeter-
ministic Büchi tree automata are not equivalent.

Theorem 5.12. The tree language T2 = {t ∈ Tω{a,b}| each path through t has only finitely

many b} is recognized by a Muller tree automaton, but not by a (nondeterministic) Büchi tree
automaton.

Proof We verified that T2 is recognized by an (even deterministic) Muller tree automaton.
Assume: the Büchi automaton A = (Q, {a, b}, q0,∆, F ) recognizes T2

Let n = |F | + 1. Consider the following input tree t:

t(w) =

{
b w ∈ (1+0)i for i ∈ {1, . . . , n}
a else

b

a

ab

ab

b

a

ab

ab

b

a

ab

ab

a

a

a

a

Level 1Level 2

We have t ∈ T2, so there is a successful run ρ of A on t. On the path 1ω a final state is visited,
say at v0 = 1m0 .

On the path 1m001ω, final states are visited infinitely often. After 0 say for the first
time at v1 = 1m001m1 . We therefore obtain visits to final states at the nodes v0 = 1m0 ,
v1 = 1m001m1 , . . . , vn = 1m00 . . . 01mn . For certain i < j the same final state appears at vi
and vj . Between vi, vj at least one label b occurs (at vi0).

Construct a new tree t′ by iterated copying of the part between vi and vj and a corre-
sponding run ρ′. Then A also accepts t′. Thus t′ ∈ T2, but in t′ infinitely many b occur on
the new path π. Contradiction. �

We have shown: nondeterministic Büchi tree automata are strictly weaker than Muller tree
automata. On the other hand, we will show:

• Nondeterministic Muller tree automata and parity tree automata have the same expres-
sive power.



5.2. PARITY TREE AUTOMATA 105

• Parity tree automata have good logical closure properties.

• The emptiness problem is decidable for parity tree automata.

5.2 Parity tree automata

Definition 5.13. A parity tree automaton is of the form A = (Q,Σ, q0,∆, c) with coloring
c : Q→ {0, . . . , k}. It accepts a tree t if there is a run ρ of A on t such that on each path of
ρ, the maximal color assumed infinitely often is even.

Example 5.14. A parity automaton that recognizes

T2 = {t ∈ Tω{a,b} | each path through t has only finitely many b}.

Use qa, qb to signal input letters a, b respectively. Define c(qa) = 0, c(qb) = 1.
The maximal color occurring infinitely often on a path of the run is even (i.e., equal to 0)

iff the letter b occurs only finitely often on the path. �

Theorem 5.15. (Muller versus Parity Tree Automata)

1. For any parity tree automaton one can construct an equivalent Muller tree automaton.

2. For any Muller tree automaton one can construct an equivalent parity tree automaton.

Proof 1 ⇒ 2: Given a parity tree automaton with coloring c, keep states and transitions and
define the system F as follows:

R ∈ F :⇔ max{c(q) | q ∈ R} is even

Proof 2. ⇒ 1: Copy the simulation of Muller games by parity games. Given a Muller tree
automaton with state set Q, use for the parity tree automaton the state set LAR(Q) and
define the transitions according to the LAR update rule.

Allow the transition

(((p1 . . . pn), i), a, ((q1 . . . qn), j), ((r1 . . . rn), k))

for a transition (p1, a, q1, r1) of the Muller automaton, where ((q1 . . . qn), j) is the LAR update
for a visit of q1, and ((r1 . . . rn), k) is the LAR update for a visit of r1.

Define coloring as in the simulation of Muller games by parity games. �

We will now prove some closure properties of parity tree automata.

Lemma 5.16. (Closure under Union) Given parity tree automata A1, A2, one can construct
a parity tree automaton recognizing T (A1) ∪ T (A2).

Proof Assume the state sets Q1, Q2 of A1, A2 are disjoint, with initial states q1, q2. Define
the new automaton over {q0} ∪Q1 ∪Q2 with new initial state q0 (say of color 0).

Take all transitions of A1, A2. Add, for any transition (q1, a, r1, r2) or (q2, a, r1, r2) the
new transition (q0, a, r1, r2). �



106 CHAPTER 5. TREE AUTOMATA AND THE LOGIC S2S

Definition 5.17. Given trees s ∈ TωΓ , t ∈ TωΣ , define the tree s∧t ∈ TωΓ×Σ by s∧t(u) =
(s(u), t(u)). The Σ-projection of s∧t is the tree t.

Given a tree language T over Γ × Σ define

projΣ(T ) := {t ∈ TωΣ | ∃s : s∧t ∈ T}.

Lemma 5.18. (Closure under Projection) Given a parity tree automaton recognizing T over
the alphabet Γ × Σ one can construct a parity tree automaton recognizing projΣ(T ).

Proof Given a parity tree automaton A over Γ × Σ, define a parity tree automaton B over
Σ, which does in any step the following: For input letter b ∈ Σ guess the Γ-component a and
proceed by an A-transition for the input letter (a, b). The state set is not changed. �

The complementation of parity tree automata remains to be investigated. This is the most
difficult logical closure property. M. O. Rabin succeeded 1969 in showing it for Muller tree
automata, which was a breakthrough for the analysis of logical theories.

Today a simpler proof is available that uses the parity acceptance condition. One use-
ful idea for the complementation of parity tree automata is to formulate acceptance in the
terminology of games.

5.3 Tree Automata and Games, Complementation

With any parity tree automaton A = (Q,Σ, q0,∆, c) and any input tree t associate a parity
game over a graph GA,t played by two players “Automaton” and “Pathfinder” on the tree t.

Described intuitively, the game proceeds as follows:

• First Automaton picks a transition from ∆, which can serve to start a run at the root
of the input tree.

• Then Pathfinder decides on a direction (left or right) to proceed to a son of the root.

• Then Automaton chooses again a transition for this node (compatible with the first
transition and the input tree).

• Then Pathfinder reacts again by branching left or right from the momentary node, . . .

Such a play gives a sequence of transitions (and hence a state sequence from Q), built up
along a path chosen by Pathfinder. The Automaton wins the play iff the constructed state
sequence satisfies the parity condition.

The game graph GA,t for a parity tree automaton A and an input tree t is defined as
follows:

The vertices of Automaton are the triples

(tree node w, tree label t(w), state q at w).

By choice of a transition τ of the form (q, t(w), q′, q′′), a vertex of Pathfinder is reached.
The vertices of Pathfinder are the triples

(tree node w, tree label t(w), transition τ at w).

Notice that the game graph is infinite and depends on t. A small part of a game graph is
shown in the following figure:



5.3. TREE AUTOMATA AND GAMES, COMPLEMENTATION 107

(w, t(w), q) (w, t(w), (q, t(w)), q′, q′′)︸ ︷︷ ︸
τ

)

(w0, t(w0), q′) (w1, t(w1), q′′)

To give a formal definition:

Definition 5.19. Let A = (Q,Σ, q0,∆, c) be a parity tree automaton and t be an input tree.
Then the associated game graph GA,t = (Q0 ∪Q1, E) is defined by

Q0 = set of triples (w, t(w), q) ∈ {0, 1}∗ × Σ ×Q,

Q1 = set of triples (w, t(w), τ) ∈ {0, 1}∗ × Σ × ∆,

and the edge relation E such that succeeding game positions match and are also compatible
with t.

The color of a triple (w, t(w), q), resp. (w, t(w), (q, a, q′, q′′)), is the color c(q). The stan-
dard initial position of the play is Automaton’s position (ε, t(ε), q0).

A successful run of A on t yields a winning strategy for Automaton in the parity game over
GA,t: Along each path the suitable choice of transitions is fixed by the run.

Conversely, a winning strategy for Automaton over GA,t clearly provides a method to
build up a successful run of A on t. Just apply the winning strategy along arbitrary paths.

Lemma 5.20. (Run Lemma) The tree automaton A accepts the input tree t iff in the parity
game over GA,t there is a winning strategy for player Automaton from the initial position
(ε, t(ε), q0).

We will also consider an easier case of the Run Lemma, which is concerned with parity
automata with no input. Applying the Run Lemma this way, we can determine whether
there is a successful run of the tree automaton at all.

Definition 5.21. Given an input-free parity tree automaton A = (Q, q0,∆, c) with ∆ ⊆
Q×Q×Q, define a simpler game graph GA, in which the tree t and the parameter w in the
game positions are suppressed: Let Q0 = Q, Q1 = ∆. Let E contain the edges (q, (q, q′, q′′)),
((q, q′, q′′), q′) and ((q, q′, q′′), q′′) for (q, q′, q′′) ∈ ∆. The coloring coincides with c on Q0 (= Q)
and maps a transition (q, q′, q′′) ∈ Q1 to c(q).

Lemma 5.22. (Run Lemma, input-free case) Player 0 (Automaton) has a winning strategy
in GA from position q0 iff the automaton A admits at least one successful run.

We will now briefly outline the path towards a proof of the complementation of tree
automata. To complement a tree automaton means to express that a given automaton A
does not accept t by the acceptance of t of another automaton.

In view of the Run Lemma this means to conclude from non-existence of a winning strategy
for Automaton over GA,t the existence of a winning strategy for Automaton in a different
game GB,t (such that B depends only on A but not on t).



108 CHAPTER 5. TREE AUTOMATA AND THE LOGIC S2S

• First step: Use determinacy of parity games to show: If Automaton has no winning
strategy over GA,t, then Pathfinder has a winning strategy (from the standard initial
position) over GA,t.

• Second step: Pathfinder’s strategy is converted to an Automaton strategy.

Theorem 5.23. (Determinacy of Parity Tree Automata Games) Let A be a parity tree au-
tomaton and t be an input tree for A. Then in the parity game over GA,t, from any game
position either Automaton or Pathfinder has a positional winning strategy.

This is just a special case of the determinacy of parity games.

Theorem 5.24. (Complementation Theorem) For any parity tree automaton A over the
alphabet Σ one can effectively construct a Muller tree automaton (and hence also a parity tree
automaton) B, which recognizes TωΣ \ T (A).

Proof Let A = (Q,Σ, q0,∆, c) be a parity tree automaton. We find a Muller tree automaton
B accepting precisely the trees t ∈ TωΣ , which are not accepted by A.

Step 1 (Applying determinacy) : Start with the following equivalences: For any tree t,

A does not accept t

iff (by Run Lemma)
Automaton has no winning strategy from the initial position (ε, t(ε), q0) in the parity
game over GA,t

iff (by Determinacy Theorem)
(∗) over GA,t, Pathfinder has a positional winning strategy from (ε, t(ε), q0).

Step 2 (Conversion to automaton strategy): Reformulate (∗) in the form “B accepts t”
for some tree automaton B. Pathfinder’s strategy is a function f from the set {0, 1}∗×Σ×∆
of his vertices into the set {0, 1} of directions.

Decompose this function into a family

fw : Σ × ∆ → {0, 1}

of “local instructions”, parameterized by w ∈ {0, 1}∗.
The set I of possible local instructions i : Σ × ∆ → {0, 1} is finite. Thus Pathfinder’s

winning strategy can be coded by the I-labeled tree s with s(w) = fw.

Let s∧t be the corresponding (I × Σ)-labeled tree with

s∧t(w) = (s(w), t(w)) for w ∈ {0, 1}∗.

Now (∗) is equivalent to the following:

There is an I-labeled tree s such that for all sequences τ0τ1 . . . of transitions
chosen by Automaton and for all (in fact for the unique) π ∈ {0, 1}ω determined
by τ0τ1 . . . via the strategy coded by s, the generated state sequence violates the
parity condition.



5.4. TOWARDS THE NONEMPTINESS PROBLEM 109

A reformulation of this yields:

(1) There is an I-labeled tree s such that s∧t satisfies:
(2) for all π ∈ {0, 1}ω

(3) for all τ0τ1 . . . ∈ ∆ω

(4) if the sequence s|π of local instructions applied to the sequence
of tree labels t|π and to the transition sequence τ0τ1 . . . indeed pro-
duces the path π, then the state sequence determined by τ0τ1 . . .
violates the parity condition.

• Condition 4 describes a property of ω-words over I × Σ × ∆ × {0, 1}, which obviously
can be checked by a sequential Muller automaton M4, independently of t.

• Condition 3 describes a property of ω-words over I × Σ × {0, 1}, which results from
4 by a universal quantification (equivalently, by a negation, a projection, and another
negation). Condition 3 is checked by a sequential and deterministic Muller automaton
M3.

• Condition 2 defines a property of (I × Σ)-labeled trees, which can be checked by a
deterministic Muller tree automaton M2, simulating M3 along each path. (Note that,
by determinism of M3, the M3-runs on different paths of an (I ×Σ)-labeled tree agree
on the respective common prefix and hence can be merged into one run of M2)

• Applying nondeterminism, a Muller tree automaton B can be built, which checks Con-
dition 1, by guessing a tree s on the input tree t and working on s∧t like M2.

B does not depend on the tree t under consideration. Thus B accepts precisely those trees,
which A does not accept, as was to be shown. �

5.4 Towards the Nonemptiness Problem

Recall: A nonempty regular ω-language contains an ultimately periodic ω-word. We show
a corresponding result for nonempty tree languages, which are recognized by parity tree
automata.

Definition 5.25. A tree t ∈ TωΣ is called regular if it is “finitely generated” in the following
sense: There is a deterministic finite automaton equipped with output, which tells for any
given input w ∈ {0, 1}∗ the label at node w (i.e. the value t(w)).

The automaton is of the form B = (QB, {0, 1}, q0B, δB, fB) with fB : QB → Σ (output
function).

Example 5.26. Consider the deterministic output automaton B. The computation tree of
its runs forms an input-free deterministic tree automaton.



110 CHAPTER 5. TREE AUTOMATA AND THE LOGIC S2S

q1

q2

(a)

(b)

1

0

1

0
0

1

(q2, b) (q1, a) (q0, a)

(q0, a)

(q1, a) (q2, b)

(q0, a)

· · ·

q0

(a)
tree transition

Therefore we can characterize regular trees by tree automata. �

Theorem 5.27. A tree t ∈ TωΣ is regular iff there is a deterministic input-free tree automaton
C with state set Q× Σ such that the Σ-projection of the unique run of C is the tree t.

Proof “⇒”: Given a DFA B = (QB,B, q0B, δB, fB) with output function as above. As seen
in Example 5.26, the construction of the corresponding tree automaton is straightforward.
Define C = (QB × Σ, (q0B, a0),∆) by

a0 := fB(δB(q0, ε)).

Introduce the transition ((q1, a1), (q2, a2), (q3, a3)) to ∆ iff fB(qi) = ai for i = 1, 2, 3, δB(q1, 0) =
q2, and δB(q1, 1) = q3.

“⇐”: For the converse we start with C = (Q×Σ, (q0, a0),∆) and define B = (Q×Σ,B, (q0, a0), δ, f).
In order to construct δ((q, a), 0/1), inspect the unique C-transition ((q, a), (q′, a′), (q′′, a′′)) with
first state (q, a) and set

δ((q, a), 0) := (q′, a′), δ((q, a), 1) := (q′′, a′′).

Finally define: f(q, a) := a. �

The last construction is illustrated in the following example:

Example 5.28. The tree transition

(q1, a)

(q0, a)

(q2, b)

is transformed into a part of the DFA’s transition function: δ((q0, a), 0) 7→ (q1, a), δ((q0, a), 1) 7→
(q2, b). The output function uses the node label of the parent state: f(q0, a) 7→ a. �

Theorem 5.29. (Rabin Basis Theorem) For every parity tree automaton A, the emptiness
problem “Tω(A) = ∅?” is decidable, and any nonempty set Tω(A) contains a regular tree
(whose generating automaton B is obtained from A).

Proof Assume A = (Q,Σ, q0,∆, c) is a parity tree automaton. Proceed to an “input-
guessing” (and input-free) tree automaton A′, which nondeterministically generates an input
tree t and on t works like A. Note that A′ = (Q × Σ, {q0} × Σ,∆′, c′) has possibly several
initial states. We know that T (A) 6= ∅ iff A′ has some successful run.

We now consider the finite game graph GA′ associated to A′. An example of such a game
graph is shown in Figure 5.4. By the Run Lemma (Lemma 5.22, input-free case) we have:



5.5. S2S AND RABIN’S TREE THEOREM 111

A′ has some successful run iff in the parity game over GA′ the player Automaton
wins from some initial position (q0, a).

Whether this holds can be checked effectively.

qa

qI

qd

qI

qd qb

qI

qa qd

qd

qd qb

qb

qb

qb qd
qa

qaqd

qa

qa qI

Figure 5.1: The finite game graph GA′ induces a regular tree when a positional strategy of
Automaton is fixed. Such a positional strategy is sufficient, since this game is a parity game.

We now show the second statement of the theorem: Assume Tω(A) 6= ∅, i.e., that A′

admits a successful run. So in the parity game over GA′ the player Automaton wins from
some initial position (q0, a), by means of a positional strategy.

This strategy induces a deterministic tree automaton as “subautomaton” of A′, where for
each state (q, a) (as game position for Automaton) only one transition exists (as a move of
Automaton) for the continuation of a run. This deterministic tree automaton generates a
regular tree. By construction of A′, this regular tree belongs to the tree language recognized
by A. �

5.5 S2S and Rabin’s Tree Theorem

In this section we will apply the automata theoretic results of the previous section to problems
in logic. First, we will define a logic in which we can specify exactly all the tree languages
which can be recognized by parity tree automata.

Recall the logical system S1S (Section 2.6): It has variables x, y, . . . for natural numbers
X,Y, . . . for sets of natural numbers. Terms are built from variables x, y, . . ., and 0 by
application of ′. Atomic formulas are X(τ), σ < τ, σ = τ for terms σ, τ from which
all S1S-formulas are built using Boolean connectives and quantifiers ∃,∀ over both first- and
second-order variables. Recall that < and =, as well as first order variables can be eliminated,
using the logic S1S0 with atomic formulas X ⊆ Y, Sing(X), Succ(X,Y ), which is equivalent
to S1S.



112 CHAPTER 5. TREE AUTOMATA AND THE LOGIC S2S

Definition 5.30. (S2S) The logical system S2S (the “second-order system of 2 successors”)
is defined over variables x, y, . . . of words over B (single nodes in the binary tree) and over
second order variables X,Y, . . . of sets of words over B (sets of nodes of the binary tree).
Terms are built from variables x, y, . . ., and ε by concatenating with 0 or 1. Examples: ε, x0,
x001, 001. Let σ, τ be terms. Atomic formulas are:

X(τ) (“τ is in X”), σ � τ (“σ is a prefix of τ”), σ = τ (“σ is equal to τ”)

We use Boolean connectives and quantifiers ∃,∀ over both first- and second-order variables
to obtain all formulas in S2S.

Definition 5.31. (Model T2) The structure of the infinite binary tree is T2 = (B∗, ε, S0, S1),
where Si is the i-th successor function: S0(u) = u0, S1(u) = u1.

The theory S2S is the set of S2S-sentences that are true in T2. It is also called the
monadic second-order theory (short: the monadic theory) of the infinite binary tree, denoted
by MTh2(T2).

Example 5.32. We give some examples of the expressiveness of S2S-formulas:
x � y (“node x is prefix of node y”): This can be restated as “all sets X that contain y and
are closed under predecessor, contain x”:

∀X
(
(X(y) ∧ ∀z(X(z0) → X(z)) ∧ ∀z(X(z1) → X(z))) → X(x)

)
.

Chain(X) (“X is linearly ordered by �”):

∀x∀y((X(x) ∧X(y)) → (x � y ∨ y � x)).

Path(X) (“X is a path, i.e. a maximal chain”):

Chain(X) ∧ ¬∃Y (X ⊆ Y ∧X 6= Y ∧ Chain(Y )).

X ⊆ Y :

∀z(X(z) → Y (z)).

X = Y :

∀z(X(z) ↔ Y (z)).

x < y (“x lexicographically preceeds y”):

∃z(z0 � x ∧ z1 � y) ∨ ( x � y ∧ x 6= y).

Finite(X) (“each subset Y of X has a minimal and a maximal element w.r.t. <”):

∀Y ((Y ⊆ X ∧ Y 6= ∅) → (∃y “y is <-minimal in Y ” ∧ ∃y “y is <-maximal in Y ” )).

�

Definition 5.33. S2S-formulas ϕ(X1, . . . , Xn) with free set variables X1, . . . Xn are inter-
preted in expanded structures t = (T2, P1, . . . , Pn). We write

t |= ϕ(X1, . . . , Xn)



5.5. S2S AND RABIN’S TREE THEOREM 113

if t satisfies ϕ. t is identified with the corresponding infinite tree t ∈ Tω
Bn : for each node

w ∈ B∗ we have
t(w) = (c1, . . . , cn) where ci = 1 iff w ∈ Pi.

Given a S2S-formula ϕ(X1, . . . , Xn) the tree language defined by ϕ is the set

T (ϕ) = {t ∈ TωBn | t |= ϕ}.

A tree language T ⊆ Tω
Bn is called S2S-definable if T = T (ϕ) for some S2S-formula ϕ(X1, . . . , Xn).

Lemma 5.34. A tree language is S2S-definable if it is recognizable by a parity tree automaton.

Proof (From Tree Automata to S2S-Formulas) We copy the proof, which shows that Büchi
recognizable ω-languages are S1S-definable. Preparations:

• Use the formula Partition(Y1, . . . , Ym) for expressing that Y1, . . . , Ym define a partition
of the set of all tree nodes.

• For a ∈ Bn, say a = (b1, . . . , bn) we write Xa(t) as an abbreviation for

(b1)X1(t) ∧ (b2)X2(t) ∧ . . . (bn)Xn(t),

where (bi) = ¬ for bi = 0, and bi is empty for bi = 1.

How can one describe the existence of a successful run in S2S? Given the parity tree automaton
A = (Q,Bn, 1,∆, c), with Q = {1, . . . ,m} and coloring c : Q→ {0, . . . , k}, define

ϕ(X1, . . . , Xn) = ∃Y1 . . . Ym
(
Partition(Y1, . . . , Ym) ∧ Y1(ε)

∧ ∀z
( ∨

(i,a,j,j′)∈∆

(Yi(z) ∧Xa(z) ∧ Yj(z0) ∧ Yj′(z1))
)

∧ ∀Z(Path(Z) →
∨

m∈EC

(m is the maximal color occurring

infinitely often on Z))
)

(EC denotes the set of even colors contained in {0, . . . , k}.)
The parity acceptance condition “m is maximal color occurring infinitely often on Z” can

be formalized as follows:

∀x[Z(x) → ∃y(x 6= y ∧ x � y ∧ Z(y) ∧
∨

c(j)=m

Yj(y)]

∧∃x[Z(x) ∧ ∀y(x � y ∧ Z(y) →
∨

m′≤m

∨

c(j)=m′

Yj(y))]

We conclude: A tree language recognizable by a parity tree automaton is S2S-definable. �

Now we prove the converse:

Lemma 5.35. For any S2S-formula ϕ(X1, . . . , Xn) one can effectively construct a parity tree
automaton A which is equivalent to ϕ, that is:

A accepts a tree t iff t |= ϕ.



114 CHAPTER 5. TREE AUTOMATA AND THE LOGIC S2S

Before proving the above lemma we note an important consequence (for the case n = 0).

Theorem 5.36. (Rabin’s Tree Theorem) The theory S2S is decidable.

Proof Consider an S2S-sentence ϕ. By Lemma 5.35 it can be transformed into an input-free
parity tree automaton A such that the unlabelled infinite binary tree T2 satisfies ϕ iff A has
some successful run. Whether there exists a successful run can effectively be checked (see
Rabin’s Basis Theorem (5.29)). �

For the proof of Lemma 5.35, we will use the same idea as in the second half of Section 2.6;
we proceed from S2S to S2S0 by eliminating first order variables, and then to parity tree
automata.

Definition 5.37. The logic S2S0 is built up from the atomic formulas X ⊆ Y , Sing(X) (X
is a singleton set), Succ0(X,Y ) (both sets are singleton sets and the the element in Y is the
0-successor of the element in X), Succ1(X,Y ) (1-successor). S2S0 uses the same Boolean
connectives as S2S, but only second-order quantifiers.

Remark 5.38. (as for S1S): S2S0 is expressively equivalent to S2S.

Proof Lemma 5.35 Show the claim by induction on S2S0-formulas: For any S2S0-formula
ϕ(X1, . . . , Xn) one can effectively construct a parity tree automaton A, which is equivalent
to ϕ.

Induction basis: Atomic formulas X ⊆ Y , Sing(X), Succ0(X,Y ), Succ1(X,Y ).

Induction step: Disjunction, negation, existential quantification suffice.

Atomic Formulas: We use tree labels with two components. The first component indicates
an element of X, while the second component indicates an element of Y .

For the formula X ⊆ Y , consider the tree automaton with the following transitions:

(
0
1

)
/
(
0
1

)
/
(
1
1

)

q0q0

q0

Each of the three transitions ensures that a member of X is also a member of Y .

A tree automaton equivalent to Sing(X) has already been developed in the exercises. That
automaton ensures that there is only one 1-labeled node in the whole tree.

Succ0(X,Y ) and Succ1(X,Y ) are handled in a similar way; as above, look for the singleton
node with the X-element. Then ensure that the 0/1-successor of this node contains the only
Y -element.

Induction Step: Given parity tree automata A1 and A2, which are equivalent (by induction
hypothesis) to ϕ1(X1, . . . , Xn) and ϕ2(X1, . . . , Xn), respectively, one can construct a parity
tree automaton equivalent to

1. ϕ1(X1, . . . , Xn) ∨ ϕ2(X1, . . . , Xn)

2. ¬ϕ1(X1, . . . , Xn)

3. ∃X1ϕ1(X1, . . . , Xn)



5.6. EXERCISES 115

Item 1 is clear by the Union Lemma, item 2 by the Complementation Theorem, item 3 by
the Projection Lemma. �

The concept of equivalence between binary trees and S2S can be expanded to n-branching
trees and SnS.

Definition 5.39. The structure

Tn = ({0, . . . , n− 1}∗, ε, S0, . . . , Sn−1)

is called the infinite n-branching tree. The logical system SnS is defined accordingly.

Theorem 5.40. The monadic second-order theory of Tn is decidable.

Proof method: Introduce parity automata over n-branching trees and copy the proofs from
case n = 2.

Sometimes one may wish to consider quantifiers over finite sets only. For this case there is
another modification of the S2S theory.

Definition 5.41. The system WS2S (weak S2S ) has the same syntax as S2S, but set quan-
tifications range over finite sets only.

The set of sentences true in T2 under this weak interpretation is called the weak monadic
second-order theory of T2, denoted WMTh2(T2).

Theorem 5.42. The weak monadic second-order theory of T2 is decidable.

Proof Rewrite a WS2S-sentence ϕ as a S2S-sentence ϕ′ by replacing

“∃X . . . ” with “∃X(Finite(X) ∧ . . . ”
“∀X . . . ” with “∀X(Finite(X) → . . . ”.

Then ϕ is in WMTh2(T2) iff ϕ′ is in MTh2(T2). �

So far, the results of our treatment have been:

1. S2S and parity tree automata have the same expressive power.

2. The emptiness problem for parity automata is decidable.

3. The monadic second-order theory of the binary tree is decidable.

5.6 Exercises

Exercise 5.1. Let G = (Q,Q0, E) be a game graph and F a Muller condition such that

∀P1, P2 ⊆ Q P1, P2 /∈ F ⇒ P1 ∪ P2 /∈ F .

Find a Rabin condition equivalent to F .
Hint: Use for every accepting loop P in (G,F) a Rabin pair. To find this pair consider the
union of all non-accepting loops contained in P .
Comment: In the lecture the Union Lemma was shown for the Rabin condition. Here we
show a converse statement.



116 CHAPTER 5. TREE AUTOMATA AND THE LOGIC S2S

Exercise 5.2. Consider the following tree languages:

(a) T1 := {t ∈ Tω{a,b} | t contains exactly one node labeled b}

(b) T2 := {t ∈ Tω{a,b} | on every path in t there is at most one node labeled b}.

Construct Büchi and Muller tree automata recognizing T1, and deterministic Büchi and Muller
tree automata recognizing T2.

Exercise 5.3. (a) Prove Lemma 16.3 of the lecture: Given a parity tree automaton recog-
nizing a tree language T over Γ×Σ one can construct a parity tree automaton recognizing
projΣ(T ).

(b) Given a parity tree automaton A construct an input-free tree automaton A′ such that

T (A) 6= ∅ ⇐⇒ A′ has some successful run.

Exercise 5.4. Show in detail that a tree is regular iff it contains only finitely many non
isomorphic subtrees.
Notation: The subtree of t rooted a node w is the tree t �w (u) = t(wu).

Exercise 5.5. Let T be the set of trees over Σ = {a, b} such that for every b-labeled node u
there is another b-labeled node v 6= u with prefix u (so v is located in the subtree rooted at
u).

(a) Show that T is recognized by a parity tree automaton (perhaps using the facts on parity
tree automata shown in the lecture).

(b) Show that T is recognized by a Büchi tree automaton.

Exercise 5.6. Consider the lexicographic order < over the nodes of T2, i.e. over words from
{0, 1}∗.

(a) Show that the order < contains a dense subset X without first and last element, i.e.

∀x ∈ X ∃y ∈ X x < y

∀x ∈ X ∃y ∈ X y < x

∀x ∈ X ∀y ∈ X
(
x < y → ∃z ∈ X(x < z < y)

)

(b) Present a set of nodes ordered by < in the following way:

• • • • . . . . . . • • • •

Exercise 5.7. (a) Construct a parity tree automaton which checks for input trees over
{0, 1}2 whether the S2S0-formula Succ0(x1, x2) is satisfied.

(b) Find a sentence φ which is true in T2 under the S2S-interpretation, but false under the
WS2S-interpretation. Find also a sentence ψ for which the converse is true. (It is not
allowed to choose ψ equivalent to ¬φ.)



Chapter 6

Decidability of Monadic Theories

In this section we will consider decidability properties of theories over structures other than
the binary tree.

Plan:

1. Preparation: An undecidable monadic theory.

2. The monadic theory of a pushdown transition graph.

3. Prefix-recognizable and automatic graphs (survey).

4. Branching-time logics over Kripke structures.

Definition 6.1. The infinite grid is the structure

G2 = (N × N, (0, 0), s1, s2),

where s1(i, j) = (i+ 1, j), s2(i, j) = (i, j + 1).

00 01 02 . . .

10 11 12 . . .

20 21 22 . . .

Theorem 6.2. The monadic second-order theory of the infinite grid is undecidable.

Preparation for the proof: We can express

S+
2 (x, y) :⇔ s

(i)
2 (x) = y for some i > 0

by saying “each set containing s2(x) and closed under right successors contains y”.



118 CHAPTER 6. DECIDABILITY OF MONADIC THEORIES

Proof of Theorem 6.2 The proof is a reduction of the halting problem for Turing machines
to the decidability problem for the infinite grid: For any Turing machine M construct a
sentence ϕM of the monadic second-order language of G2, such that

M halts when started on the empty tape iff G2 |= ϕM .

We first need to describe Turing machine states in terms of the infinite grid. Without loss of
generality we assume that M works on a left-bounded tape.

A halting computation of M can be coded by a finite sequence of configuration words
C0, C1, . . . , Cm.

We can arrange the configurations row by row in a right-infinite rectangular array:

q0 a0 a0 a0 a0 a0 a0 . . .
a1 q1 a0 a0 a0 a0 a0 . . .
q0 a1 a2 a0 a0 a0 a0 . . .
a3 q2 a2 a0 a0 a0 a0 . . .

where a0, . . . , an are the tape symbols (a0 is the blank) q0, . . . , qk are the states of M , and qs
is a special halting state. Now we need to describe the properties of an M -run in G2-formulas.

The sentence ϕM will express over G2 the existence of an array of configurations that
corresponds to a terminating M -run.

We use set variables X0, . . . , Xn, Y0, . . . , Yk. Xi collects the grid positions where ai occurs,
Yi collects the grid positions where state qi occurs.

ϕM : ∃X0, . . . , Xn, Y0, . . . , Yk(Partition(X0, . . . Yk)

∧ “the first row is the initial M -configuration”

∧ “a successor row is the successor configuration of the preceding one”

∧ “at some position the halting state is reached”)

In detail, the subformulas are expressed as follows:

• “the first row is the initial M -configuration”:

Y0((0, 0)) ∧ ∀x(S+
2 ((0, 0), x) → X0(x)).

• “at some position the halting state is reached”:

∃xYs(x).

• “a successor row is the successor configuration of the preceding one”: Use a formula
ψ(x) that states “the letters on positions x and three next to the right and on the four
positions below are compatible with M”. Write a disjunction over all 8-tuples of letters,
which are compatible with M . �



6.1. TOWARDS MORE GENERAL GRAPHS 119

6.1 Towards More General Graphs

Are there interesting infinite graphs other than T2 which have a decidable monadic second-
order theory? We present such a class of graphs: the transition graphs of pushdown automata.

Definition 6.3. A pushdown system is an automaton P = (P,Σ,Γ, p0, γ0,∆) where

• P is a finite set of states, p0 the initial state,

• Σ the input alphabet, Γ the stack alphabet, γ0 the initial stack symbol,

• ∆ a finite set of transition rules pγ →a p
′u

with γ ∈ Γ, u ∈ Γ∗, a ∈ Σ and p, p′ ∈ P

A configuration is a word pw ∈ PΓ+. These are transformed by transition rules as usual.
We define the pushdown graph generated by P as the structure G = (V, v0, (Ea)a∈Σ) where

• v0 is the configuration p0γ0,

• (pw, p′w′) ∈ Ea iff w = γw0, w
′ = uw0 for a transition rule pγ →a p

′u ∈ ∆,

• V is the set of configurations reachable from v0 by applying Ea-transitions for a ∈ Σ.

Example 6.4. Consider the context free language L = {anbcn | n ≥ 0}. The stack alphabet
for the corresponding pushdown automaton is Γ = {γ0, γ}. We obtain the pushdown graph:

q0γ0
a

b

q0γγ0
a

b

q0γγγ0
a

b

· · ·

q1γ0 q1γγ0c
q1γγγ0c

· · ·
c

�

Example 6.5. Consider the language generated by the productions S → () | [ ] | (S) | [S] |
SS. In this case, the pushdown graph has the structure of a tree:

q((γ0

)

· · ·

q(γ0

)

(

[

q[(γ0
] · · ·

qγ0

(

[

q([γ0

)

· · ·

q[γ0

]

(

[

q[[γ0
] · · ·

�



120 CHAPTER 6. DECIDABILITY OF MONADIC THEORIES

Definition 6.6. The monadic second-order language over pushdown graphs has variables
x, y, . . . for vertices, X,Y, . . . for sets of vertices.

Atomic formulas are: Ea(x, y), x = y, Vp(x) (Vp(x) means that the configuration x has
state p). Write E(x, y) for

∨
a∈ΣEa(x, y).

Example 6.7. Example sentence: “there is a cycle of three vertices (configurations), where
state p occurs with an outgoing a-labelled edge”:

∃x∃y∃z
(
x 6= y ∧ y 6= z ∧ z 6= x ∧ Vp(x) ∧ Ea(x, y) ∧ E(y, z) ∧ E(z, x)

)

�

Theorem 6.8. (Theorem of Muller and Schupp) The monadic second-order theory of any
pushdown graph G is decidable.

Proof We rewrite a given sentence ϕ as an SnS-sentence ϕ′ such that

G |= ϕ iff Tn |= ϕ′

(We “interpret G in Tn” by monadic formulas). Then the right-hand side can be checked.
Important note: We write the tree nodes w ∈ {0, . . . , n − 1}∗ in reverse order: The first

letter of a word is the last from the root.
Translation to SnS-formula:

(x = y)′ := x = y

E′
a(x, y) :=

∨

(pγ→ap′u)∈∆

∃z(x = pγz ∧ y = p′uz)

V ′
p(x) := V (x) ∧ ∃zx = pz

E′(x, y) :=
∨

a∈Σ

(Ea(x, y))
′

V (x) := ∀X((X(q0γ0) ∧ ∀y∀z(X(y) ∧ E′(y, z) → X(z))) → X(x))

(¬ϕ)′ := ¬ϕ′

(ϕ ∧ ψ)′ := ϕ′ ∧ ψ′

(∃xϕ)′ := ∃x(V (x) ∧ ϕ′)(∀xϕ)′ := ∀x(V (x) → ϕ′)

(∃Xϕ)′ := ∃X(“X ⊆ V ′′ ∧ ϕ′)(∀Xϕ)′ := ∀X(“X ⊆ V ′′ → ϕ′)

�

Example 6.9. ϕ: “there is a cycle of three vertices (configurations) containing state p with
an outgoing a-labelled edge”. Then ϕ′: ∃x∃y∃z(V (x) ∧ V (y) ∧ V (z) ∧ x 6= y ∧ y 6= z ∧ z 6= x
∧V ′

p(x) ∧ E′
a(x, y) ∧ E′(y, z) ∧ E′(z, x)). �

The result of Muller and Schupp’s Theorem can be generalized to prefix rewrite rules: The
pushdown graphs have bounded outdegree and bounded indegree. We present a class of
graphs where the degrees of vertices may be infinite.

Liberalize the rewrite rules pγ →a p
′u by

• dropping the distinction between states and stack letters,



6.2. UNRAVELLING STRUCTURES 121

• allowing several left-hand sides and several right-hand sides in one rule.

Use a single stack alphabet Γ (and cancel P ).

Definition 6.10. A prefix rewrite rule for a is of the form

U1 →a U2,

where U1, U2 ⊆ Γ∗ are regular sets of words.
A prefix rewrite system is of the form P = (Σ,Γ,∆), where ∆ is a finite set of prefix

rewrite rules for letters a ∈ Σ.

Notice that each prefix rewrite rule U1 →a U2 is finitely representable by two finite automata
recognizing U1, U2.

We obtain an induced rewrite relation Ea over Γ∗:

Ea(w,w
′) :⇔ w = u1w0 ∧ w′ = u2w0 for some u1 ∈ U1, u2 ∈ U2.

Definition 6.11. A graph G = (V, (Ea)a∈Σ) is prefix recognizable if there is a prefix rewrite
system P = (Σ,Γ,∆) such that

• V ⊆ Γ∗ is a regular set of words,

• each edge relation Ea is induced by the rules for a of the system ∆.

Example 6.12. Γ = {0}, Rewrite rules: ε→a 0, 0+ →b ε, V = 0∗.

ε
a

0
b

a

00
a

b

b

000
a

b

b

b

· · ·

�

For prefix recognizable graphs we obtain the following result:

Theorem 6.13. (Caucal’s Theorem) The monadic second-order theory of a prefix-recognizable
graph is decidable.

Therefore: Given such a graph G one can decide by an algorithm whether a given monadic
second-order sentence ϕ is true in G or not.

6.2 Unravelling Structures

Idea: Given a transition system with designated initial state, unravel it to obtain its compu-
tation tree.

Temporal logics of branching time and certain program logics will serve to express condi-
tions on this computation tree.

Example 6.14. (for a pointed Kripke structure (M, s)):



122 CHAPTER 6. DECIDABILITY OF MONADIC THEORIES

s0

s1

s2

(
1
1

)

(
0
1

)

s0

M : t(M,s0) :
(
1
0

)

s3
(
0
0

)

s2 s3 s1

s1 s2

•

�

We will follow up on this idea and do the following:

1. Define the computation trees from finite pointed transition graphs.

2. Introduce the Branching-time logic CTL∗ (Emerson, Sistla 1984), and show the
decidability of the CTL∗-model-checking problem via Rabin’s Tree Theorem.

3. Compare CTL∗ with a restricted version CTL and analyze the complexity of CTL-
model-checking.

4. Introduce the propositional dynamic logic PDL and solve its satisfiability problem.

5. Unravel arbitrary relational structures and obtain the Muchnik-Walukiewicz Theorem.

Recall the notion of a Kripke structure: Given state properties p1, . . . , pn. A Kripke structure
over p1, . . . , pn is of the form M = (S,R, λ) with

• a finite set S of “states”,

• a “transition relation” R ⊆ S × S,

• a “labelling function” λ : S → 2{p1,...,pn}, associating with s ∈ S the set of those pi
which are assumed true in s.

Write λ(s) as a bit vector (b1, . . . , bn) with bi = 1 iff pi ∈ λ(s). A pointed Kripke structure
(M, s) has s ∈ S as initial state.

Example 6.15. (Computation tree)

s0

s1

s2

(
1
1

)

(
0
1

)

s0

M : t(M,s0) :
(
1
0

)

s3
(
0
0

)

s2 s3 s1

s1 s2

•

(
1

1

0

) (
1

0

1

)

(
0

0

0

)(
1

1

0

)(
1

0

0

)(
1

0

1

)

(
1

1

1

)



6.2. UNRAVELLING STRUCTURES 123

The first component of the tree-labels indicate whether the respective node is reachable. The
other components represent the atomic values of the vertex of the Kripke structure represented
by the tree node. �

Preparation for the general definition of computation trees: Let (M, s0) be a pointed Kripke
structure,

M = (S,R, λ), |S| = m, λ : S → 2{p1,...,pn}.

We represent a finite path s0 . . . sr by a finite path through Tm.
For each s ∈ S we assume the targets of the out-edges (s, s′) ∈ R to be ordered as s′1, . . . s

′
k

with k ≤ m; we speak of the first, second, . . . , k-th successor of s.
Each initial path segment (s0, s1, . . . , sr) induces a sequence ε, (i1), (i1i2), . . . , (i1 . . . ir) of

nodes of Tm such that ij = k iff sj is the k-th successor of sj−1.
The computation tree of (M, s0) will be a {0, 1}n+1-valued m-branching tree t = t(M, s0).

Definition 6.16. For a pointed Kripke structure (M, s0),

M(S,R, λ), |S| = m, λ : S → 2{p1,...,pn}

the computation tree of (M, s0) is a {0, 1}n+1-valued m-branching tree t with

• t(ε) = (1, λ(s0)),

• t(i1 . . . ir) = (0, . . . , 0) if i1 . . . ir is not induced by an initial path segment starting in
s0,

• t(i1 . . . ir) = (1, b1, . . . , bn) if i1 . . . ir is induced by an initial path segment s0, . . . , sr
starting in s0 and ending in sr with λ(sr) = (b1, . . . , bn).

Note that we can limit the branching the in the definition of a computation tree above to the
maximal out-degree of a vertex of M. This was done in Example 6.15.

Preparation for the definition of CTL∗: CTL∗-formulas over p1, . . . , pn are introduced in two
versions: as state formulas and as path formulas. Path formulas are interpreted in paths
starting in tree nodes u, whereas state formulas are interpreted in subtrees at nodes u.

A state formula is also a path formula (then speaking about the first node u of a path).

Definition 6.17. (Syntax of CTL*)

• Each atomic formula pi is a state formula.

• If ϕ and ψ are state formulas, so are

¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, ϕ→ ψ.

• If ϕ is a path formula, then Eϕ and Aϕ are state formulas.

• A state formula is also a path formula.

• If ϕ and ψ are path formulas, then so are

¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, Xϕ, Gϕ, Fϕ, ϕUψ.



124 CHAPTER 6. DECIDABILITY OF MONADIC THEORIES

Example 6.18. E G(p1 → E XA(GFp2∨GFp3)) says: there is a path such that at any point
u of that path, where p1 holds, a path starts, which, at the second node v, has the following
property: all paths starting in v have infinitely many points where p2 holds or have infinitely
many points where p3 holds. �

Definition 6.19. (Semantics of CTL*) We define the semantics of state formulas in subtrees
t|u, the semantics of path formulas in paths t|π for paths π starting in some node u:

t|u |= pi iff component i of t(u) = 1
t|u |= ¬ϕ iff not t|u |= ϕ (similarly for ∧, ∨, →)
t|u |= Eϕ iff exists path π starting in u with t|π |= ϕ
t|u |= Aϕ iff for all paths π starting in u: t|π |= ϕ
t|π |= pi iff for the first node u of t|π: t|u |= pi
t|π |= ¬ϕ iff not t|π |= φ (similarly for ∧, ∨, →)
t|π |= Xϕ iff for the path π1: t|π1 |= ϕ (similarly for G,F,U)

Here πi is π from the i-th node onwards (counting from 0).

The Fragment CTL The Computation Tree Logic CTL allows path quantifiers E,A only
in connection with a single LTL-operator. All CTL-formulas are state formulas.

Definition 6.20. (Syntax and Semantics of CTL)

• p1, . . . , pn are CTL-formulas.

• if ϕ,ψ are CTL-formulas, then so are

¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, ϕ→ ψ.

• if ϕ,ψ are CTL-formulas, then so are

EXϕ, EFϕ, EGϕ, E(ϕUψ), AXϕ, AFϕ, AGϕ, A(ϕUψ).

Semantics are derived from CTL∗.

Example 6.21. (CTL examples)

EFp: exists a path, where at some
point p is true.

EGp: exists a path, where p is al-
ways true.

p
p

AFp: in all paths, p is true at some
point.

AXp: at all successors of the current
state, p is true.

p

p



6.2. UNRAVELLING STRUCTURES 125

ApUq: in all paths p is true until q is true. The boxed states fulfill AXp, whereas the circled
states fulfill ApUq:

pp

q

p, q

�

When comparing the expressive power of the logics, which we have introduced so far, we see
that CTL* is superior to both LTL and CTL, and CTL and LTL are not comparable. For
instance the CTL-formula AG EFp is not expressible in LTL. The LTL-formula FGp (i.e. in
CTL∗: AFGp) is not expressible in CTL.

We will now treat the model-checking-problem for CTL and CTL*.

CTL*-Model-Checking Problem The CTL∗-model-checking problem is the following
question:

Given a pointed finite Kripke structure (M, s0) and a CTL∗-formula ϕ, does
t(M, s0) satisfy ϕ? (Formally: t(M, s0) |= ϕ?)

The LTL-model-checking problem is a special case:

Given a pointed finite Kripke structure (M, s0) and an LTL-formula ψ, consider
the CTL∗-formula ϕ := Aψ and check whether t(M, s0) |= ϕ.

Theorem 6.22. The CTL∗ model-checking problem is decidable

We use a reduction to SmS if M has m states. A more direct proof will show a much better
complexity bound (namely singly exponential).

Proof idea: From (M, s0) find an SmS-formula ψ(M,s0)(X0, . . . , Xn) which describes the
{0, 1}n+1-valued tree t(M, s0). Translate the CTL∗-formula ϕ to a corresponding SmS-
formula ϕ′(X0, X1, . . . Xn).

Then check whether

Tm |= ∃X0 . . . Xn (ψ(M,s0)(X0, . . . , Xn) ∧ ϕ′(X0, X1, . . .Xn)).

Example 6.23. Reconsider the Kripke structure and its computation tree of Example 6.15.
We will use predicates Y0, Y1, Y2, Y3 for the states s0, s1, s2, s3 and the predicate Z for the
newly introduced dummy state •.



126 CHAPTER 6. DECIDABILITY OF MONADIC THEORIES

s0

s1

s2

(
1
1

)

(
0
1

)

s0

M : t(M,s0) :
(
1
0

)

s3
(
0
0

)

s2 s3 s1

s1 s2

•

(
1

1

0

) (
1

0

1

)

(
0

0

0

)(
1

1

0

)(
1

0

0

)(
1

0

1

)

(
1

1

1

)

•

Describing t(M, s0): We use the Kripke structure (M, s0) as an automaton that generates
the regular tree t(M, s0) (in this example over the unlabelled binary tree T2).

In our example t(M, s0) is described by

ψ(M,s0)(X0, X1, X2) := ∃Y0, . . . , Y3, Z(Partition(Y0, . . . , Y3, Z) ∧ Y0(ε)

∧ ∀x[(Y0(x) → X0(x) ∧X1(x) ∧X2(x) ∧ Y1(s0(x)) ∧ Y2(s1(x)))

∧ (Y1(x) → X0(x) ∧X1(x) ∧ ¬X2(x) ∧ Y2(s0(x)) ∧ Y3(s1(x)))

∧ (Y2(x) → X0 ∧ ¬X1(x) ∧X2(x) ∧ Y1(s0(x)) ∧ Z(s1(x)))

∧ (Y3(x) → X0(x) ∧ ¬X1(x) ∧ ¬X2(x) ∧ Y3(s0(x)) ∧ Z(s1(x)))

∧ (Z(x) → ¬X0(x) ∧ ¬X1(x) ∧ ¬X2(x) ∧ Z(s0(x)) ∧ Z(s1(x)))]

Translating CTL* to SmS: We have to express a CTL∗-formula as an SmS-formula. We need
an auxiliary SmS-formula Path′(X, y) saying “X is a path starting in node y”. Formally this
can be written as

Path′(X, y) :=Chain(X) ∧X(y) ∧ ∀x(x � y ∧ x 6= y → ¬X(y))

∧ “X is maximal with these properties”.

Translation Example: ϕ = E GF(p1 ∧ E Gp2) is translated into

ϕ′(X0, X1, X2) = ∃X(Path(X) ∧X ⊆ X0 ∧ ∀x(X(x) → ∃y(X(y) ∧ x � y ∧X1(y)

∧ ∃Y (Path′(Y, y) ∧ Y ⊆ X0 ∧ ∀z(Y (z) → X2(z)))))).

�

Example 6.24. Example formula ϕ of CTL∗: E G(p1 → E XA(GFp2 ∨ GFp3)).

Then

ϕ′(X0, X1, X2) := ∃X[Path(X) ∧X ⊆ X0 ∧ ∀x(X(x) ∧X1(x) →
(∃Y (Path′(Y, x) ∧ Y ⊆ X0 ∧ ∃y(Y (y) ∧ (y = s0(x) ∨ y = s1(x)) ∧
∀Z(Path′(Z, y) ∧ Z ⊆ X0 →
∀z(Z(z) → ∃z′(Z(z′) ∧ z � z′ ∧X2(z

′)) ∨
∀z(Z(z) → ∃z′(Z(z′) ∧ z � z′ ∧X3(z

′)))))))))]

is the equivalent formula in S2S. �



6.3. PROPOSITIONAL DYNAMIC LOGIC 127

Comments on CTL-Model-Checking CTL-Model-Checking for a given Kripke structure
(M, s0) can be done by a simple labeling procedure on M, avoiding the reference to t(M, s0).

Model-checking ϕ in the structure M = (S,R, λ): For the subformulas ψ of ϕ in increasing
complexity: Label those vertices s ∈ S with ψ where (M, s) |= ψ holds. Finally check whether
s0 has label ϕ.

Example 6.25. (Examples of CTL Labeling Rules)

• If ψ = ψ1 ∧ ψ2 then label s with ψ if
s has already labels ψ1 and ψ2 (similarly for other Boolean connectives).

• If ψ = EXψ1 then label s with ψ if
some edge (s, s′) ∈ R exists where s′ has already label ψ1.

• If ψ = Eψ1Uψ2 then label all s with ψ
from which there is a finite path labeled ψ1 up to a vertex labeled ψ2.

• If ψ = AFψ1 then label all s
from which all paths meet a vertex labeled with ψ1.

�

Summary

• CTL∗ and CTL are defined with reference to the computation trees of transition systems.

• Decidability of model-checking CTL∗ follows from a reduction to SmS.

• CTL-model-checking is possible by a (polynomial-time) labelling procedure over the
given Kripke structure.

6.3 Propositional Dynamic Logic

Aim: Solve the satisfiability problem for a basic program logic. We will use the Propositional
Dynamic Logic PDL (Harel 1979, Fischer-Ladner 1979).

Idea: Merge Boolean logic with (nondeterministic) regular programs, interpreted over
Kripke structures (finite or countable). Boolean logic can express properties of states. A
nondeterministic program defines a relation R between states, consisting of the pairs (s, t)
such that some program computation leads from s to t.

Definition 6.26. (Regular Programs) Regular programs are constructed from atomic pro-
grams a1, . . . , an using

• nondeterministic branching (union),

• composition (concatenation),

• iteration (Kleene star),

• tests.



128 CHAPTER 6. DECIDABILITY OF MONADIC THEORIES

PDL-statements may involve two kinds of objects:

• programs α

• formulas ψ

Example 6.27. Example of a formula with both components: 〈α〉ψ. (M, s0) |= 〈α〉ψ means:
“some α-computation from state s0 reaches a state where ψ holds”. �

Definition 6.28. (PDL Syntax) Let Φ0 = {p1, . . . , pm} be a set of atomic formulas, and
Ψ0 = {a1, . . . , an} be a set of atomic programs. Then the following formula formation rules
apply:

• If ϕ,ψ are formulas, so are ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, ϕ→ ψ.

• If α, β are programs, so are α ∪ β, α;β, α∗.

• If ϕ is a formula and α a program then 〈α〉ϕ and [α]ϕ are formulas.

• If ϕ is a formula then ϕ? is a program.

Example 6.29. Idea for using tests: The program ϕ? leads from state s to state s if ϕ is
satisfied in s, otherwise terminates. Simulation of “if-then-else” and “while”

• if ϕ then α else β: (ϕ?;α) ∪ (¬ϕ?;β)

• while ϕ do α: (ϕ?;α)∗;¬ϕ?

Notation: Often one skips the “;”

�

Definition 6.30. (Semantics of PDL) Given a Kripke structure (M, s), the meaning of a
formula ϕ is a set of states s (those where the formula is true). Notation: (M, s) |= ϕ.

The meaning of a program α is a set of pairs of states (the pairs (s, t) such that a com-
putation of α leads from s to t). Notation: s→α t.

We consider Kripke structures M = (S,R1, . . . Rm, λ) with Ri ⊆ S × S and λ : S →
2{p1,...pn}, where (s, t) ∈ Ri iff some ai-computation leads from s to t.

(M, s) |= pi iff pi ∈ λ(s)
(M, s) |= ¬ϕ iff not (M, s) |= ϕ

similarly for ∧,∨,→
(M, s) |= 〈α〉ϕ iff exists t with s→α t and (M, t) |= ϕ
(M, s) |= [α]ϕ iff for all t with s→α t: (M, t) |= ϕ
s→ai t iff (s, t) ∈ Ri
s→α∪β t iff s→α t or s→β t
s→α;β t iff exists s′ with s→α s

′ and s′ →β t
s→α∗ t iff exists s0, . . . , sk with s0 = s, sk = t

and si →α si+1 for 0 ≤ i < k
s→ϕ? t iff (M, s) |= ϕ and s = t



6.3. PROPOSITIONAL DYNAMIC LOGIC 129

Example 6.31. Define a Kripke structure M: State set S: N (value domain of program
variable x). p is defined true only in state 0, a leads from state i+ 1 to i (for i > 0).

Consider α = while ¬p do a, and ϕ := 〈α〉p (which can also be written as (¬p?; a)∗; p).
Then for each state i: i→α 0

(M, i) |= ϕ.

�

Example 6.32. Use atomic propositions p, q and atomic programs a, b.

Formulas: Kripke structure:
p→ [a; b]¬p pq

1
¬pq
2a

b

3
p¬q

a

b

4
¬p¬q

p→ 〈a〉¬p
p→ [(ab∗a)∗]p

In this Kripke structure all given formulas are true. Starting on the left side (state 1 or 3)
we can follow the computations given by [a; b], 〈a〉, and [(ab∗a)∗] and verify the respective
formulas. �

Definition 6.33. (Satisfiability Problem) A PDL-formula ϕ is satisfiable if some model
(M, s) exists with (M, s) |= ϕ. The satisfiability problem for PDL-formulas is then: Given a
PDL-formula ϕ, decide whether it is satisfiable.

Approach for the solution:

1. Note that tree models suffice

2. Describe models by {0, 1}k-labelled binary trees for appropriate k

3. Translate PDL-formulas to S2S-formulas ϕ(X1, . . . , Xk)

4. Decide truth of ∃X1 . . . Xkϕ(X1, . . . , Xk)

Lemma 6.34. (Tree Model Lemma) For M = (S,R1, . . . , Rn, λ) define the tree model M+ =
(S∗, R∗

1, . . . , R
∗
n, λ

∗), where

• S∗ is the set of finite sequences of S-states,

• R∗
i = {((s1 . . . sr), (s1 . . . sr, sr+1)) | (sr, sr+1) ∈ Ri},

• λ∗(s1 . . . sr) := λ(sr).

Then:
(M, s) |= ϕ iff (M+, s) |= ϕ.

Coding Tree Models in T2: The Kripke structures under consideration may be infinite. There-
fore identify states with natural numbers. The tree models have states (i1 . . . ir) for r ≥ 0.
We code the tree model state (i1 . . . ir) by the T2-node 1i10 . . . 1ir0 and define

Kj := {1i10 . . . 1ir0 | pj ∈ λ(ir)},

Lj := {1i10 . . . 1ir0 | (ir−1, ir) ∈ Rj}.



130 CHAPTER 6. DECIDABILITY OF MONADIC THEORIES

Definition 6.35. (Tree Model Description) An arbitrary tree model in T2 (for the signature
{p1, . . . , pm, a1, . . . an}) is given by

• a set K of nodes of the form 1i10 . . . 1ir0 which is closed under taking prefixes,

• for j = 1, . . . ,m subsets Kj of K (for the states satisfying pj),

• for j = 1, . . . , n subsets Lj of K (for the states (i1 . . . ir) where ((i1 . . . ir−1), (i1 . . . ir))
is in R∗

j .

Lemma 6.36. There is a S2S-formula µ(X,X1, . . . , Xm, Y1, . . . , Yn), which describes the pos-
sible tree models over T2.

Example 6.37. ϕ = [(a1; a1)
∗; p1?]p2 is translated to “for each finite path in X which, except

the start vertex, consists of an even number of nodes in Y1 and ends in a node of X1, the last
node also belongs to X2”. �

Lemma 6.38. (Translation Lemma) For any PDL-formula ϕ there is a S2S-formula

ϕ′(x,X,X1, . . . , Xm, Y1, . . . , Yn)

such that for any tree model M in T2 and any state u of it we have

(M, u) |= ϕ iff (T2, u,K,K1, . . . ,Km, L1, . . . , Ln) |= ϕ′(x,X,X1, . . . , Xm, Y1, . . . , Yn).

Here K,K1, . . . ,Km, L1, . . . , Ln are the sets coding M.

Corollary 6.39. The PDL-sentence ϕ is satisfiable iff the S2S-sentence

∃X,X1, . . . , Xm, Y1, . . . , Yn(
µ(ε,X,X1, . . . , Xm, Y1, . . . , Yn) ∧ ϕ′(ε,X,X1, . . . , Xm, Y1, . . . , Yn)

)

is true in T2.

Thus the satisfiability of PDL-formulas is decidable.

6.4 Tree Iteration

This section is concerned with a more general result on the decideability of monadic formulas.
The idea of unravelling Kripke structures is extended to arbitrary relational structures.

Example 6.40. We can describe a binary tree by means of the structure M = ({l, r}, Pl, Pr).
The predicates Pl and Pr are true for the left / right successor of a node represented by a
word over {l, r}.

ε

l r

ll lr rl rr

lll llr . . .



6.4. TREE ITERATION 131

The binary tree is obtained by iterating (i.e. copying) parent nodes and adding letters l and
r. �

Idea for the translation of monadic formulas If there is a computable function that
transforms a given formula ϕ into a formula ϕ̂ such that ϕ is fulfilled by the iterated structure
(in this case the binary tree) iff ϕ̂ is fulfilled by the original structure, then we could obtain
Rabin’s Theorem very easily. Checking a formula in the binary tree would amount to checking
a formula in a two-element-structure.

ε

l r

ll lr rl rr

lll llr . . .

|= ϕ ⇔ l r |= ϕ̂

Definition 6.41. (Tree Iteration of Arbitrary Structures) Consider any relational structure

M = (M,P1, . . . Pm, R1, . . . , Rn),

where the Pi are subsets of M and the Ri are binary relations over M . The tree iteration of
M is the structure

M# = (M∗, SM , P#
1 , . . . P

#
m , R

#
1 , . . . , R

#
n ),

where M∗ is the set of finite sequences over M and for x, y ∈M∗

• SM (x, y) iff x∧m = y for some m ∈M ,

• P#
i (x) iff there are z ∈M∗,m ∈M with x = z∧m and Pi(m),

• R#
i (x, y) iff there are z ∈M∗,m,m′ ∈M such that x = z∧m, y = z∧m′, Ri(m,m

′).

Theorem 6.42. (Shelah-Stupp-Theorem (1975)) Let φ be a monadic second-order formula.
There is a computable function ϕ 7→ ϕ̂ such that for every structure M:

M# |= ϕ iff M |= ϕ̂.

Corollary 6.43. If the monadic second-order theory of M is decidable, so is the monadic
second-order theory of M#

Corollary 6.44. (Rabin’s Tree Theorem) The monadic second-order theory of the infinite
binary tree is decidable.

The idea of tree iteration can be extended to the unravelling of arbitrary relational structures.
We will define this within the framework of tree iteration after an introductory example.

Example 6.45. (Extended Tree Iteration)



132 CHAPTER 6. DECIDABILITY OF MONADIC THEORIES

�

The central idea of the extended tree iteration is to keep the information from which ances-
tor the current copy of a structure originated. This is neccessary to be able to define the
unravelling of a graph as defined before inside the structure one gets when applying the tree
iteration to the graph. For this purpose the predicate C (clone) is introduced.

Definition 6.46. Let the extended tree iteration of M be the structure

M+ = (M∗, SM , CM , P#
1 , . . . P

#
m , R

#
1 , . . . , R

#
n ),

where CM = {x∧m∧m | x ∈M+,m ∈M} is the clone predicate.

Theorem 6.47. (Muchnik-Walukiewicz-Theorem) Let φ be a monadic second-order formula.
There is a computable function ϕ 7→ ϕ̂ such that for every structure M

M+ |= ϕ iff M |= ϕ̂.

This theorem entails important corollaries.

Corollary 6.48. If the monadic second-order theory of M is decidable, so is the monadic
second-order theory of M+

Corollary 6.49. (Case of Kripke structures) For every monadic second-order sentence ϕ one
can construct a monadic second-order sentence ϕ̂ such that for every Kripke structure M

t(M) |= ϕ iff M |= ϕ̂.

6.5 Exercises

Exercise 6.1. Consider the first example of a pushdown graph G of the lecture, generated
by the pushdown rules

q0γ0 →a q0γγ0 q0γ →a q0γγ

q0γ0 →b q1γ0 q0γ →b q1γ

q1γ →c q1

(a) Indicate the nodes of G consisting of words up to length 4 in the tree T4 where we identify
0, . . . , 3 with γ0, γ1, q0, q1 and write the configuration words in reverse order (as in the
lecture).



6.5. EXERCISES 133

(b) Give an S4S formula V (x) defining the regular set (q0 + q1)γ
∗γ0 of nodes of the config-

uration graph. The successors of a node x may be written as q0x, q1x, γx and γ0x, as in
P (x) = ∃z x = γγ0z defining the language P = γγ0{γ0, γ, q0, q1}∗.

(c) Consider the sentence

φ := ∃X
(
X(q0γγ0) ∧ ∀x

(
X(q0γx) → X(q0γγx)

))

which states that there is a set which contains q0γγ0 and is closed under the second a-rule.
Using V (x) translate the sentence φ into an S4S-sentence φ′ following the translation rules
from the lecture.



134 CHAPTER 6. DECIDABILITY OF MONADIC THEORIES



Chapter 7

Infinite Games on Infinite Graphs

7.1 Gale-Stewart Games

As Chapter 4, this chapter is concerned with infinite games, but in this instance we are going
to extend two aspects of infinite games:

• First aim: Generalization of the winning conditions (beyond LTL, S1S, and automata
theoretic winning conditions).

• Second aim: Study of games over infinite graphs. We use a standardized infinite game
graph: the infinite tree, using the root as the start vertex of plays.

• Side aspect: Studying the history of the theory of infinite games will direct us in devel-
oping algorithmic approaches. The roots of this theory can be traced back to

Cantor (set theory) around 1880,
Banach, Mazur, Mycielski and others in the 1920’s,
Gale and Stewart 1953, Martin 1975.

We will first introduce games over infinite graphs. Consider the infinite binary tree as the
game graph.

00 01 10 11

0 1

ε

Player 0 starts plays at the root node. As every vertex is uniquely determined by a word over
{0, 1}, every play is an ω-word over {0, 1}.

Definition 7.1. (Gale-Stewart Games) For any ω-language L ⊆ {0, 1}ω we introduce a Gale-
Stewart game Γ(L). The game graph G = (Q,Q0, E) is the infinite binary tree.



136 CHAPTER 7. INFINITE GAMES ON INFINITE GRAPHS

G = (Q,E), Q = Q0 ∪̇ Q1

Q0 = {w ∈ {0, 1}∗ | |w| even}
Q1 = {w ∈ {0, 1}∗ | |w| odd}
E = {(w,wi) | w ∈ {0, 1}∗, i ∈ {0, 1}}

The root ε is fixed as standard initial vertex of plays. Player 0 wins the play α ∈ {0, 1}ω if
α ∈ L.

We additionally consider two variants of this game:

Γ∗(L): The two players move in alternation Player 0 chooses a bit word in each move, player
1 responds by single bit.

Γ∗∗(L): Player 0 and player 1 choose finite bit sequences in alternation.

Definition 7.2. (Strategy) A strategy for Player 0 in a Gale-Stewart game is a function
f : Q0 → {0, 1} (defined on words w of even length). Analogously a function g : Q1 → {0, 1}
is a strategy for Player 1.

Example 7.3. Consider the following strategy f of Player 0.

dom(f) ε 00 01 10 11 0000 0001 · · ·
f 0 1 1 1 0 1 0 · · ·

�

Note that all strategies over the game tree can be assumed positional. Given two strategies
f and g by Players 0 and 1, a unique play will result, denoted by 〈f, g〉.
Definition 7.4. (Winning Strategy) For a strategy f for Player 0 and a choice of bits β =
b0, b1, b2, . . . by Player 1 fix the play

ε, f(ε), f(ε)b0, f(ε)b0f(f(ε)b0), f(ε)b0f(f(ε)b0)b1, . . . .

We write f(β)∧β; here f(β) is the bit sequence chosen by Player 0 via his strategy f .
For a strategy g for Player 1, β∧g(β) is defined analogously.

• f is a winning strategy for Player 0 iff ∀β : f(β)∧β ∈ L.

• g is a winning strategy for Player 1 iff ∀β : β∧g(β) 6∈ L.

As before a game Γ(L) is called determined iff Player 0 or Player 1 has a winning strategy.

Remark 7.5. Γ(L) is determined iff

¬∃f ∀β : f(β)∧β ∈ L iff ∃g ∀β : β∧g(β) 6∈ L.

We showed determinacy for parity games over countable graphs. This does not hold for
arbitrary Gale-Stewart games: There is a set L such that Γ(L) is not determined.

The proof idea is the following: Find a winning set L such that whatever strategy f Player
0 applies, Player 1 can respond by a strategy g such that Player 0 loses (〈f, g〉 6∈ L), and
whatever strategy g Player 1 applies, Player 0 can respond by a strategy f such that Player
1 loses (〈f, g〉 ∈ L).

To do this we need a systematic way to go through all possible strategies and in this way
build up the desired set L. The functions f : {0, 1}∗ → {0, 1} and thus the strategies can be
identified with languages of bit words. Moreover the set of all possible strategies can be put
in bijection to real numbers.



7.1. GALE-STEWART GAMES 137

A Short Course on Ordinals and Well-Orderings

Ordinal numbers are a concept, which allows us to “enumerate” infinite sets of arbitrary size.

Definition 7.6. Definition of the ordinal numbers and their ordering ≺:

1. 0 is an ordinal.

2. For any set S of ordinals, there is a smallest ordinal with respect to ≺ which is greater
than all ordinals in S.

If S has a maximal element, say ξ, the next greater ordinal is called the successor of ξ and
denoted ξ + 1. Otherwise we speak of a limit ordinal. The first limit ordinal is ω, which is
the first ordinal after 0, 1, 2, . . ..

Ordinal numbers can be represented as sets.

• The ordinal 0 is introduced as the set ∅ (0 : ∅).

• The successor of ξ is the set ξ ∪ {ξ} (1 : ∅ ∪ {∅} = {∅}, 2 : {∅} ∪ {{∅}} = {∅, {∅}}).

• The limit ordinal above S is
⋃
S.

Observe that each ordinal is obtained as the set of all smaller ones, and that the ordering ≺
between ordinals coincides with the membership relation ∈ between them.

The first ordinals are:

0, 1, 2, . . . , ω, ω + 1, . . . , ω + ω, . . . , ω · ω, . . . , ωω, . . .

where ω is the first ordinal after the natural numbers.

Ordinals are standard representations of certain orderings: the well-orderings.

Definition 7.7. (Well-Ordering) A linear ordering (M,<) is called well-ordering if each
nonempty subset of it contains a <-smallest element.

Example 7.8.

• (N, <) is a well-ordering.

• (Z, <) is not a well-ordering.

• For each ordinal ξ, ({η |η ≺ ξ},≺) is a well-ordering.

�

Theorem 7.9. For each well-ordering (M,<) there is an ordinal ξ such that (M,<) is iso-
morphic to ({η |η ≺ ξ},≺).

Example 7.10. The set N × N can be ordered as follows:

(0, 0), (0, 1), (0, 2), . . . , (1, 0), (1, 1), (1, 2), . . . , (2, 0), (2, 1), (2, 2), . . . .

This order has the “order-type” of ω2.



138 CHAPTER 7. INFINITE GAMES ON INFINITE GRAPHS

There is also an ω-type order of N × N:

(0, 0), (0, 1), (1, 0), (2, 0), (1, 1), (0, 2), . . . .

�

Theorem 7.11. (Zermelo’s Well-Ordering Theorem) Assuming the axiom of choice, any set
M can be well-ordered, i.e. there is a relation < on M such that (M,<) is well-ordered.

Consequence: The elements of any set M can be enumerated by the ordinals η with η ≺ ξ
for some ordinal ξ.

Let c be the smallest ordinal which can be used to enumerate the set R of real numbers
(and can as well be used for the set S of all strategies of Player 0). In the list of elements
(rη)η≺c, at any stage η ≺ c only a set of elements has been listed of smaller cardinality than
c.

The main advantage of ordinals is their use in proofs and definitions by transfinite induction.
A typical definition of a set M by transfinite induction up to ξ0 proceeds as follows:

• Fix M0.

• For η ≺ ξ0: Given Mη fix Mη+1.

• For limit ordinals η ≺ ξ0 fix Mη :=
⋃
α≺ηMα.

We use an induction over the ordinal ξ0 = c.

In order to enumerate strategies, apply the Well-Ordering Theorem to the strategy sets:
{f | f : Q0 → {0, 1}}, {g | g : Q1 → {0, 1}} So {f | f : Q0 → {0, 1}} = {fξ | ξ < c} and
{g | g : Q1 → {0, 1}} = {gξ | ξ < c}

Towards a Non-Determined Game Define for ξ < c sets Lξ and Mξ with the following
properties:

• Lξ ∩Mξ = ∅,

• |Lξ|, |Mξ| < c,

• ∀η < ξ [∃f (〈f, gη〉 ∈ Lξ) and ∃g (〈fη, g〉 ∈Mξ)].

Let M0 = L0 = ∅. For limit ordinals ξ set Lξ =
⋃
η<ξ Lη and Mξ =

⋃
η<ξMη.

For successor ordinals ξ consider fξ. Choose g such that the play 〈fξ, g〉 differs from all
plays in the previously defined sets Lη,Mη. This is possible since |⋃η<ξ(Lη ∪Mη)| < c and
|{〈fξ, g〉 | g strategy for 1}| = c.

Then add the play 〈fξ, g〉 to the Mη-sets and thus obtain Mξ.
For gξ choose f analogously with 〈f, gξ〉 /∈

⋃
η<ξ(Lη ∪Mη) ∪Mξ, and obtain Lξ.



7.1. GALE-STEWART GAMES 139

Lη Mη

Mξ

Lξ

〈fξ, g〉〈f, gξ〉

Theorem 7.12. (Nondeterminacy of Gale-Stewart Games) Given sets Lξ and Mξ as above,
let L :=

⋃
ξ<c

Lξ. Then the game Γ(L) is not determined.

Proof Assume Player 0 has a winning strategy f for Γ(L). It has to occur in the listing of
strategies as some fξ.

By construction, Player 1 can respond with g such that 〈fξ, g〉 ∈Mξ and hence 〈fξ, g〉 6∈ L.
Thus f is not a winning strategy. Contradiction.

Dually, one shows that Player 1 has no winning strategy: For given g, g = gξ, Player 0
can respond with f such that 〈f, gξ〉 ∈ L. �

A natural approach to guarantee determinacy is to consider sets L ⊆ {0, 1}ω by “increasing
complexity”. Cantor invented a set-theoretic topology for such a classification of sets L ⊆ Bω.

Definition 7.13. The Cantor topology is defined on the set Bω (= {0, 1}ω) of all 0-1-sequences
via the distance function

d : Bω × Bω → R≥0

with d(α, β) =

{
0 , if α = β
1
2n for smallest n with α(n) 6= β(n) , if α 6= β

Remark 7.14. The distance function d is a metric, i.e.

1. d(α, β) ≥ 0 and d(α, β) = d(β, α)

2. d(α, γ) ≤ d(α, β) + d(β, γ) (triangle inequality)

Proof Item 1. is clear.

Item 2.: Suppose α, β, γ ∈ Bω with α 6= γ. Pick smallest n with α(n) 6= γ(n), thus
d(α, γ) = 1

2n . Then either α(n) 6= β(n) or γ(n) 6= β(n), so d(α, β) + d(β, γ) ≥ 1
2n . �

The topological space (Bω, d) is called Cantor space.

Having defined a distance function for paths, we can consider the neighborhoods of paths.
Two sequences α, β have a distance d(α, β) ≥ 1

2n ⇔ for some i ≤ n : α(i) 6= β(i). Thus

d(α, β) <
1

2n
⇔ α(0) . . . α(n)︸ ︷︷ ︸

α[0,n]

= β(0) . . . β(n)︸ ︷︷ ︸
β[0,n]

.



140 CHAPTER 7. INFINITE GAMES ON INFINITE GRAPHS

Therefore the 1
2n (= ε)-neighborhood of α ∈ Bω is the set

{β ∈ Bω | β[0, n] = α[0, n]} = α[0, n] · Bω.

We can use these neighborhoods to define open sets in this topology.

Definition 7.15. (Cantor Topology) The Cantor topology is induced by the metric d. The
open sets are countable unions of 1

2n -neighborhoods of sequences α ∈ Bω.

Remark 7.16. Assuming w := α[0, n], the 1
2n -neighborhood of α is the set {w} ·Bω. Unions

of such sets
⋃
i∈I({wi} · Bω) are representable as

(⋃
i∈I

{wi}
)

︸ ︷︷ ︸
W⊆B∗

·Bω.

Consequence: The open sets of the Cantor topology are the ω-languages of the form W ·Bω
(for W ⊆ B∗). This reminds us that each ω-language that is recognized by a deterministic E-
automaton is open; such a language L has the form L = W ·Bω for a regular language W ⊆ B∗.
But not every open set is E-recognizable, e.g. recall the non-regular set {0i1 | i prime}.

Thus we can say:

The open sets L (of the form L = W ·Bω) represent the “abstract guaranty winning
conditions” and define general reachability games.

Remark 7.17. (Suffix-closure) Given W , let W ′ = {wv ∈ B∗ | w ∈ W, v ∈ B∗} (the “suffix
closure of W”). Then α has a prefix in W iff α has a prefix in W ′. So W · Bω = W ′ · Bω.

Definition 7.18. (Closed Sets) An L ⊆ Bω is closed iff Bω \ L is open.

Remark 7.19. L is closed iff for some V ⊆ B∗ we have

α ∈ L⇔ all prefixes of α are in V.

Proof Given L closed, Bω \L is open so Bω \L = W ·Bω for some W ⊆ B∗. Set V := B∗ \W .
Then

α ∈ L

iff no prefix of α exists in W

iff all prefixes of α are in V .

�

Lemma 7.20. (Path Lemma) Let L be closed. Assume α has infinitely many prefixes w
which can be extended to an ω-word wβ in L. Then α ∈ L.

Proof Take V such that α ∈ L iff all prefixes of α are in V . V may be assumed to be closed
under prefixes (restrict to those v ∈ V which are prefix of some α ∈ L).

Consider α as in the Lemma. It has infinitely many prefixes in V . Since V is closed under
prefixes, all prefixes of α are in V . So α ∈ L. �



7.2. DETERMINACY OF OPEN AND CLOSED GAMES 141

Summary

• For an open set L a set W of finite words exists with α ∈ L iff some prefix of α is in W .

• For a closed set L a set W of finite words exists with α ∈ L iff all prefixes of α are in
W .

The closed sets capture the “abstract safety conditions”.

7.2 Determinacy of Open and Closed Games

First we look at the games Γ(L), then at Γ∗(L).

Theorem 7.21. (Gale-Stewart) If L ⊆ Bω is open then Γ(L) determined.

Proof Since L is open, there is a set W ⊆ B∗ with L = W · Bω.

W

As shown in Remark 7.17 on suffix-closed sets, we may assume that W is closed under suffixes.
Apply the definition of the attractor: For i ≥ 0 define Attri0(W ) = set of nodes from which

Player 0 can force a visit in W in ≤ i steps. Then Player 0 wins Γ(L) iff ε ∈ ⋃
i≥0 Attri0(W ).

Proof:

⇐: Apply the strategy “decrease distance to W”.

⇒: If ε 6∈ ⋃
i≥0 Attri0(W ), then Player 1 can ensure to stay outside

⋃
i≥0 Attri0(W ).

�

We add a discussion on the games Γ∗(L) for closed sets L. This will clarify the tight
connection between determinacy and Cantor’s Continuum Hypothesis (CH). The CH is the
following claim:

Every set of real numbers is either at most countable (“very small”) or in bijection
to the set R itself (“very large”).

Cantor and his student Bendixson proved this for closed sets.

Theorem 7.22. (Cantor-Bendixson Theorem) A closed set L is at most countable or it
contains a closed set L0 6= ∅ without isolated paths.

We skip the proof here but discuss the consequences. There is a copy of the binary tree in
L0:



142 CHAPTER 7. INFINITE GAMES ON INFINITE GRAPHS

Definition 7.23. L contains a binary tree iff there is a set B ⊆ B∗ of tree nodes such that

• each node of B is on a path from L,

• the B-nodes define a structure isomorphic to the binary tree ({0, 1}∗, s0, s1), with the
two successor relations

S0(x, y) ⇔ x, y ∈ B ∧ s0(x) � y

S1(x, y) ⇔ x, y ∈ B ∧ s1(x) � y

Remark 7.24. If L is closed and contains a binary tree B, then each path through infinitely
many B-nodes belongs to L.

Corollary 7.25. If L is closed and contains a binary tree B, then L has at least as many
paths as the binary tree.

Proof of Remark 7.24 L is closed, so pick W ⊆ B∗ with

(∗) α ∈ L⇔ ∀i : α[0, i] ∈W.

Consider α ∈ Bω with infinitely many α[0, i] ∈ B. Then α has infinitely many prefixes w
which can be extended to an ω-word wβ in L. Since L is closed, we can apply the Path
Lemma 7.20. Thus α ∈ L. �

Applying the Cantor-Bendixson Theorem for closed sets we obtain:

Corollary 7.26. If L is closed then L is at most countable or contains a subset which is in
bijection to Bω.

So the CH is true for closed sets. Intuitively this means:

Each closed set is either “very small” or “very large”.

Use this for the games Γ∗(L). Intuition dictates:

• If L is very large, Player 0 has an advantage in winning plays.

• If L is very small, Player 1 has an advantage in winning plays.

We will show this in a precise form.

Theorem 7.27. If L is closed then Γ∗(L) is determined.

Proof Apply the corollary of the Cantor-Bendixson Theorem: L is at most countable or
contains a binary tree. We show:

• In the first case Player 1 has a winning strategy in Γ∗(L).

• In the second case Player 0 has a winning strategy in Γ∗(L).

Case 2 Assume L contains a binary tree. Then a winning strategy of Player 0 is: “move to
the next B-vertex”.

This ensures that each play passes infinitely often through B. Since L is closed, the
Path Lemma applies, so any such path belongs to L.



7.2. DETERMINACY OF OPEN AND CLOSED GAMES 143

Case 1 Claim: If L is at most countable then Player 1 has a winning strategy in Γ∗(L).
Proof: Let L = {γi | i ∈ N}. Player 1 has to ensure that the play is different from all
γi.

The structure of a play γ is the following:

γ : b00 . . . b
0
n0−1 γ(n0) b

1
0 . . . b

1
n1−1 γ(n0 +n1 +1) . . . bi0 . . . b

i
ni−1 γ(n0 +n1 + · · ·ni+ i) . . . .

Player 1 chooses

• the bit γ(n0) = 1 − γ0(n0)

• the bit γ(n0 + n1 + 1) = 1 − γ1(n0 + n1 + 1)

• . . .

• the bit γ(n0 + n1 + · · ·ni + i) = 1 − γi(n0 + n1 + · · ·ni + i) etc.

�

Omega-Branching Trees In ω-branching trees, we code the nodes by finite words over
the infinite alphabet N.

. . .2,2,0 2,2,1

0 1 2 3

2,0 2,1 2,2 . . .

. . .

ε

We can copy the metric from the Cantor space. One obtains the so-called Baire space ωω.

The ω-branching can cause problems when computing the attractor for a set W ⊆ N∗.

∈ Attr00(w)

∈ Attr20(w)

∈ Attr30(w)
v

. . .

W ⊆ (N)∗

∈ Attr10(w)

Attrω
0 (w)

∈ Attrω+1

0 (w)

In the Baire space, the previous attractor definition
⋃
i∈N

Attri0(W ) is not sufficient for solving
reachability games. We have to take the union over all countable ordinals instead of over all
natural numbers (

⋃
α count. ordinal Attrα0 (w)).

In general the countable ordinal numbers arise in the study of systems with unbounded
nondeterminism.



144 CHAPTER 7. INFINITE GAMES ON INFINITE GRAPHS

7.3 The Borel Hierarchy

The Borel hierarchy over Bω is built up from the open and closed sets by alternating appli-
cations of countable intersections and countable unions.

Define for n ≥ 1 the classes Σn,Πn of ω-languages:

Σ1 := class of open sets L ⊆ Bω

Π1 := class of closed sets L ⊆ Bω

Σn+1 := class of countable unions L =
⋃
i≥0 Li with Li ∈ Πn

Πn+1 := class of countable intersections L =
⋂
i≥0 Li with Li ∈ Σn

We have introduced the first levels with indices by natural numbers (the “finite Borel hier-
archy”). This classification extends to transfinite (countable) ordinals. At limit stages one
takes the union over all previous stages.

Hausdorff used a different notation for the levels.

G for Σ1 (“Gebiet”)
F for Π1 (“fermé”)
Gδ for Π2, Gδσ for Σ3

Fσ for Σ2, Fσδ for Π3, etc.

We also define a Level 0: the sets which are both closed and open, also called clopen sets
Recall: For any open set L = W · Bω there is a prefix-free set W0 with L = W0 · Bω.

Theorem 7.28. A set L ⊆ Bω is open and closed (“clopen”) iff L = W · Bω for a finite set
W .

Proof ⇒: Assume L = W · Bω and Bω \ L = V · Bω for prefix-free V,W . Show that V ∪W
is finite.

It suffices to verify that the set T of words from B∗ without a prefix in V ∪W is finite.
Clearly T forms a tree and is finitely branching. An infinite path in T would yield an ω-word
α 6∈ (W · Bω ∪ V · Bω). By König’s Lemma, T is finite.
⇐: Conversely, let L = W ·Bω for finite W . Let l be the maximal length of words in W . Set
V = {v ∈ B∗ | |v| = l, v has no prefix in W}. Then Bω \ L = V · Bω. �

The clopen sets correspond to “bounded specifications”. A specification is bounded if mem-
bership of a sequence α in the corresponding L can be decided by an α-prefix of predefined
length.

Level 2 Π2 = class of ω-languages L =
⋂
i≥0(Wi · Bω).

Theorem 7.29. L ∈ Π2 ⇔ L = limW for some W ⊆ B∗.

Proof ⇐: Suppose L = limW . Then

α ∈ L

⇔ ∀i∃j ≥ i : α[0 . . . j] ∈W

⇔ ∀i : α[0 . . . i] extendable to a word in W

⇔ ∀i : α has prefix in B≥i+1 ∩W
(
B≥i := {w ∈ B∗||w| ≥ i}

)



7.3. THE BOREL HIERARCHY 145

⇔ ∀i : α ∈ (B≥i+1 ∩W ) · Bω

⇔ α ∈ ⋂
i≥0

(B≥i+1 ∩W ) · Bω︸ ︷︷ ︸
open for each i

.

So L ∈ Π2.

⇒: Let L ∈ Π2, so

L =
⋂

i≥0

Wi · Bω

where Wi ⊆ B∗ (w.l.o.g. closed under extensions). It is easy to show that

W · Bω = min(W ) · Bω

where min(W ) = {w ∈W | each proper prefix of w is not in W}.
Let Wi := W0 ∩ · · · ∩Wi. Then L =

⋂
i≥0

Wi · Bω.

So W0 ⊇W1 ⊇W2 ⊇ . . . . Proceed to min(W0), min(W1), . . . and make them disjoint by
proceeding to longer and longer words.

We obtain sets V0, V1, . . . with L =
⋂
i≥0 Vi ·Bω. Then α ∈ L⇔ ∀i∃j ≥ i : α has prefix in

Vj . Thus L = lim(
⋃
i≥0 Vi). �

Theorem 7.30. Each regular ω-language is in the Boolean closure of Π2.

Proof Each regular ω-language is Muller recognizable. The Muller recognizable ω-languages
over B are the Boolean combinations of sets lim(W ) for regular languages W ⊆ B∗. As shown,
the sets lim(W ) are the Π2-sets. �

Lemma 7.31.

1. L ∈ Σn iff L ∈ Πn

2. The classes Σn and Πn are closed under finite union and intersection.

Proof by induction

1. Induction step: Let L ∈ Σn+1, i.e. L =
⋃
i≥0 Li with Li ∈ Πn.

Then Bω \L =
⋂
i≥0(B

ω \Li), where Bω \Li ∈ Σn by induction hypothesis. So Bω \L ∈
Πn+1.

2. Induction step: Consider two Σn+1-sets L, M with L =
⋃
i≥0 Li and M =

⋃
i≥0Mi,

where the Li, Mi are Πn-sets. Define Rij = Li ∩Mj .

By induction hypothesis: all Rij are Πn-sets. Thus α ∈ L ∩M iff ∃i : α ∈ Li ∧ ∃j :
α ∈Mj iff ∃(i, j) : α ∈ Rij . Therefore L ∩M is a countable union of Πn-sets: namely
L ∩M =

⋃
i,j≥0Rij . �

The following inclusion diagram holds:



146 CHAPTER 7. INFINITE GAMES ON INFINITE GRAPHS

Π2 Σ2

Σ3 Π3

Σ1 Π1

Borel W · Bω

...

0∗1Bω(0∗1)ωBω

{10i010i11 . . . |∃n∃ωj ij = n}

{10i010i11 . . . |∃ωn∃ωj ij = n}

The inner circle denotes the class of ω-regular languages.

We will prove some of the proper inclusions of the diagram.

Lemma 7.32. For each n ≥ 1:

• there is a Πn-set which is not Σn.

• there is a Σn-set which is not in Πn.

For n = 1, 2 this extends the known results.

• There is an A-recognizable ω-language which is not E-recognizable.

• There is a co-Büchi recognizable ω-language which is not Büchi recognizable.

For the cases n = 1, 2 we take the old examples and copy the proofs.

For the non-inclusion proofs we have:

Claim: 0ω is not open.

Proof Assume 0ω is open, e.g. 0ω = W · Bω. Then for some i we have 0i ∈ W , and hence
0i1ω ∈ 0ω, contradiction. �

Claim: (0 + 1)∗ · 0ω is not Π2.

Proof Assume L = (0 + 1)∗ · 0ω is in Π2, i.e. L = lim(W ) for some W ⊆ B∗. Then 0ω ∈ L
has a prefix in W , say 0n0 .

Consider 0n010ω in L = lim(W ), with prefix 0n010n1 in W . In this way obtain a sequence
0n0 , 0n010n1 , 0n01 . . . 10ni in W .

So the ω-word 0n01 . . . 10ni1 . . . is in lim(W )(= L), contradiction. �

Theorem 7.33. (Hierarchy Theorem) For n ≥ 1 there exists an ω-language Un with the
following properties:

1. Un ∈ Σn,



7.3. THE BOREL HIERARCHY 147

2. Un 6∈ Πn (and hence Un 6∈ Σn−1).

Moreover there is a reducibility relation ≤ between ω-languages such that

L ≤ Un ⇔ L ∈ Σn.

In short form: Un is universal (or: complete) for Σn with respect to ≤.

First we will introduce sets which can serve as Un, then we will discuss the reducibility
relation ≤.

Remark 7.34. (Universal Sets)

• 0∗1 · Bω is universal for Σ1,

• {0ω} is universal for Π1,

• 0∗ · {1ω} is universal for Σ2,

• (0∗1)ω is universal for Π2,

and, in general, for n > 1,

• {α ∈ {0, 1}ω | ∀ωk1 . . .∀ωkn−1 : α has only finitely many segments 001k101k2 . . . 01kn−100}
is universal for Σ2n,

• {α ∈ {0, 1}ω | ∃ωk1 . . .∃ωkn−1 : α has infinitely many segments 001k101k2 . . . 01kn−100}
is universal for Π2n.

Definition 7.35. A function f : Bω → Bω is continuous iff f−1(L) is open for every open set
L.

Write L ≤ M if there exists a continuous function f : Bω → Bω with f−1(M) = L. In
other words:

α ∈ L⇔ f(α) ∈M for α ∈ Bω.

Remark 7.36. A function f is continuous iff any finite prefix of an f-image f(α) is deter-
mined by a finite prefix of α.

Remark 7.37. If L, M ⊆ Bω are ω-languages with L ≤M then also Bω \ L ≤ Bω \M .

These reductions preserve the level of the languages.

Remark 7.38. If L ≤M and M ∈ Σn (resp. M ∈ Πn) then also L ∈ Σn (resp. L ∈ Πn).

Proof Clear for M ∈ Σ1 (and hence for Π1). Induction step: Let M ∈ Σn+1, i.e. M =⋃
i≥0Mi with Mi ∈ Πn. Set Li = f−1(Mi). Then Li ≤Mi and Li ∈ Πn (ind. hyp.).

So α ∈ Li iff f(α) ∈Mi.

α ∈ L⇔ f(α) ∈M ⇔ ∃i : f(α) ∈Mi ⇔ ∃i : α ∈ Li ⇔ α ∈
⋃

i≥0

Li.

Therefore L ∈ Σn+1. �

For checking K ≤ L we introduce the Wadge Game.



148 CHAPTER 7. INFINITE GAMES ON INFINITE GRAPHS

Definition 7.39. Given K ⊆ Bω, L ⊆ Bω, the Wadge Game W (K,L) is the infinite game
between Players 0 and 1.

Player 0 and 1 move in alternation, building up ω-words α, β. Player 0 chooses bits from
B, Player 1 chooses finite words from B∗.

At the end of an infinite play (in ω moves),

• Player 0 has produced an ω-sequence α ∈ Σω
A of letters,

• Player 1 has produced an ω-sequence of finite words which concatenated give rise to a
finite or ω-word β.

Player 1 wins the play (α, β) iff β is infinite and α ∈ K ⇔ β ∈ L.

Lemma 7.40. (Wadge) K ≤ L iff Player 1 has a winning strategy in W (K,L).

Example 7.41. K = 0∗1(0 + 1)ω, L = (0∗1)ω. To show K ≤ L we have to formulate a
strategy which ensures the following for a play (α, β):

1 occurs in α iff infinitely 1 occur in β

Winning strategy for Player 1:

• As long as Player 0 chooses 0 reply with 0.

• If Player 0 picks 1, then from that point onwards pick 1.

�

Example 7.42. Let L = (0∗1)ω. We verify that L is complete for Π2.
Consider K ∈ Π2, say K =

⋂
n≥0Wn · Bω with Wn ⊆ B∗. Show K ≤ L.

Winning strategy for Player 1 in W (K,L): Build up infinite β, with infinitely many 1
iff α belongs to each set Wi · Bω. Idea: Produce the i-th letter 1 in β to signal that in the
construction of α a prefix in Wi has been seen. Formally: Set i := 0 and repeat the following:
If Player 0’s current position u does not have any prefix in Wi,

• then play letter 0 and i is not increased,

• else play letter 0 and increase i := i+ 1.

�

Theorem 7.43. (Martin) For each Borel set L, the Gale-Stewart Game Γ(L) is determined.

Two extensions are conceivable:

1. Prove determinacy for non-Borel sets.

2. Sharpen the determinacy result by deciding algorithmically who wins and by establish-
ing computable winning strategies.

The set-theorists have turned to question 1., the computer scientists to question 2. The
treatment of regular L is just a first step. For example: Generalize strategies to be computable
by stronger machines than finite automata.



7.4. EXERCISES 149

A Non-Borel Set Consider the ω-branching tree Tω whose nodes are addressed by finite
sequences (i1, . . . , ir) of natural numbers. A subtree of Tω is given by a set T of sequences
(i1, . . . , ir) which is closed under prefixing. A finite-path tree is a subtree of Tω which has
only finite paths.

Example 7.44.

0 1 2 3 4 · · ·

ε

10 20 30 40 · · ·

200 300 400 · · ·

3000 · · ·4000

40000

�

We code subtrees of Tω by ω-words. Use the alphabet {0, 1,#}, and write an element of ω∗

as u1#u2# . . .#uk## where each ui is a binary number.
To code a tree T concatenate the codes of its nodes by increasing length of these words

over {0, 1,#}, and for fixed length arrange the codes in lexicographical order, thus obtaining
an ω-word αT representing T .

Theorem 7.45. The ω-language

FPT := {αT | T is a finite-path tree}

is not a Borel set.

FPT is in Π1
1, the first level of the “projective hierarchy”.

7.4 Exercises

Exercise 7.1. Give an open set L = W · IBω, such that Attri0(W ) ⊆/ Attri+1
0 (W ) holds for all

i ∈ N. (This means that for every i a node of the tree exists with distance i to W .)

Exercise 7.2. We consider the ω-languages L1 = {α ∈ IBω | α contains infinitely many 1s}
and L2 = {α ∈ IBω | α contains finitely many 1s}. Represent L1 as a countable intersection
of open (or even E-recognizable) ω-languages and L2 as a countable union of closed (or even
A-recognizable) ω-languages.



Index

Tω
Σ , 102
Uω, 3
Attr0(), 68
Attr+0 (), 75
B, 3
Inf(ρ), 35
Occ(ρ), 53
Recur0(), 75
Σ, 3
Σ∗, 3
Σ+, 3
Σ∞, 3
Σω, 3
Win, 65
M#, 131
ε, 3
〈f, g〉, 136
limU , 3
ω-regular expression, 9
ω-word, 3
f(β)∧β, 136
∼L, 60
T2, 112
Tn, 115
ϕ-expansion, 20
t(M,s0), 101
M+, 132

alphabet, 3
automaton

A- —, 47
Büchi, 5

deterministic, 5
nondeterministic, 5

co-Büchi, 47
E- —, 47
Mealy, 67
Muller, 35
parity

strong, 57
weak, 57

parity tree, 105
Rabin, 35
Staiger-Wagner, 54

strategy, 67
SW- —, 54
tree , 102

Cantor
— space, 139
— topology, 139

clopen, 144
compatibility conditions

of a ω-word, 22
computation tree, 123

formula
existential S1S, 29
LTL, 17
S1S, 29
S1S1, 29

game, 65
Büchi, 75
conjunctive guaranty, 97
determined, 66
Gale-Stewart, 135
graph, 65
guaranty, 68
liveliness, 99
Muller, 81
obligation, 70
parity, 76
Rabin, 91
safety, 69
Staiger-Wagner, 70
Streett, 92
Wadge, 148
weak parity, 70

game reduction, 72

hit, 81
segment, 81

IAR, 93
index appearance record, 93

Kripke structure, 14
pointed, 14



INDEX 151

language
∗-—, 3
ω-—, 3
Büchi recognizable, 6
counting, 26
LTL-definable, 18
non-counting, 26
S1S-definable, 30
strictly Büchi recognizable, 33
tree- —, 102

LAR, 81
latest appearance record, 81
limit

of a language, 3
logic

CTL, 124
CTL∗, 123
LTL, 17
PDL, 128
S1S, 29
S1S1, 29
S2S, 112
weak S2S, 115
WS2S, 115

loop, 52

model checking
CTL∗- —, 125
CTL- —, 127
LTL- —, 20

nonemptiness problem
for Büchi automata, 9

ordinal, 137
limit —, 137

path, 102
PDS, 119
play, 65
prefix rewrite system, 121
property

guaranty, 48
persistence, 48
recurrence, 48
safety, 48

pushdown graph, 119
pushdown system, 119

run
of a Büchi automaton, 5
of a tree automaton, 102

Safra tree, 37

strategy, 65
attractor, 69
automaton, 67
memoryless, 66
nondeterministic positional, 98
positional, 66
uniform, 80
winning, 65

Theorem
Büchi-Landweber, 84
Cantor-Bendixon, 141
Caucal, 121
DJW, 85
Landweber, 52
McNaughton, 37
Muchnik Walukiewicz, 132
Muller Schupp, 120
Safra, 40
Shelah Stupp, 131

tree
Σ-valued, 102
-iteration, 131
computation- —, 123
extended — -iteration, 132
regular, 109

well-ordering, 137
winning region, 66


	Introduction
	Omega-Automata: Introduction
	Terminology
	Büchi Automata
	Elementary Constructions of Omega-Automata
	Characterization of Büchi Recognizable Omega-Languages
	Closure Properties of Büchi Recognizable Omega-Languages
	Generalized Büchi Automata
	Exercises

	Temporal Logic and Model Checking
	The Model-Checking Problem and Sequence Properties
	Kripke Structures
	Linear-Time Temporal Logic LTL
	LTL-Model-Checking Problem
	From LTL to Büchi Automata
	S1S (Second-Order Theory of One Successor)
	Exercises

	Theory of Deterministic Omega-Automata
	Deterministic Omega-Automata
	McNaughton's Theorem, Safra Construction
	Complexity Analysis of the Safra Construction
	Logical Application: From S1S to Büchi Automata
	Complexity of Logic-Automata Translations
	Classification of Omega-Regular Languages
	Deciding the Level of Languages
	Staiger-Wagner Automata
	Parity Conditions
	Exercises

	Games and Winning Strategies
	Basic Terminology
	Special Strategies, Strategy Automata
	Guaranty and Safety Games
	Weak Parity and Staiger-Wagner Games
	Game Reductions
	Büchi Games
	Parity Games
	Muller Games and LAR-Construction
	Optimality of the LAR-Construction
	Minimization of Strategy Automata
	Strategy Improvement
	Rabin and Streett Games
	Solving Games with Logical Winning Conditions
	Exercises

	Tree Automata and the Logic S2S
	Trees and Tree Automata
	Parity tree automata
	Tree Automata and Games, Complementation
	Towards the Nonemptiness Problem
	S2S and Rabin's Tree Theorem
	Exercises

	Decidability of Monadic Theories
	Towards More General Graphs
	Unravelling Structures
	Propositional Dynamic Logic
	Tree Iteration
	Exercises

	Infinite Games on Infinite Graphs
	Gale-Stewart Games
	Determinacy of Open and Closed Games
	The Borel Hierarchy
	Exercises


