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Abstract

This is a literature survey on results for Parity, Mean payoff and Discounted payoff games.
All of these are two player, perfect information, infinite duration games. We introduce
these games, demonstrate algorithms to solve each of them, and the connections between
them. These games have positional optimal strategies and their decision problems are
in UP ∩ coUP. However, whether any of them have a polynomial time algorithm or not
is still an open problem.
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1 Introduction

Two player (adversarial, perfect information) games are useful in Logic. For example the
truth value of a formula φ ≡ ∃x ∀y ∃z (y · z = x) on a structure (N, ·)= can be described
by the following two player game. The players are called P∃, P∀ respectively. First P∃
chooses an x ∈ Z, then P∀ chooses an y ∈ Z and finally P∃ chooses an z ∈ Z. P∃ wins the
resulting play when y · z = x, otherwise P∀ wins. Observe that φ is true exactly when
P∃ has a winning strategy in this game. This shows how Games are related to quantifier
alternation. Similarly, the acceptance conditions for Alternating automata can also be
described a game.

This analysis is very useful in the infinite case. Büchi [18] used automata on infinite
words to give a decision procedure for S1S – the MSO (Monadic second order) theory
of natural numbers (N, S)= with successor function S(x) := x + 1 and equality. MSO
means that apart from first order quantification ∃x, terms like x ∈ A and quantification
∃A are also allowed over set variables A. Later, Rabin [17] used automata on infinite
trees to give a similar decision procedure for S2S – the MSO theory on the infinite
binary tree ({0, 1}∗ , S0, S1)= where S0(x) = x0 and S1(x) = x1 are left and right
successors. The decidability of S2S is a powerful result. Many interesting logics can
be decided by interpreting into S2S (see [17],[2, Chap 7]). Rabin’s original proof is
complicated. The combinatorics of the hardest part – the complementation lemma for
Tree automata can be neatly simplified using infinite (duration) games [22, Chap 8]. The
acceptance condition for the Tree automata is interpreted as a Parity game (introduced
in Chapter 3); this allows to use the results on Parity games for the emptiness and
complementation problem of the Tree automata.

Another important application of Infinite games is the Synthesis problem for Reactive
systems. Reactive systems are computer systems that continuously interact with the
environment, e.g., Lift Controller and an Operating System. An execution of such a
system can be captured by an infinite string (I×O)ω of input/output pairs over the input
alphabet I and output alphabet O. The desired behaviour of such a system is given by a
specification Spec ⊆ (I ×O)ω. Given Spec, the Synthesis problem is to find an f : I∗ 7→
O (if it exists) so that for any input sequence i0i1 . . . ∈ Iω the input/output sequence
(i0, f(i0))(i1, f(i0i1))(i2, f(i0i1i2)) . . . ∈ Spec. Intuitively we want an algorithm that
when presented with a (finite description of) Spec finds an implementation f satisfying
Spec or concludes that there is none.

When Spec is expressed in S1S (or LTL), [3] showed that Synthesis problem is decidable.
The idea is to express the Synthesis problem as an infinite game between the Environment
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1 Introduction

and the System (designer). The turns of Environment and System alternate during the
game. Initially the Environment picks i1 ∈ I, then the System picks o1 ∈ O. Then the
Environment picks i2 ∈ I and the System picks o2 ∈ O, and the game thus continues. If
(i1, o1)(i2, o2) . . . ∈ Spec then the play is winning for System else the Environment wins.
Observe that implementations (f) satisfying Spec are exactly the winning strategies
for the System in this game. Hence this reduces the Synthesis problem to finding the
winning strategy in an infinite game. Since Spec is expressed in S1S, Spec is an ω-
regular set. For ω-regular winning conditions on finite graphs (as is the case here) there
are algorithms to compute the winning strategies.

Hence algorithms to decide the winner and find the winning strategies in (finitely pre-
sented) infinite games are of importance. We will keep this mind while discussing infinite
games. Chapter 2 will provide a general formalism for infinite games on graphs. In Chap-
ter 3 we discuss Parity games. Parity games may not be the most intuitive games to
start with (see [22, Chap 2] for Reachability and Büchi games), but they are powerful
enough to express ω-regular winning conditions (via deterministic parity automata) and
yet have positional winning strategies. The problem of deciding the winner of Parity
games is in NP∩ coNP (hence unlikely to be NP-complete), but it is not known whether
(or not) a polynomial time algorithm exists. An efficient algorithm for deciding the
winner and winning strategies for Parity games will help improve the runtime for the
algorithms mentioned above, and for many others which rely on infinite games.

Chapter 4 and Chapter 5 discuss Mean and Discounted payoff games. Although these
games are no longer Win-Lose games, they are related to Parity games. Algorithms for
such games can be useful for more general Controller-Synthesis problems with Quanti-
tative objectives.
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2 Graph games

We will look at a class of two player games on graphs. The two players will be called
Player 0 and Player 1 (abbreviated as P0, P1). Although we will only look at specific
games later, all of them fit into a general framework which will be discussed now.

2.1 Formalism

The game is played on a directed graph G = (V0, V1, E) whose vertices are V = V0 t V1

and edges are E ⊆ V × V . The vertices V are partitioned as (V0, V1) – those belonging
to P0 and P1 respectively. We will always assume that G has no dead ends (∀v ∈
V ∃w (v, w) ∈ E). For n ≥ 0, let Pn denote the set of paths in G of length n (in
particular P0 = V , P1 = E). P∗ will denote the set of all finite paths in G, and by Pω
the set of all infinite paths. N(u) = {v | (u, v) ∈ E} is the set of outgoing neighbours of
u.

The game starting from v0 ∈ V is played as follows

• A token is initially placed in v0

• At any stage if the token is in a vertex v ∈ Vi, then Pi has to move the token to a
vertex w ∈ N(v)

A concrete realization of this play will be an infinite path π ∈ Pω

π = v0v1v2 . . .

Where

• v0 was the vertex where the play started

• If vi ∈ Vj , then at i+ 1th stage Pj decided to move the token to vi+1 ∈ N(vi)

After this infinite path π is played, P0 pays f(π) units of money to P1. Where f : Pω → R
is the payoff function. When f(π) < 0 this is interpreted as P1 paying |f(π)| units to
P0. P0’s objective is to minimize f(π) while P1’s objective is to maximize it.

This game will be denoted by G = (G, f). And in particular, the game starting at v0 by
(G, v0).
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2 Graph games

2.1.1 Strategy

A strategy for Pi is a function σ : P∗ ∩ V ∗Vi 7→ V , which assigns to each possible finite
path αu ending in u ∈ Vi a neighbour σ(αu) ∈ N(u).

Intuitively this is a recipe for Pi to make his moves in the game. If at the nth stage it
is Pi’s turn, and the token has been moved to v0v1 . . . vn−1 so far (with vn−1 ∈ Vi), the
strategy recommends playing vn = σ(v0v1 . . . vn−1)

An infinite path π = v0v1 . . . is said to conform with a strategy σ of Pi if whenever
vj ∈ Vi, vj+1 = σ(v0v1 . . . vj).

Consider strategies (σ, τ) for P0 and P1 respectively. Starting at v0 there is a unique
path πv0στ = v0v1 . . . which conforms with both σ and τ , given by

vi+1 =

{
σ(v0v1 . . . vi) if vi ∈ V0

τ(v0v1 . . . vi) if vi ∈ V1

Let fv(σ, τ) denote f(πvστ ).

Finite memory strategies

From a computational perspective it is important to have a finite implementation of a
strategy (which is generally an infinite object). Finite memory strategies are a subclass
for which this is possible. A finite memory strategy for Pi is a tuple (M, δ, g,m0), where
M is a finite set (also called as “the memory”), and m0 ∈M .

δ : M × V →M

is the update function for the memory and

g : M × Vi → V

is the action function (with ∀u g(., u) ∈ N(u)).

To implement this strategy start with m0. At the nth move if vn−1 ∈ Vi then play
vn = g(mn−1, vn−1) (otherwise the opponent decides vn) and set mn = δ(mn−1, vn).

Positional strategy

An important special case of finite memory strategies is when M is singleton. These are
called positional or memoryless strategies. In this case

g : Vi → V
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2 Graph games

and the resulting strategy σ is just

σ(v0v1 . . . vn) = g(vn)

which only depends on the current state the token is in.

Let ρ be a positional strategy for Pi in G, then Gρ will denote the graph obtained from G
by restricting the outgoing edges of every u ∈ Vi to the unique edge given by ρ. Moreover
if ρ̄ is a strategy for P1−i then Gρρ̄ is defined as (Gρ)ρ̄.

An infinite path π is called ultimately periodic if for some k ≥ 0

π = v0v1 . . . vk−1(vkvk+1 . . . vr)
ω (2.1)

Denote Prefix(π) = v0v1 . . . vk−1 and Cycle(π) = vkvk+1 . . . vr.

Let (σ, τ) be positional strategies for P0 and P1. Starting any v0 ∈ V , the path πv0στ is
ultimately periodic with all vi’s distinct in (2.1). Cycle(πv0στ ) is the unique cycle reachable
from v0 in Gστ , and Prefix(πv0στ ) is the path leading to that cycle.

Denote by Si the set of all strategies of Pi. Often σ, τ (and their variants) will be used
to denote the strategies for P0 and P1 respectively.

2.2 Optimal play

How should Pi play so as to best fulfil his objective of minimizing/maximizing the
payoff? Generally this depends on the opponents play - so it is not exactly a standard
optimization problem. Instead (whenever it exists) the following concept for optimal
play is used.

2.2.1 Minimax equilibrium

For the game (G, v), if there is an ηv ∈ R and strategies σ∗, τ∗ for player 0 and 1
respectively so that

fv(σ∗, τ) ≤ ηv for all τ ∈ S1

fv(σ, τ∗) ≥ ηv for all σ ∈ S0
(2.2)

then the game (G, v) has a minimax equilibrium and (σ∗, τ∗) are called optimal strategies
for P0 and P1 respectively. ηv is called the value of the game.

The first inequality says that if P0 follows σ∗, then payoff would always (against any
play of P1) be below ηv, while the second inequality says that if P1 follows τ∗ then the
payoff always be above ηv. In particular

fv(σ∗, τ∗) = ηv
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2 Graph games

There may be many optimal strategy pairs (σ∗, τ∗) but value ηv must be unique. This
is because (2.2) are equivalent to

ηv = min
σ∈S0

sup
τ∈S1

fv(σ, τ) = max
τ∈S1

inf
σ∈S0

fv(σ, τ) (2.3)

(The distinction between max vs sup (or min vs inf) is that the optimal value must be
attained in the former, but may not be attained in the latter)

The RHS of (2.3) is the optimal payoff in the game where P1 declares his strategy to P0

before the game begins (which is always disadvantageous to P1). Similarly LHS of (2.3)
is the optimal payoff when P0 declares his strategy to P1 in advance (which is always
advantageous to P1). The equality means that both can reveal their optimal strategies
(σ∗, τ∗) to the opponent and none will have an incentive to change their strategy.

Not every game has a minimax equilibrium, however a weaker version of (2.3) (also
called as ε-equilibrium) holds for a large class of payoffs (see [19])

inf
σ∈S0

sup
τ∈S1

fv(σ, τ) = sup
τ∈S1

inf
σ∈S0

fv(σ, τ)

For the games to be discussed, (2.3) will explicitly be shown. The minimax will exist
from each v ∈ V . Since (σ∗, τ∗) are history dependent they can be chosen independent of
v. Hence we can bundle up the values and associate to G a value vector η ∈ RV given by
η = (ηv)v∈V . Let f(σ, τ) = (fv(σ, τ))v∈V , then we have (inequalities are coordinate-wise)
–

f(σ∗, τ) ≤ η ∀τ ∈ S1

f(σ, τ∗) ≥ η ∀σ ∈ S0
(2.4)

2.3 Finite Games

We will now start with a simple yet important class of payoffs, and show the existence
of minimax and optimal strategies for it.

A payoff function f is finitely determined if there is a N ∈ N so that f only depends on
the outcomes in the first N rounds. More precisely

∀α, β ∈ Pω α|N = β|N =⇒ f(α) = f(β)

where (v0v1 . . .)|m = v0v1 . . . vm.

If f is finitely determined then call G = (G, f) a finite duration game. We can assume
that the game stops after N rounds have been played and the payoff is given by

f : PN → R
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2 Graph games

This is defined as the payoff for an arbitrary infinite extension, which is well defined
since G has no dead ends and f depends only on first N rounds.

The following theorem is well known - it is sometimes called the backward induction
technique. The backward induction, however, is not very explicit in the proof presented
here.

Theorem 2.1. Let G = (G, f) be a finite game. There is a η ∈ RV and strategies
(σ∗, τ∗) which satisfy (2.4)

Proof. The proof is by induction on N – the duration of the game G.

Base Case N = 1: Hence the game ends after the first move. Let

ηu =


min
v∈N(u)

f(uv) if u ∈ V0

max
v∈N(u)

f(uv) if u ∈ V1

And

σ∗(u) = argmin
v∈N(u)

f(uv) if u ∈ V0

τ∗(u) = argmax
v∈N(u)

f(uv) if u ∈ V1

Then (2.2) follows for any v by considering the cases v ∈ V0 and v ∈ V1 separately.
Hence (2.4) follows with η = (ηv)v∈V

Inductive Case N = k + 1 with k ≥ 1:
At the k + 1th round what will be the decision of the players? Suppose v0v1 . . . vk
has been played. Now if vk ∈ V1, since this is the last round, P1 will chose an u
which maximizes f(v0v1 . . . vku). Similarly if vk ∈ V0, then P0 will choose an u
which minimizes f(v0v1 . . . vku).

Motivated by this, define the k step game G′ = (G, f ′) where

f ′(v0v1 . . . vk) =


min

u∈N(vk)
f(v0v1 . . . vku) if vk ∈ V0

max
u∈N(vk)

f(v0v1 . . . vku) if vk ∈ V1

By induction hypothesis G′ has a value vector η and optimal strategies (σ′, τ ′).
Consider the aforementioned strategies for the k + 1th round -

σk+1(v0v1 . . . vk) = argmin
u∈N(vk)

f(v0v1 . . . vku) if vk ∈ V0

τk+1(v0v1 . . . vk) = argmax
u∈N(vk)

f(v0v1 . . . vku) if vk ∈ V1

7



2 Graph games

Let σ∗ = [σ′, σk+1] be the strategy for P0 which plays σ′ for the first k rounds, and
σk+1 for the k + 1th round. Analogously define τ∗ = [τ ′, τk+1] for P1.

The following shows that η is the value vector for G and (σ∗, τ∗) are the optimal
strategies.

To prove the first inequality in (2.4), take any path v0v1 . . . vk+1 that conforms
with σ∗. Then v0v1 . . . vk must conform with σ′. Hence

f ′(v0v1 . . . vk) ≤ ηv0

If vk ∈ V0 then vk+1 = σk+1(v0v1 . . . vk), hence

f(v0v1 . . . vk+1) = f ′(v0v1 . . . vk)

Otherwise vk ∈ V1 and from the definition of f ′

f(v0v1 . . . vk+1) ≤ f ′(v0v1 . . . vk)

In any case f(v0v1 . . . vk+1) ≤ f ′(v0v1 . . . vk) ≤ ηv0 . This shows

f(σ∗, τ) ≤ η ∀τ ∈ S1

The proof of the second inequality follows verbatim by reversing the inequalities,
replacing σ by τ and interchanging V0 and V1. Hence this proves (2.4) for G.

2.4 Win Lose games

When f is a {0, 1} valued function, the game has a win/loss interpretation. P1 wins the
play (and P0 loses) whenever the payoff is 1, otherwise P1 loses the play (and P0 wins).
This game will be denoted by G = (G,Win) where

Win = {α | f(α) = 1} ⊆ Pω

is the set for winning plays for P1.

2.4.1 Determinacy

A strategy σ∗ for P0 is said to be a winning strategy from v ∈ V if

πvσ∗τ 6∈Win ∀τ ∈ S1

Similarly a strategy τ∗ for P1 is a winning strategy from v if

πvστ∗ ∈Win ∀σ ∈ S0

8



2 Graph games

Definition 2.5. Call a win-lose game determined if from every v ∈ V either P0 or P1

has a winning strategy.

Notice that both the players cannot simultaneously have a winning strategy starting
from v. It is also possible that neither of them has one, but axiom of choice is required
to show this. See [15] for a very general theorem on determinacy by Martin.

Suppose the game G = (G, f) (where f is {0, 1} valued) has a minimax (2.2) starting
from v, then ηv ∈ {0, 1} (because of (2.3)). If η = 1 then τ∗ is a winning strategy for P1,
otherwise η = 0 and σ∗ is a winning strategy P0. Hence as a corollary of Theorem 2.1
we have –

Corollary 2.2. If a winning condition Win is finitely determined (∃N ∀α, β ∈ Pω α|N =
β|N =⇒ α ∈Win ⇐⇒ β ∈Win), then the game G = (G,Win) is determined.

9



3 Parity

Parity games were introduced in [8] to solve the µ-calculus model checking problem.
From the view of Complexity Theory, the problem of deciding the winner of a parity
game is in NP ∩ coNP (so unlikely to be NP-complete), but the question of whether it
has a polynomial time solution remains open.

Apart from Parity, the following chapters will also introduce Mean and Discounted Payoff
Games. Although seemingly unrelated, each game can be reduced to the successive one.
This is used in [12] to show that the decision problems for all of them are in UP∩ coUP
(here UP is the class of decision problems that have a unique polynomial size certificate,
hence P ⊆ UP ⊆ NP). Whether any of these games (i.e. their respective decision
problems) has a polynomial time solution or not is again an open question.

3.1 Definition

Let G = (V0, V1, E) be a graph and let (for some M ∈ N)

p : V 7→ {0, 1, 2 . . .M}

be an assignment of integer priorities to each vertex.

Parity game Gp = (G,Winp) is a Win-Lose game (section 2.4) with

Winp =

{
(v0v1 . . .) ∈ Pω |

(
lim sup
i≥0

p(vi)

)
is Odd

}
(3.1)

Let the largest priority seen infinitely often, on a path π, be denoted by max-inf-priority
of π. If max-inf-priority of π is odd then P1 wins π; if the max-inf-priority is even then
P0 wins. Since V is finite, there’s a vertex v which is visited infinitely often by π, and
has the same priority as the max-inf-priority.

Notice that in contrast with finite games (section 2.3), the winning condition (3.1) only
depends on long run behaviour. This property is also called prefix independence – for
w ∈ P∗ and α ∈ Pω if w · α ∈ Pω then α ∈ Winp ⇐⇒ w · α ∈ Winp. However, due to
path constraints in the graph G, the prefix might still be important as it can enable or
disable certain long term behaviours.

10



3 Parity

3.2 Positional Determinacy

From every vertex v ∈ V the parity game (Gp, v) is determined (section 2.5) – one can
invoke the general determinacy theorem by Martin [15] to show this. However a stronger
result was proved by Emerson [7] –

Theorem 3.1. For any parity game Gp = (G,Winp), there are positional strategies
(σ∗, τ∗) and a partition of V = W0 tW1, so that σ∗ is a winning strategy for P0 from
each v ∈W0 and τ∗ is a winning strategy for P1 from each v ∈W1.

Hence, not only is the game (Gp, v) determined, the winner has a positional winning
strategy independent of v (in the player’s winning region).

We are interested in the following decision problem.

Decision Problem (PAR). Given a graphG, priorities p, and a vertex v ∈ V , determine
whether P0 wins (Gp, v) or not.

Given v ∈ V and positional strategies (σ, τ), since πvστ is ultimately periodic (page 5) we
have

πvστ ∈Winp ⇐⇒
(

max
v∈Cycle(πvστ )

p(v)

)
is odd

Hence given (σ, τ), the winner of πvστ can easily be decided by analysing the cycle reach-
able in Gστ . Then by Theorem 3.1, one could find the winner of (Gp, v) by enumerating
over all possible positional strategies (which are finitely many) of both the players, and
find one which beats all the strategies of the opponent.

However something better can be done. Given a positional strategy σ, it is directly
possible to check if this strategy is winning for P0 in (Gp, v) or not. Look at the graph
Gσ. σ is winning in (Gp, v) if and only if no run in Gσ starting at v has an odd max-
inf-priority – this is the emptiness problem for parity word automata and can be solved
in in O ((|V |+ |E|) logM) (see [14]). Hence to check if P0 wins (Gp, v) one could guess
a strategy σ (a polynomial size certificate) and check in polynomial time whether it is
winning for P0 or not. Hence the decision problem of whether P0 wins (Gp, v) is in NP.
This problem is also in coNP as one could apply the same procedure for P1 (i.e. for “no”
instances, guess a strategy for P1 and verify it). Hence we have the following theorem
from [22]

Theorem 3.2. The decision problem PAR is in NP ∩ coNP

There are a couple of proofs of Theorem 3.1, some of which are constructive. In [13]
the proof due to Zielonka [23] and McNaughton [16] is used to obtain sub-exponential
algorithm O(n

√
n) for deciding the winning regions. However whether a polynomial time

algorithm exists is not known.

In the following, we will provide a proof from [1] of determinacy of Parity Games. We
will not cover the existence of positional optimal strategies. As seen already, positional

11
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determinacy is an important property; it can be proven along the lines of the following
proof using some more work (see [1]).

3.3 Finite Game

Now we introduce a finite game Gfp = (G,Winfp) closely related to the Parity Game
Gp = (G,Winp). It is played on the same graph G but it stops as soon as a vertex
repeats (which will happen within |V | rounds). Assume that the resulting path is

π = v0v1 . . . vr . . . vkvk+1

with vr = vk+1 and all vi’s distinct for i ≤ k. Denote the unique cycle formed by

Cycle(π) = vrvr+1 . . . vk (3.2)

If the largest priority in Cycle(π) is odd then P1 wins the play, otherwise P0 wins. That
is

π ∈Winfp ⇐⇒
(

max
v∈Cycle(π)

p(v)

)
is Odd

Notice that this is the same condition as the ultimately periodic path v0 . . . vr−1(vr . . . vk)
ω

winning in Gp. Hence Gfp is the game that would result from Gp if both the players de-

cided to play positional strategies. Since Gfp is a finite game, by Corollary 2.2 starting

at any v ∈ V one of the players has a winning strategy in (Gfp , v). Hindsight from The-
orem 3.1 tells us that the same player will also be the winner of (Gp, v). We will show
this without using Theorem 3.1 and hence prove determinacy of (Gp, v).

Theorem 3.3. Given a (possibly history dependent) winning strategy ρ for Pi in (Gfp , v),
there is a finite memory winning strategy ρ̃ for Pi in (Gp, v).

The following stack based technique will be used to construct the ρ̃. This will be useful
later too. Notice that ρ is only defined (or relevant) for simple paths starting in v.

3.3.1 Stack based extension

Let ρ be a strategy for Pi defined on simple paths. The following describes ρ̃ – an
extension of ρ to arbitrary plays using finite memory. At each stage Pi maintains a
simple path of G in its memory. If the game starts at v0, let m0 = v0. At the k + 1th

stage, if it is Pi’s turn, play vk+1 = ρ(mk) (otherwise the opponent decides vk+1), and
update the memory as follows.
Assume

mk = u0u1 . . . ur r ≥ 0

12



3 Parity

then

mk+1 =

{
u0u1 . . . us if us = vk+1 for some s ≤ r
u0u1 . . . urvk+1 otherwise

In the first case us+1 . . . urvk+1 forms a cycle in G, which had to be eliminated for mk+1

to remain a simple path.

For each n, mn is a simple path from v0 to vn which conforms with ρ. If C1, C2 . . . Crn
are the cycles eliminated by the nth round then mn, C1, C2 . . . Cr forms a partition of
v0v1 . . . vn

Proof of Theorem 3.3. Obtain ρ̃ from ρ by the above stack based extension. We will
show that this strategy ρ̃ is winning for Pi in (Gp, v).

Assume ρ is a strategy for P0. The proof for P1 is similar. Let π = vv1v2 . . . be an
infinite path that conforms with ρ̃. We will show that max-inf-priority for π is even.
This shows that ρ̃ is winning for P0 in (Gp, v).

Since ρ is winning for P0 in (Gfp , v), for any path that starts at v and conforms with ρ till
the first cycle formed, the largest priority of the cycle will be even. In the stack based
implementation of ρ̃ on π, each mi conforms with ρ, hence the max priority in each of
the eliminated cycles Cr will be even. Given this, the max-inf-priority of π cannot be
odd. Indeed, let u be a vertex which is visited infinitely often in π, and has same priority
as max-inf-priority of π. Then u must be a part of infinitely many Ci’s. But if p(u) is
odd, then there will be a vertex in each of these cycles which has priority strictly greater
than p(u) (since max priority in every Ci is even). Since Ci’s correspond to disjoint
positions of π, this shows that the max-inf-priority of π is strictly greater than p(u). A
contradiction.

3.4 Summary

In this chapter we have introduced parity games and an equivalent finite duration game
(section 2.3). A stack based technique (subsection 3.3.1) was used to extend winning
strategies in the finite game to the parity game. Observe that if the original strategy is
positional this extension will be the same positional strategy. This is used in [1] to give
a complete proof of positional determinacy of parity games (Theorem 3.1). Positional
determinacy also shows that the decision problem for parity games is in NP ∩ coNP
(Theorem 3.2).

13



4 Mean payoff

Mean payoff is another infinite duration game, closely related to parity games. It was
studied independently in [6] and [11].

4.1 Definition

Let G = (V0, V1, E) be a graph and

w : E 7→ Z

be edge weights. Assume |w(e)| ≤W for every e ∈ E.

The Mean payoff game is an infinite duration game Gw = (G, fw) where we want the
payoff

fw(v0v1v2 . . .) = lim
n

1

n

n−1∑
i=0

w(vi, vi+1) (4.1)

to be the mean weight on the infinite path. Unfortunately the limit in (4.1) may not
always exist. We can also look at Gw = (G, fw) and Gw = (G, fw), where fw, fw are
obtained by replacing lim sup, lim inf in place of lim in (4.1). We will see that the choice
will not matter for optimal play.

When the play π is ultimately periodic the limit in (4.1) exists and is equal to mean(Cycle(π)).
Where

mean(v1v2 . . . vk) =
1

k

(
k−1∑
i=1

w(vi, vi+1) + w(vk, v1)

)
(4.2)

is the mean weight on the cycle v1 . . . vk ∈ P∗ (with (vk, v1) ∈ E). As a consequence
when both P0 and P1 play finite memory strategies (σ, τ)

fw(σ, τ) = fw(σ, τ) = fw(σ, τ)

Just like the parity winning condition both fw, fw are prefix independent (a payoff f is
prefix independent if f(α) = f(w · α) for any α,w · α ∈ Pω).

14



4 Mean payoff

4.2 Optimal strategies

The following theorem is the central result in [6].

Theorem 4.1. There are positional strategies (σ∗, τ∗) for P0, P1 respectively and a value
vector η ∈ RV so that

fw(σ∗, τ) ≤ η ∀τ ∈ S1

fw(σ, τ∗) ≥ η ∀σ ∈ S0
(4.3)

In other words starting from any v, P0 can ensure that the lim sup of the means remains
below ηv, while P1 can ensure that the lim inf of the means remains above ηv. Call
any (σ∗, τ∗) which satisfy (4.3) optimal strategies for Gw and η its value vector. When
(σ∗, τ∗) is played, the limit in (4.1) exists and fw(σ∗, τ∗) = η

Since fw ≥ fw this shows that η is the minimax value for both Gw and Gw (hence η is
unique), and the strategies (σ∗, τ∗) are optimal in these games too. It will follow from
the proof later that if (σ, τ) are finite memory optimal strategies for Gw (or Gw) they
will also be optimal for Gw (i.e. they will satisfy (4.3)).

The following is a simple consequence of Theorem 4.1 which will be useful while approx-
imating the value later.

Corollary 4.2. Let η be the value of Gw. Then for any v ∈ V , ηv = n
m for some

n,m ∈ Z with |n| ≤W · |V | and 1 ≤ m ≤ |V |.

Proof. Since (σ∗, τ∗) are positional

ηv = fvw(σ∗, τ∗) = mean(Cycle(πvσ∗τ∗))

is the average weight over some simple cycle in G. Hence it has the required form.

We will prove a weaker version of Theorem 4.1 using the same technique used for Par-
ity.

Theorem 4.3. There are finite memory strategies (σ∗, τ∗) for P0, P1 and a value vector
η ∈ RV so that

fw(σ∗, τ) ≤ η ∀τ ∈ S1

fw(σ, τ∗) ≥ η ∀σ ∈ S0

Just like in the case of parity, the complete proof of Theorem 4.1 can be obtained by
doing some more work. In fact the presentation here, taken from [1], is the first part of
a uniform proof for both Theorem 3.1 and Theorem 4.1.
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4.3 Finite Game

Like in section 3.3, let us introduce a finite duration game Gfw = (G, f ′w) related to
Gw = (G, fw). The game is played on G and stops the first time a vertex repeats. The
payoff associated with such a path is

f ′w(π) = mean(Cycle(π))

Where Cycle(π) is the first cycle formed – see (3.2).

Notice that Gfw is obtained from Gw when the players restrict to positional strategies.
Since Gfw is a finite game by Theorem 2.1 there is a payoff vector η ∈ RV and optimal
strategies (σ, τ) in Gfw. Note that for any path starting at v and conforming with σ till
the first cycle formed, the mean value of the cycle will be ≤ ηv. Similarly, for any path
starting at v and conforming with τ till the first cycle formed, the mean value of the
cycle will be ≥ ηv. Now we will show that this η is also the value vector for Gw.

Proof of Theorem 4.3. Let η be the value vector and (σ, τ) be the optimal strategies for

Gfw. Use the stack based technique (subsection 3.3.1) to obtain σ∗ from σ and τ∗ from
τ . We will now show that (4.3) is satisfied.

Let us show the first inequality. Take any path π = v0v1 . . . which conforms with σ∗.
Then in the stack based implementation of σ∗ on π, each mi is a path starting at v0

which confirms with σ. Hence each of the eliminated cycles Ci will have mean(Ci) ≤ ηv0 .
If by the nth stage mn = u0 . . . usn and cycles C1, . . . , Crn have been eliminated, then

n−1∑
i=0

w(vi, vi+1) =

sn−1∑
i=0

w(ui, ui+1) +

rn∑
j=1

sum(Cj)

where

sum(v1v2 . . . vk) =

k−1∑
i=1

w(vi, vi+1) + w(vk, v1)

is the sum of the weights on the cycle. Hence if |C| denotes the number of edges (or
vertices) in C. We have

n−1∑
i=0

w(vi, vi+1) =

sn−1∑
i=0

w(ui, ui+1) +

rn∑
j=1

|Cj |mean(Cj) (4.4)

≤ snW + ηv0

rn∑
j=1

|Cj | since mean(Cj) ≤ ηv0

= snW + ηv0(n− sn) as sn +
∑rn

j=1 |Cj | = n

= nηv0 + sn(W − ηv0)
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4 Mean payoff

But as mn is a simple path, |sn| ≤ |V |; also |ηv0 | ≤W . Hence

n−1∑
i=0

w(vi, vi+1) ≤ nηv0 + 2|V |W (4.5)

Divide by n and let n→∞

1

n

n−1∑
i=0

w(vi, vi+1) ≤ ηv0 +
2|V |W
n

lim sup
n

(
1

n

n−1∑
i=0

w(vi, vi+1)

)
≤ lim sup

n

(
ηv0 +

2|V |W
n

)
= ηv0

This shows

fw(v0v1 . . .) ≤ ηv0

Since v0v1 . . . was any path that conformed with σ∗ we have

fw(σ∗, τ) ≤ η ∀τ ∈ S1

To show the second inequality of (4.3) proceed similarly. Let π = v0v1 . . . be a path the
conforms with τ∗. In the stack based implementation of τ∗ on π each of the eliminated
cycles Ci will have mean(Ci) ≥ ηv0 . Hence from (4.4)

n−1∑
i=0

w(vi, vi+1) ≥ sn(−W ) + ηv0(

rn∑
j=1

|Cj |)

≥ nηv0 − sn(ηv0 +W )

≥ nηv0 − 2|V |W (4.6)

Dividing by n and letting n→∞

1

n

n−1∑
i=0

w(vi, vi+1) ≥ ηv0 −
2|V |W
n

lim inf
n

(
1

n

n−1∑
i=0

w(vi, vi+1)

)
≥ lim inf

n

(
ηv0 −

2|V |W
n

)
= ηv0

Hence for any v0v1 . . . that conforms with τ∗

fw(v0v1 . . .) ≥ ηv0

This shows that

fw(σ, τ∗) ≥ η ∀σ ∈ S0
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4 Mean payoff

In the above proof when (σ, τ) are positional strategies, (σ∗, τ∗) is just (σ, τ). The proof
shows that when all the cycles reachable from v in Gσ have mean weight ≤ v, then any
infinite path π from v in Gσ will have fw(π) ≤ v. Similarly if all the cycles reachable
from v in Gτ have mean weight ≥ v then any infinite path π in Gτ from v will have
fw(π) ≥ v. This shows that if (σ, τ) are positional optimal strategies of Gw (or Gw), they
continue to be optimal strategies for Gw. This argument can also be extended to the
case when (σ, τ) are finite memory optimal strategies in Gw (or Gw) by embedding the
memory inside G.

4.4 Parity to Mean payoff

The corresponding finite games for Parity and Mean payoff are very similar. This helps
establish a reduction from Parity to Mean payoff games.

Let G be a graph with priorities p. Consider the edge weights

w(u, v) = −(−|V |)p(u) (4.7)

w is defined so that for any simple cycle C in G, the max priority in C is odd then
mean(C) > 0, and if the max priority is even then mean(C) < 0. Let vr be the vertex
with the largest priority C = v0v1 . . . vk−1. Let a = w(vr, vr+1) (addition is modulo k).
Notice that any other w(vi, vi+1) either equals a or has absolute value bounded by a

|V | .

Since |C| ≤ |V |, sum(C) (and hence mean(C)) will have the same sign as a = w(vr, vr+1).
When p(vr) is odd, a > 0; when it is even a < 0.

Now look at the finite games (Gfp , v) and (Gfw, v). P1 wins (Gfp , v) if and only if P1 can

ensure a payoff > 0 in (Gfw, v). If ηv is the value of (Gfw, v), this is the same condition
as ηv > 0. Pass to their respective infinite games to obtain – P1 has a winning strategy
from (Gp, v) if and only if val(Gw, v) > 0.

Hence if we define the following decision problem for the mean payoff game

Decision Problem (MP). Given G, edge weights w and a v ∈ V , determine whether
val(Gw, v) > 0 or not.

Then this gives a reduction from PAR to MP. Notice that we can assume that

p : V 7→ {0, 1 . . . 2|V |}

Then the edge weights w (4.7) can be constructed in polynomial time. Hence this is a
polynomial time reduction.
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4 Mean payoff

4.5 Summary

We have introduced Mean payoff games and the concept of optimal value and strate-
gies. Similar to Parity games, an equivalent finite game was used to prove existence
of optimal strategies (Theorem 4.3) – the proof uses the same stack based extension
(subsection 3.3.1) as used for parity. The complete proof of positional determinacy
(Theorem 4.1) can be obtained by doing some more work as presented in [1]. The simi-
larity between the finite games for Parity and Mean payoff is used to give a polynomial
time reduction from the decision problem for Parity (PAR) to the decision problem for
mean payoff (MP). This brings a new set of techniques to tackle these problems. [24]
describes a O(|V |3|E|W ) time algorithm to find the value in the Mean payoff game, how-
ever this is only a pseudo polynomial time algorithm because of the linear dependence
on W .
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5 Discounted payoff

Discounted payoff game is yet another game related to Mean payoff (and hence Parity).
Note that the payoffs for both Parity and Mean payoff were prefix independent; this is
in stark contrast with the payoffs for finite games. Discounted payoff lies between these
two - the payoff depends on the whole infinite path, but can be predicted to any desired
accuracy by knowing a large enough prefix. This allows for the use of backward induction
like technique (Theorem 2.1) to show (and compute) the minimax equilibrium.

Discounted payoff was introduced in [21] in a more general context of stochastic games.
The following is a deterministic version of it.

5.1 Definition

Like in the Mean payoff, start with a graph G and edge weights

w : E 7→ R

Assume |w(e)| ≤W for every e ∈ E.

The Discounted payoff game with parameter 0 < λ < 1 is Gλw = (G, fλw) with

fλw(v0v1 . . .) = (1− λ)
∞∑
i=0

λiw(vi, vi+1)

Since w is bounded and |λ| < 1, the series converges absolutely.

Gλw has an interpretation in terms of a stopping game – after each round (for instance
after the nth round) a coin (of bias λ) is tossed. With probability (1 − λ) the game
stops and the payoff is w(vn−1, vn), otherwise with probability λ the game proceeds to
the next round. Then fλw(v0v1 . . .) is the expected payoff for the path.

fλw satisfies the following recursive equation

fλw(v0v1 . . .) = (1− λ)w(v0, v1) + λfλw(v1v2 . . .) (5.1)
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5 Discounted payoff

5.2 Optimal strategies

Fix w and λ for the rest of this section – their dependency might be suppressed at some
places. The following presentation is adopted from the original proof by Shapely in [21]
and can also be found in [24].

Theorem 5.1. Gλw satisfies the minimax equilibrium (2.4). Moreover the value vector
η ∈ RV is the unique fixed point of

F : RV 7→ RV (5.2)

(F (x))u =


min
v∈N(u)

(1− λ)w(u, v) + ληv if u ∈ V0

max
v∈N(u)

(1− λ)w(u, v) + ληv if u ∈ V1

and
ση(u) = argmin

v∈N(u)
(1− λ)w(u, v) + λxv if u ∈ V0

τη(u) = argmax
v∈N(u)

(1− λ)w(u, v) + λxv if u ∈ V1

(5.3)

are positional optimal strategies.

Proof. For any x ∈ RV and every n ∈ N, consider the n step game Hnx = (G, hnx) where

hnx : Pn 7→ R

hnx(v0v1 . . . vn) = (1− λ)

(
n−1∑
i=0

λiw(vi, vi+1)

)
+ λnxvn

For a fixed x, Hnx approximates the game Gλw for large n. Moreover there is a simple
recursion to find the value and optimal strategies for Hnx .

For n = 1 Consider the game H1
x = (G, h1

x) with

h1
x : P1 7→ R

h1
x(v0, v1) =(1− λ)w(v0, v1) + λxv1

Define

σx(u) = argmin
v∈N(u)

(1− λ)w(u, v) + λxv if u ∈ V0

τx(u) = argmax
v∈N(u)

(1− λ)w(u, v) + λxv if u ∈ V1

It is straightforward to check that F (x) is the value vector and (σx, τx) are the
optimal strategies for H1

x.
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For n ≥ 2 We have

hnx(v0v1 . . . vn) = (1− λ)w(v0, v1) + λhn−1
x (v1v2 . . . vn)

Let y is the value vector of Hn−1
x and (σ′, τ ′) be optimal strategies. Then F (y) will

be the value vector of Hnx . Let σ∗ = [σy, σ
′] be the strategy for P0 which plays σy

in the first round and σ′ after that. Similarly let τ∗ = [τy, τ
′] be the corresponding

strategy for P1. Then (σ∗, τ∗) will be the optimal strategies for Hnx .
To show this, let v0v1 . . . vn be a path conforming with σ∗. Since v1 . . . vn conforms
with σ′

hn−1
x (v1v2 . . . vn) ≤ y

hence

hnx(v0v1 . . . vn) = (1− λ)w(v0, v1) + λhn−1
x (v1v2 . . . vn)

≤ (1− λ)w(v0, v1) + λy

≤ F (y)v0

The last inequality follows as v0v1 conforms with σy. Similarly if v0v1 . . . vn con-
forms with τ∗, hnx(v0v1 . . . vn) ≥ F (y)v0 . Hence F (y) is the value vector for Hnx .

Hence by using induction this shows that Fn(x) is the value vector for Hnx . Let σ∗ =
[σFn−1(y), . . . σF (y), σy] be the strategy that plays σFn−1(y) in the first round, σFn−2(y)

in the second round and so on. Similarly let τ∗ = [τFn−1(y), . . . τy]. Then (σ∗, τ∗) are

optimal strategies for Hnx . Since Hnx approximates Gλw as n → ∞, we expect Fn(x) to
converge to the value vector for Gλw.

Now we will use this to show that Gλw has a minimax equilibrium. Consider the norm
‖.‖∞ on RV by

‖x‖∞ = max
v∈V
|xv|

Then (using |maxi∈I ai −maxi∈I bi| ≤ maxi∈I |ai − bi| and similarly for min)

‖F (x)− F (y)‖∞ ≤ λ ‖x− y‖∞

Hence F is a contraction mapping with coefficient λ ∈ (0, 1). It follows that (see [20,
Chapter 9]) for any x, limn F

n(x) = η where F (η) = η is the unique fixed point of F .
Since Fm(η) = η for any m, Hmη has value η and σ∗ = ση, τ

∗ = τη are positional optimal
strategies.

Let v0v1 . . . be a path in G which conforms with ση then

hnx(v0v1 . . . vn) = (1− λ)

(
n−1∑
i=0

λiw(vi, vi+1)

)
+ λnηvn ≤ ηv0
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for every n. Letting n→∞
fλw(v0v1 . . .) ≤ ηv0

Similarly when v0v1 . . . conforms with τη

fλw(v0v1 . . .) ≥ ηv0

This shows that η is the value vector for Gλw and (ση, τη) are positional optimal strategies.

Like in the Mean payoff case, positional determinacy gives us constraints on the optimal
value.

Corollary 5.2. Suppose w is integer valued. Let η be the payoff vector for the game Gλw
and let v ∈ V . Then ηv = p(λ)/q(λ) for polynomials p, q of degree ≤ |V |+ 1 with integer
coefficients bounded by 4|W |.

Proof. Let η be the value vector for Gλw. Since (ση, τη) are positional optimal

πvσητη = v0v1 . . . vr−1(vrvr+1 . . . vk)
ω

for some k ≤ |V | and fλw(πvσητη) = ηv. But

fλw(πvσητη) = (1− λ)
∞∑
i=0

λiw(vi, vi+1)

= (1− λ)

[
r−1∑
i=0

λiw(vi, vi+1) +

(
k∑
i=r

λiw(vi, vi+1)

)
(1 + λk−r+1 + λ2(k−r+1) . . .)

]

= (1− λ)

[
r−1∑
i=0

λiw(vi, vi+1) +

(
k∑
i=r

λiw(vi, vi+1)

)
1

1− λk−r+1

]

=
p(λ)

q(λ)

p, q are polynomial of degree ≤ |V |+ 1 (take q(λ) = 1− λk−r+1) and all the coefficients
are integers bounded modulus by 4W . Note that coefficients not only depend on v, w
but even on λ (via (ση, τη)).
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5.3 Mean payoff to Discounted payoff

For any bounded sequence (ai)i∈N

(1− λ)
∞∑
i=0

aiλ
i = (1− λ)2 1

(1− λ)

∞∑
i=0

aiλ
i

= (1− λ)2(1 + λ+ λ2 + . . .)(
∞∑
i=0

aiλ
i)

= (1− λ)2
∞∑
k=0

(
k∑
i=0

ai

)
λk

Hence we have

(1− λ)

∞∑
i=0

aiλ
i = (1− λ)2

∞∑
k=0

(
k∑
i=0

ai

)
λk (5.4)

And a special case (put ai = 1 for each i)

(1− λ)2
∞∑
k=0

(k + 1)λk = 1 (5.5)

Using (5.4) and (5.5) one can prove the following.

Theorem 5.3. Let uλ = (1− λ)
∑∞

i=0 aiλ
i and assume limn→∞

1
n+1

∑n
i=0 ai = α. Then

limλ→1− uλ = α.

Hence as λ → 1 we expect the discounted game Gλw to approximate the mean payoff
game Gw. Now we will show this.

Theorem 5.4. Consider a graph (G,w) with edge weights bounded (in modulus) by
W > 0. Denote by Gw the Mean payoff game on this graph and by Gλw the discounted
game with parameter λ. Let η be the value vector for Gw and ηλ be the value vector for
Gλw. Then

‖η − ηλ‖∞ ≤ 2|V |W (1− λ)

Proof. From (5.4)

fλw(v0v1 . . .) = (1− λ)
∞∑
i=0

λiw(vi, vi+1)

= (1− λ)2
∞∑
k=0

(
k∑
i=0

w(vi, vi+1)

)
λk (5.6)
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Let (σ∗, τ∗) be the stack based optimal strategies for Gw and let (σλ, τλ) be the optimal
strategies for Gλw.

Let π = v0v1 . . . be an infinite path in G that conforms with σ∗. Then using the same
argument as used in the proof of Theorem 4.3 we have from (4.5)

k∑
i=0

w(vi, vi+1) ≤ (k + 1)ηv0 + 2|V |W

Combining this with (5.6)

fλw(π) ≤ (1− λ)2
∞∑
k=0

((k + 1)ηv0 + 2|V |W )λk

= ηv0(1− λ)2
∞∑
k=0

(k + 1)λk + 2|V |W (1− λ)2(
∞∑
k=0

λk)

= ηv0 + 2|V |W (1− λ) (Using (5.5) and
∑∞

i=0 λ
i = 1

1−λ)

Since π was any path that conformed with σ∗, consider πvσ∗τλ . This shows

(ηλ)v ≤ fλw(πvσ∗τλ) ≤ ηv + 2|V |W (1− λ) (5.7)

for every v ∈ V .

Similarly if π = v0v1 . . . is an infinite path in G that conforms with τ∗, from (4.6)

k∑
i=0

w(vi, vi+1) ≥ (k + 1)ηv0 − 2|V |W

Similar to the above, this combined with (5.6) for πvσλτ∗ will give

(ηλ)v ≥ fλw(πvσλτ∗) ≥ ηv − 2|V |W (1− λ) (5.8)

(5.7) and (5.8) together show that

‖η − ηλ‖∞ ≤ 2|V |W (1− λ)

Consider the following decision problem for Discounted payoff games

Decision Problem (DISC). Given a graph G, vertex v, edge weights w, a discount λ
and threshold a t. Determine whether val(Gλw, v) ≥ t1 or not.

1We can assume t = 0 by considering w′(e) = w(e)− t instead of w
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Corollary 5.5. Given (G, v) with an integer valued w, MP can be reduced to an instance
of DISC in polynomial time.

Proof. Let W be the maximum modulus among all the edge-weights in w. Set λ = 1−
1

8|V |2W and t = 3
4|V | . For this choice of λ by Theorem 5.4, | val(Gw, v)−val(Gλw, v)| ≤ 1

4|V | .

Combine this with Corollary 4.2 to obtain

val(Gw, v) > 0 =⇒ val(Gw, v) ≥ 1

|V |
=⇒ val(Gλw, v) ≥ 3

4|V |

and

val(Gλw, v) ≥ 3

4|V |
=⇒ val(Gw, v) ≥ 1

2|V |
> 0

this shows that val(Gw, v) > 0 ⇐⇒ val(Gλw) ≥ t. Computing W , λ and t can be done
time polynomial in the input size – hence this is a polynomial time reduction.

5.4 Complexity

By Theorem 5.1, once the unique fixed point η = F (η) is found, finding the optimal
strategies (ση, τη) is easy. Hence to solve Gλw one has to find the fixed point of F .

By Corollary 5.2, the value vector has a polynomial representation in the input size.
Hence one can guess a possible value η′ (a polynomial size certificate) for the value
vector and verify that F (η′) = η′. Since F has a unique fixed point there will be a
unique guess which works. Hence this shows that

Theorem 5.6. DISC is in UP ∩ coUP.

UP is the class of problems accepted by a polynomial time unambiguous Turing
Machine. An unambiguous Turing machine is a nondeterministic Turing machine
which has at most one accepting run. Hence P ⊆ UP ⊆ NP.

As mentioned already, for any x, limn F
n(x) = η. Hence another way to compute η is

to compute Fn(0) for large n to get to the desired accuracy.

5.5 Summary

We have defined Discounted payoff games and shown that they have positional optimal
strategies (Theorem 5.1). The value vector is the fixed point of the operator F and
can be computed by taking repeated iterates. Next we show that the Discounted payoff
value vector approximates the value vector for the corresponding Mean payoff game as
λ→ 1 (Theorem 5.4). This is used to give a polynomial time reduction from the decision
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5 Discounted payoff

problem for Mean payoff MP to that for Discounted payoff DISC (Corollary 5.5). Finally
we show that DISC is in UP ∩ coUP (Theorem 5.6).
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6 Conclusion

We have introduced Parity, Mean payoff and Discounted payoff games. All of these games
fit into the framework presented in Chapter 2 and have positional optimal strategies.
In fact, [10] provides sufficient conditions (called fairly mixing property) on the payoff
function f , under which the game (G, f) will have positional optimal strategies, and
shows that Parity, Mean and Discounted payoffs satisfy those conditions.

Both Parity and Mean payoff games have prefix independent payoffs. Discounted payoff
(with discount parameter λ) is prefix dependent, but the dependence on the prefix
decreases as λ → 1. On the other hand for a fixed λ < 1, the discounted payoff can
be determined to any desired accuracy by knowing a large enough prefix. As a result,
for a fixed λ, finding the value for the discounted game Gλw is easy, but as λ → 1
the Discounted payoff approximates the Mean payoff (Theorem 5.4) and the problem
becomes difficult.

The decision problem for Parity games PAR can be reduced in polynomial time to the
decision problem for Mean payoff games MP (Section 4.4). This was made possible by the
reduction between their corresponding finite games (which are very similar). Using the
relation between Mean and Discounted payoff games MP can be reduced in polynomial
time to the decision problem for Discounted payoff games DISC (Corollary 5.5)

Hence in this order – PAR, MP, DISC, each problem is harder than the previous. By
Theorem 5.6, DISC (the hardest of them) is in UP ∩ coUP – hence each of them is in
UP∩ coUP. Whether any of them have a polynomial time solution or not, is not known.
There have been many attempts at better algorithms for PAR (see [22, Chap 7]), but
recently [9] provided exponential lower bounds for some of the approaches which seemed
promising.

From here one could look at Simple Stochastic Games (SSG) [5]. [24] provides a reduction
from DISC to SSG. Hence SSG are harder than all the games presented here, however
they too are in UP ∩ coUP (and have positional strategies). [4] also provides a direct
reduction from PAR to SSG.
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[3] J. Richard Büchi and Lawrence H. Landweber. “Solving sequential conditions by
finite-state strategies”. In: Transactions of the American Mathematical Society
138 (1969), pp. 295–311. issn: 0002-9947, 1088-6850. doi: 10.1090/S0002-9947-
1969-0280205-0. url: http://www.ams.org/tran/1969-138-00/S0002-9947-
1969-0280205-0/.
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