

Miheer Dewaskar

Chennai Mathematical Institute

April 27, 2016

Outline

Finite Duration Games

Win-Lose Games Payoff Games

Infinite Duration Games

Parity Games Mean Payoff Games

Simple Stochastic Games

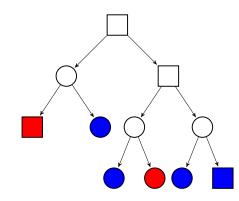
Outline

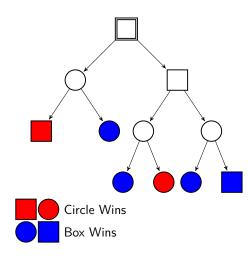
Finite Duration Games

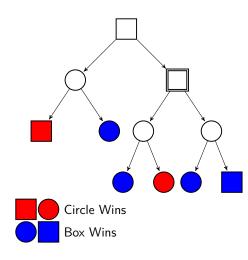
Win-Lose Games Payoff Games

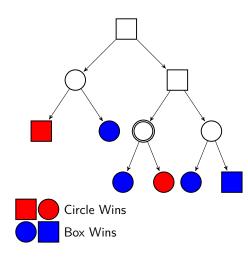
Infinite Duration Games

Simple Stochastic Games

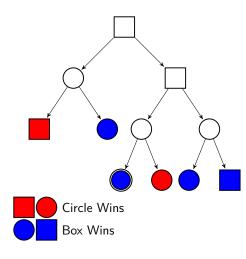


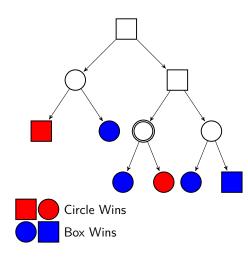




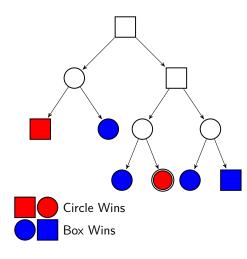


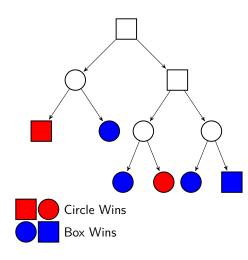
Box wins



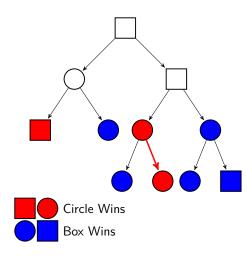


Circle wins

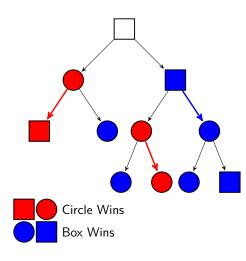




Algorithm for optimal play

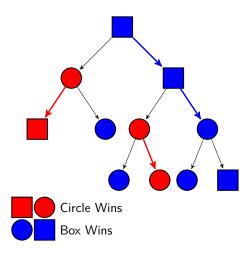


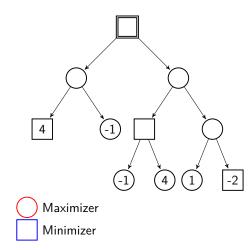
Algorithm for optimal play

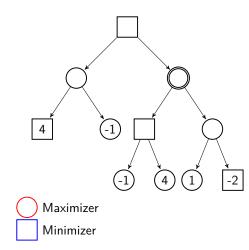


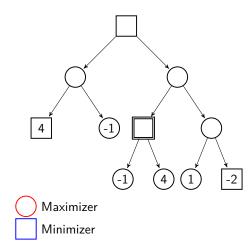
Algorithm for optimal play

Box can always win



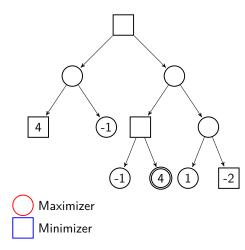


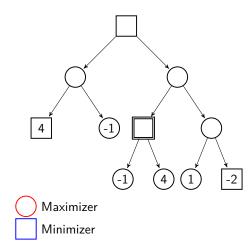




Payoff

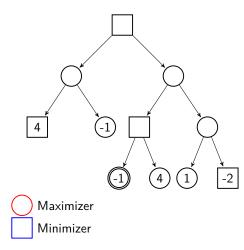
Min pays 4 units to Max



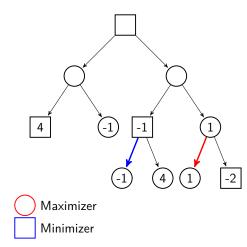


Payoff

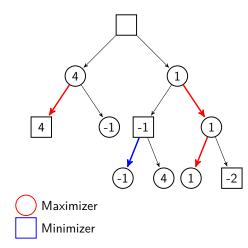
Min pays -1 units to Max



MinMax algorithm



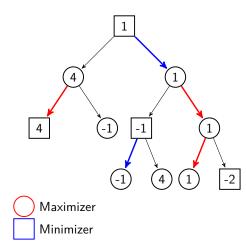
MinMax algorithm



MinMax algorithm

 $\mathsf{Value}=1$

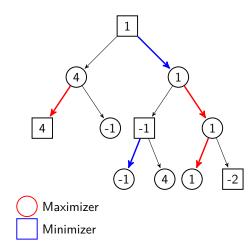
- $\bullet\,$ Min can ensure a payoff ≤ 1
- $\bullet \ {\sf Max} \ {\sf can} \ {\sf ensure} \ {\sf a} \ {\sf payoff} \geq 1$



MinMax algorithm

Value = 1

- Min can ensure a payoff ≤ 1
- Max can ensure a payoff ≥ 1
- When both play optimally the payoff is exactly 1.



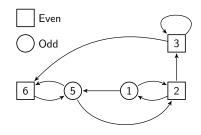
Outline

Finite Duration Games

Infinite Duration Games Parity Games Mean Payoff Games

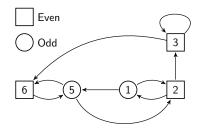
Simple Stochastic Games

Winning conditions



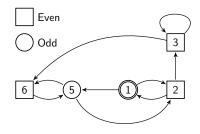
Winning conditions

 $\pi_1 =$



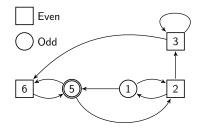
Winning conditions

 $\pi_1 = 1$



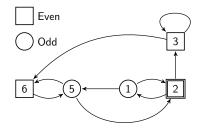
Winning conditions

 $\pi_1 = 1 5$



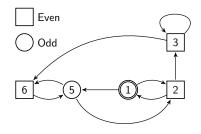
Winning conditions

 $\pi_1=$ 1 5 2



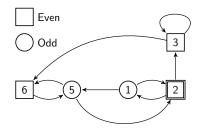
Winning conditions

 $\pi_1 = 1 5 2 1$



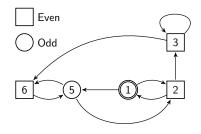
Winning conditions

 $\pi_1=$ 1 5 2 1 2



Winning conditions

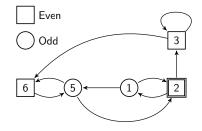
 $\pi_1=$ 1 5 2 1 2 1



Winning conditions

$$\pi_1 = 1 5 2 1 2 1 2 \dots$$

inf $(\pi_1) = \{1, 2\}$ max Inf $(\pi_1) = 2$
Even wins



 $\pi_2 =$

Winning conditions

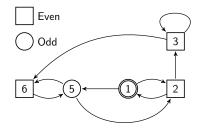
 $\pi_1 = 1 \quad 5 \quad 2 \quad 1 \quad 2 \quad 1 \quad 2 \quad \dots$ inf $(\pi_1) = \{1, 2\}$ max lnf $(\pi_1) = 2$ Even wins

Even Odd 6 5 1 2

Winning conditions

 $\pi_1 = 1 5 2 1 2 1 2 \dots$ inf $(\pi_1) = \{1, 2\}$ max lnf $(\pi_1) = 2$ Even wins

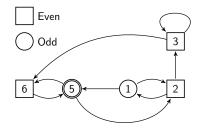
 $\pi_2 = 1$



Winning conditions

 $\pi_1 = 1 5 2 1 2 1 2 \dots$ inf $(\pi_1) = \{1, 2\}$ max lnf $(\pi_1) = 2$ Even wins

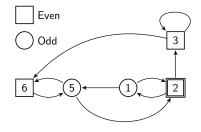
 $\pi_2 = 1 5$



Winning conditions

 $\pi_1 = 1 5 2 1 2 1 2 \dots$ inf $(\pi_1) = \{1, 2\}$ max lnf $(\pi_1) = 2$ Even wins

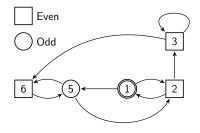
 $\pi_2 = 1 5 2$



Winning conditions

 $\pi_1 = 1 5 2 1 2 1 2 \dots$ inf $(\pi_1) = \{1, 2\}$ max lnf $(\pi_1) = 2$ Even wins

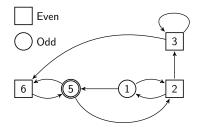
 $\pi_2 = 1 5 2 1$



Winning conditions

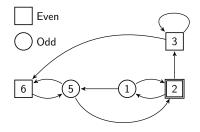
 $\pi_1 = 1 5 2 1 2 1 2 \dots$ inf $(\pi_1) = \{1, 2\}$ max lnf $(\pi_1) = 2$ Even wins

 $\pi_2 = 1 5 2 1 5$



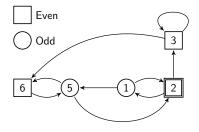
Winning conditions

 $\begin{aligned} \pi_1 &= 1 \quad 5 \quad 2 \quad 1 \quad 2 \quad 1 \quad 2 \quad \dots \\ \inf(\pi_1) &= \{1,2\} \quad \max \inf(\pi_1) = 2 \\ \hline \text{Even wins} \end{aligned}$



Winning conditions

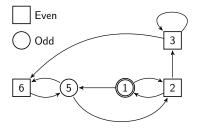
 $\begin{aligned} \pi_1 &= 1 \quad 5 \quad 2 \quad 1 \quad 2 \quad 1 \quad 2 \quad \dots \\ \inf(\pi_1) &= \{1,2\} \quad \max \inf(\pi_1) = 2 \\ \hline \text{Even wins} \end{aligned}$



 $\pi =$

Winning conditions

 $\begin{aligned} \pi_1 &= 1 \quad 5 \quad 2 \quad 1 \quad 2 \quad 1 \quad 2 \quad \dots \\ \inf(\pi_1) &= \{1,2\} \quad \max \inf(\pi_1) = 2 \\ \hline \text{Even wins} \end{aligned}$



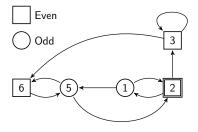
 $\pi = 1$

Winning conditions

 $\begin{aligned} \pi_1 &= 1 \quad 5 \quad 2 \quad 1 \quad 2 \quad 1 \quad 2 \quad \dots \\ \inf(\pi_1) &= \{1,2\} \quad \max \inf(\pi_1) = 2 \\ \hline \text{Even wins} \end{aligned}$

$$\pi_2 = 1 5 2 1 5 2 \dots$$

 $\inf(\pi_2) = \{1, 2, 5\} \max \inf(\pi_2) = 5$
Odd wins



 $\pi = 1 2$

Winning conditions

 $\begin{aligned} \pi_1 &= 1 \quad 5 \quad 2 \quad 1 \quad 2 \quad 1 \quad 2 \quad \dots \\ \inf(\pi_1) &= \{1,2\} \quad \max \inf(\pi_1) = 2 \\ \hline \text{Even wins} \end{aligned}$

$$\pi_2 = 1 5 2 1 5 2 \dots$$

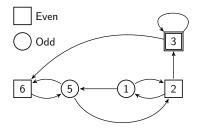
 $\inf(\pi_2) = \{1, 2, 5\} \max \inf(\pi_2) = 5$
Odd wins

Even Odd 36 5 1 2

 $\pi=$ 1 2 3

Winning conditions

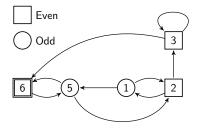
 $\begin{aligned} \pi_1 &= 1 \quad 5 \quad 2 \quad 1 \quad 2 \quad 1 \quad 2 \quad \dots \\ \inf(\pi_1) &= \{1,2\} \quad \max \inf(\pi_1) = 2 \\ \hline \text{Even wins} \end{aligned}$



 $\pi = 1 \ 2 \ 3 \ 3$

Winning conditions

 $\pi_1 = 1 5 2 1 2 1 2 ...$ inf $(\pi_1) = \{1, 2\}$ max lnf $(\pi_1) = 2$ Even wins



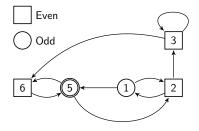
 $\pi = 1 \ 2 \ 3 \ 3 \ 6$

Winning conditions

 $\pi_1 = 1 5 2 1 2 1 2 ...$ inf $(\pi_1) = \{1, 2\}$ max lnf $(\pi_1) = 2$ Even wins

$$\pi_2 = 1 5 2 1 5 2 \dots$$

 $\inf(\pi_2) = \{1, 2, 5\} \max \inf(\pi_2) = 5$
Odd wins



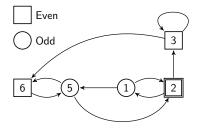
 $\pi = 1 \ 2 \ 3 \ 3 \ 6 \ 5$

Winning conditions

 $\pi_1 = 1 5 2 1 2 1 2 ...$ inf $(\pi_1) = \{1, 2\}$ max lnf $(\pi_1) = 2$ Even wins

$$\pi_2 = 1 5 2 1 5 2 \dots$$

 $\inf(\pi_2) = \{1, 2, 5\} \max \inf(\pi_2) = 5$
Odd wins



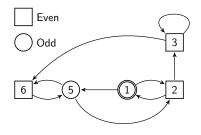
 $\pi =$ 1 2 3 3 6 5 2

Winning conditions

 $\pi_1 = 1 5 2 1 2 1 2 ...$ inf $(\pi_1) = \{1, 2\}$ max lnf $(\pi_1) = 2$ Even wins

$$egin{array}{rcl} \pi_2 = & 1 & 5 & 2 & 1 & 5 & 2 & \ldots \ \inf(\pi_2) = \{1,2,5\} & \max \inf(\pi_2) = 5 \ \operatorname{Odd\ wins} \end{array}$$

 $\pi = 1 \ 2 \ 3 \ 3 \ 6 \ 5 \ 2 \ 1 \ \dots$ Parity(max lnf(π)) wins

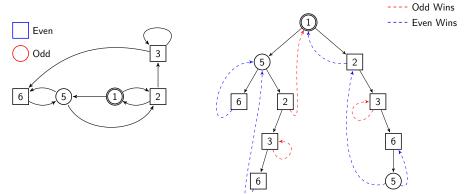


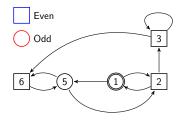
Questions

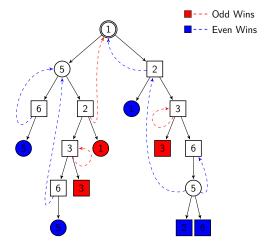
- Does either Even or Odd have a strategy to always win?
- If so, then how to compute the winning strategy?

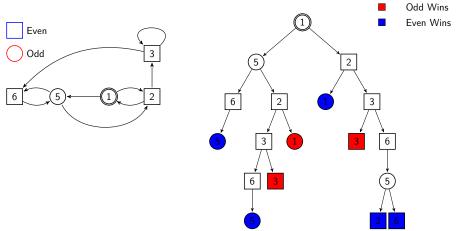
Questions

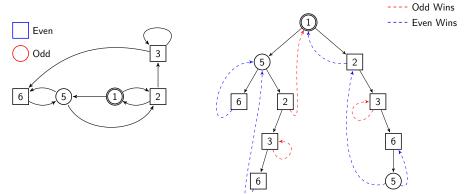
- Does either Even or Odd have a strategy to always win? Yes
- If so, then how to compute the winning strategy? By reduction to finite duration games

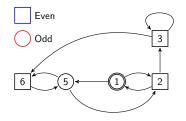




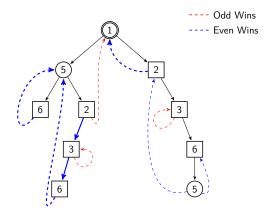








Even has a winning strategy

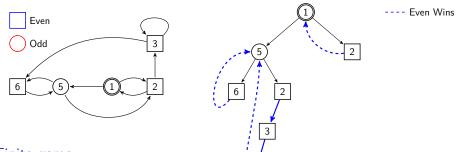




6

Finite game

Every loop has max priority even

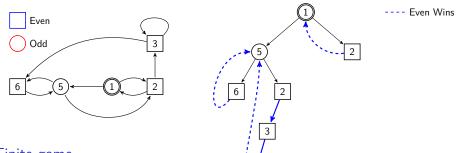


6

Finite game

Every loop has max priority even

Extension to infinite plays



6

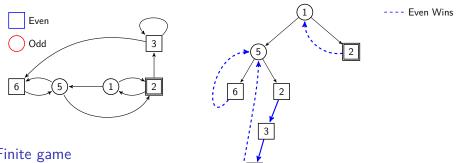
Finite game

Every loop has max priority even

Extension to infinite plays

 $\pi = 1$

 $\mathsf{Stack} = 1$



6

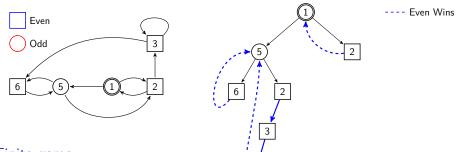
Finite game

Every loop has max priority even

Extension to infinite plays

 $\pi = 1 2$

Stack = 1 2



6

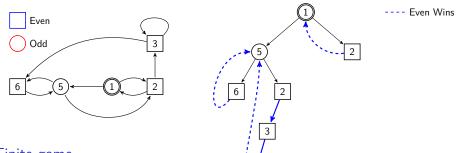
Finite game

Every loop has max priority even

Extension to infinite plays

 $\pi=$ 1 2 1

 $Stack = 1 \ 2 \ 1$



6

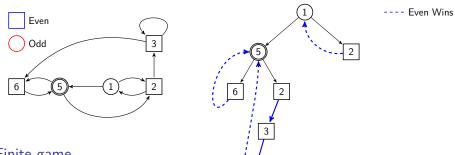
Finite game

Every loop has max priority even

Extension to infinite plays

 $\pi=$ 1 2 1

 $\mathsf{Stack} = 1$



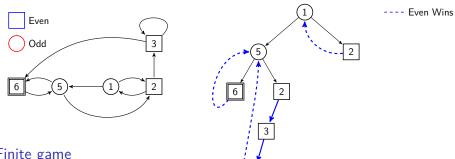
6

Finite game

Every loop has max priority even

Extension to infinite plays

Stack = 1 5



6

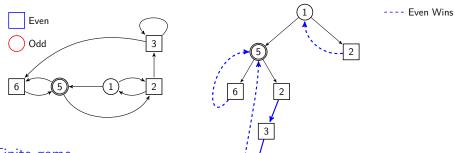
Finite game

Every loop has max priority even

Extension to infinite plays

 $\pi = 1 \ 2 \ 1 \ 5 \ 6$

Stack = 1 5 6



6

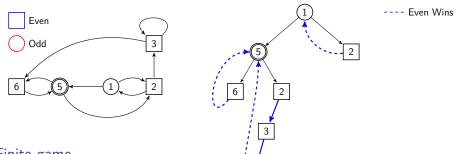
Finite game

Every loop has max priority even

Extension to infinite plays

 $\pi=$ 1 2 1 5 6 5

Stack = 1 5 6 5



6

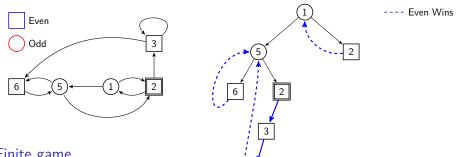
Finite game

Every loop has max priority even

Extension to infinite plays

 $\pi=$ 1 2 1 5 6 5

Stack = 1 5



6

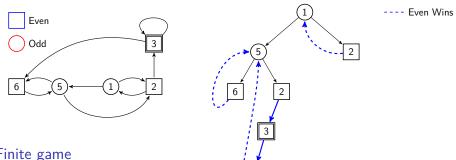
Finite game

Every loop has max priority even

Extension to infinite plays

 $\pi = 1 \ 2 \ 1 \ 5 \ 6 \ 5 \ 2$

Stack = 1 5 2



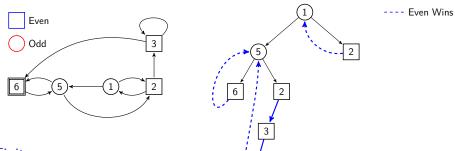
6

Finite game

Every loop has max priority even

Extension to infinite plays $\pi = 1 \ 2 \ 1 \ 5 \ 6 \ 5 \ 2 \ 3$

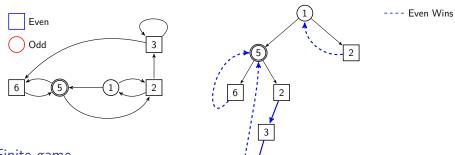
Stack = 1 5 2 3



Finite game

Every loop has max priority even

Extension to infinite plays $\pi = 1 \ 2 \ 1 \ 5 \ 6 \ 5 \ 2 \ 3 \ 6$ Stack = 1 5 2 3 6

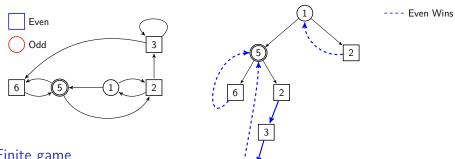


Finite game

Every loop has max priority even

Extension to infinite plays $\pi = 1 \ 2 \ 1 \ 5 \ 6 \ 5 \ 2 \ 3 \ 6 \ 5$ Stack = 1 5 2 3 6 5

• Every eliminated cycle has max priority even



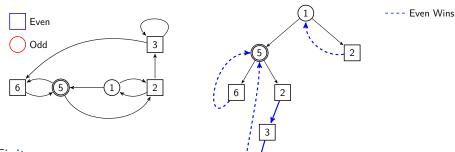
Finite game

Every loop has max priority even

Extension to infinite plays $\pi =$ 1 2 1 5 6 5 2 3 6 5 $Stack = 1 5 \dots$

 Every eliminated cycle has max priority even

Parity Games



Finite game

Every loop has max priority even

Extension to infinite plays $\pi = 1 \ 2 \ 1 \ 5 \ 6 \ 5 \ 2 \ 3 \ 6 \ 5$ Stack = 1 5 ...

- Every eliminated cycle has max priority even
- Hence max Inf priority in π is Even

Parity Games Better Algorithms

 Marcin Jurdzinski and Jens Vöge. "A discrete strategy improvement algorithm for solving parity games". In: *Computer Aided Verification*. Springer, 2000, pp. 202–215

Upper bound¹ : $O\left((n/d)^d\right)$

¹see also Friedmann, "Exponential Lower Bounds for Solving Infinitary Payoff Games and Linear Programs".

Parity Games Better Algorithms

 Marcin Jurdzinski and Jens Vöge. "A discrete strategy improvement algorithm for solving parity games". In: *Computer Aided Verification*. Springer, 2000, pp. 202–215

Upper bound¹ : $O\left((n/d)^d\right)$

 Marcin Jurdzinski, Mike Paterson, and Uri Zwick. "A Deterministic Subexponential Algorithm for Solving Parity Games". In: SIAM Journal on Computing 38.4 (Jan. 2008), pp. 1519–1532

 $n^{O(\sqrt{n})}$

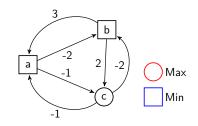
¹see also Friedmann, "Exponential Lower Bounds for Solving Infinitary Payoff Games and Linear Programs".

Outline

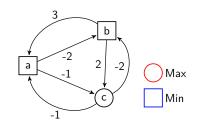
Finite Duration Games

Infinite Duration Games Parity Games Mean Payoff Games

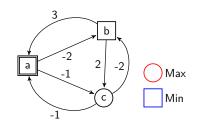
Simple Stochastic Games



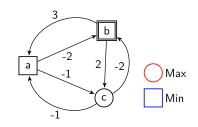
Payoffs



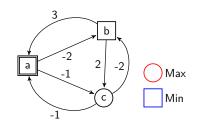
Payoffs



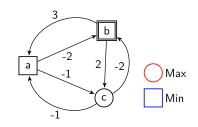
Payoffs



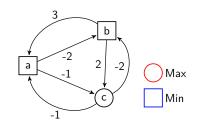
Payoffs



Payoffs



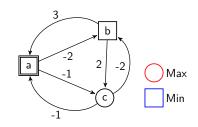
Payoffs



Payoffs

 $(ab)^{\omega}$

а

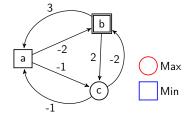


1

Payoffs

 $(ab)^{\omega}$

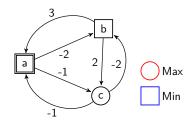
 $a \xrightarrow{-2} b$



Payoffs

 $(ab)^{\omega}$

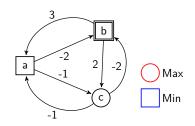
 $\frac{a \xrightarrow{-2} b \xrightarrow{+3} a}{2}$



Payoffs

 $(ab)^{\omega}$

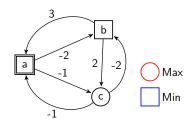
 $\frac{a \xrightarrow{-2} b \xrightarrow{+3} a \xrightarrow{-2} b}{-2 + 3 - 2}$



Payoffs

 $(ab)^{\omega}$

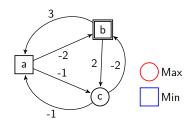
 $\frac{a \xrightarrow{-2} b \xrightarrow{+3} a \xrightarrow{-2} b \xrightarrow{+3} a}{4}$



Payoffs

 $(ab)^{\omega}$

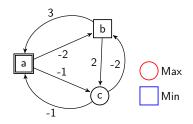
 $\frac{a \xrightarrow{-2} b \xrightarrow{+3} a \xrightarrow{-2} b \xrightarrow{+3} a \xrightarrow{-2} b}{5} a \xrightarrow{-2} b$



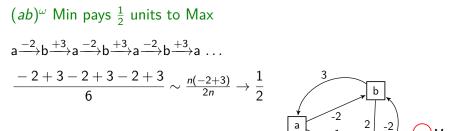
Payoffs

 $(ab)^{\omega}$

 $\frac{a \xrightarrow{-2} b \xrightarrow{+3} a \xrightarrow{-2} b \xrightarrow{+3} a \xrightarrow{-2} b \xrightarrow{+3} a}{6} a \xrightarrow{-2} b \xrightarrow{+3} a}{6}$



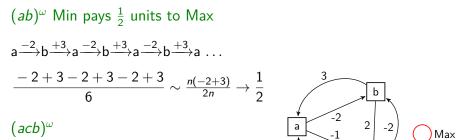
Payoffs



Max Min

с

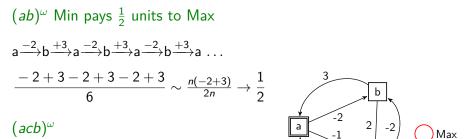
Payoffs



Min

с

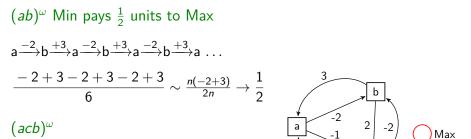
Payoffs



Min

С

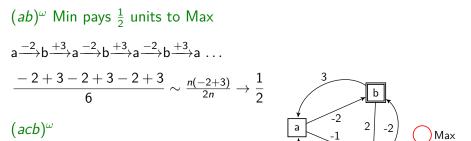
Payoffs



Min

С

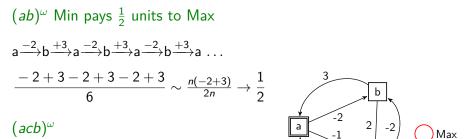
Payoffs



Min

с

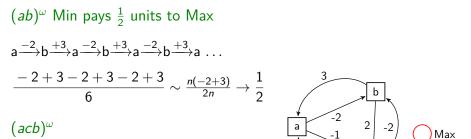
Payoffs



Min

С

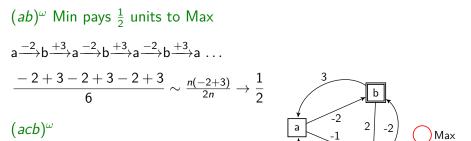
Payoffs



Min

С

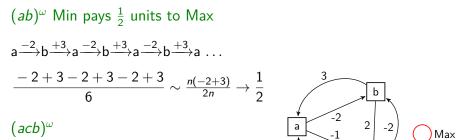
Payoffs



Min

с

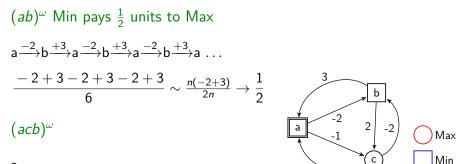
Payoffs



Min

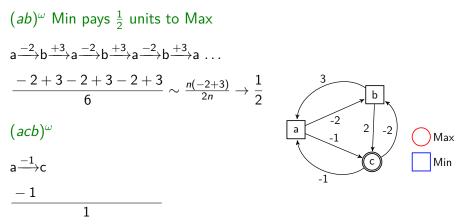
с

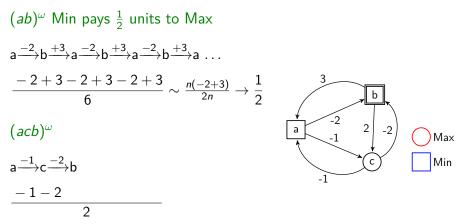
Payoffs

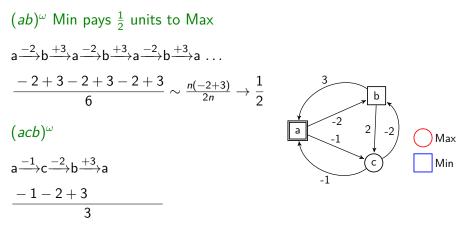


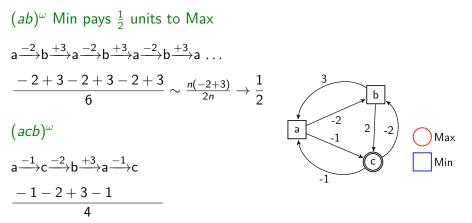
-1

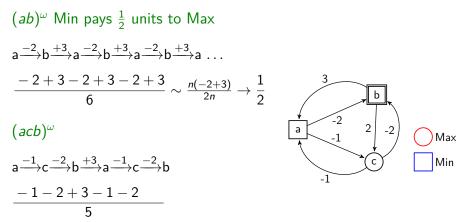
а

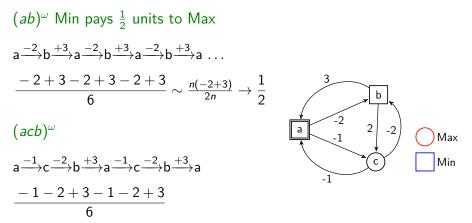


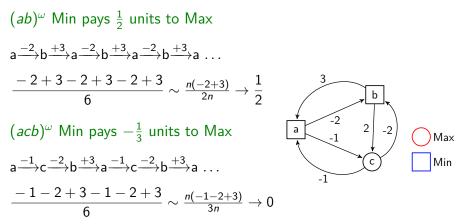




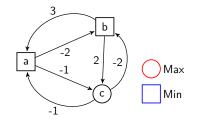






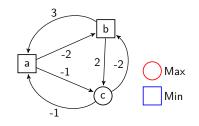


Mean Payoff Games Payoffs $(ab)^{\omega}$ Min pays $\frac{1}{2}$ units to Max $a \xrightarrow{-2} b \xrightarrow{+3} a \xrightarrow{-2} b \xrightarrow{+3} a \xrightarrow{-2} b \xrightarrow{+3} a$ $\frac{-2+3-2+3-2+3}{6} \sim \frac{n(-2+3)}{2n} \to \frac{1}{2}$ $(acb)^{\omega}$ Min pays $-\frac{1}{3}$ units to Max $a \xrightarrow{-1} c \xrightarrow{-2} b \xrightarrow{+3} a \xrightarrow{-1} c \xrightarrow{-2} b \xrightarrow{+3} a$ $\frac{-1-2+3-1-2+3}{3n} \sim \frac{n(-1-2+3)}{3n} \to 0$



- Min tries to minimize lim
- Max tries to maximize lim

Mean Payoff Games Payoffs $(ab)^{\omega}$ Min pays $\frac{1}{2}$ units to Max $a \xrightarrow{-2} b \xrightarrow{+3} a \xrightarrow{-2} b \xrightarrow{+3} a \xrightarrow{-2} b \xrightarrow{+3} a$ $\frac{-2+3-2+3-2+3}{6} \sim \frac{n(-2+3)}{2n} \to \frac{1}{2}$ $(acb)^{\omega}$ Min pays $-\frac{1}{3}$ units to Max $a \xrightarrow{-1} c \xrightarrow{-2} b \xrightarrow{+3} a \xrightarrow{-1} c \xrightarrow{-2} b \xrightarrow{+3} a$ $\frac{-1-2+3-1-2+3}{2} \sim \frac{n(-1-2+3)}{3n} \to 0$



Generally

- Min tries to minimize lim sup
- Max tries to maximize lim inf

Mean Payoff Games

Questions

- Does the game have a value? i.e. is there a v so that
 - Max can ensure $\liminf \geq v$
 - Min can ensure $\limsup v$

Mean Payoff Games

Questions

- Does the game have a value? i.e. is there a v so that
 - Max can ensure $\liminf \geq v$
 - Min can ensure $\limsup v$

Yes

• How to compute the optimal strategies?

Mean Payoff Games

Questions

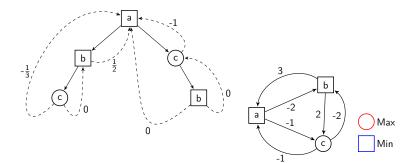
- Does the game have a value? i.e. is there a v so that
 - Max can ensure $\liminf \geq v$
 - Min can ensure $\limsup v \leq v$

Yes

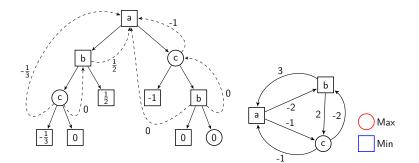
• How to compute the optimal strategies?

Solution using the finite game

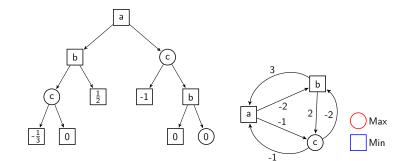
Finite Game



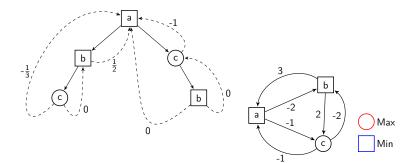
Finite Game



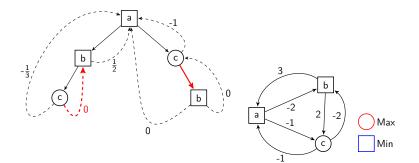
Mean Payoff Finite Game



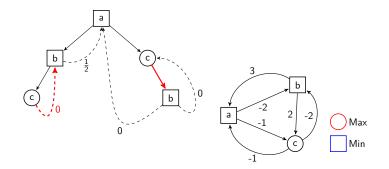
Finite Game



Finite Game

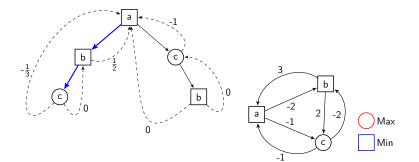


Finite Game

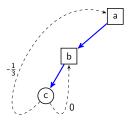


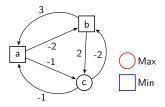
Max can ensure ≥ 0 in the finite game

Finite Game



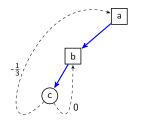
Finite Game

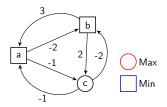




 $\text{Min can ensure} \leq 0$

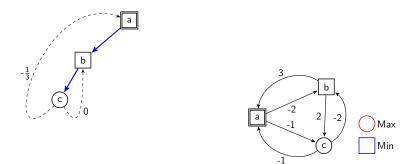
Finite Game





Min can ensure \leq 0 in the mean payoff game too

Finite Game

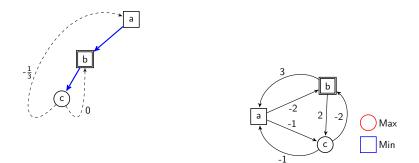


Min can ensure ≤ 0 in the mean payoff game too

 $\pi = a$

 $\mathsf{Stack} = \mathsf{a}$

Finite Game

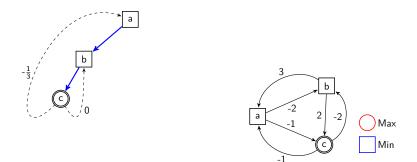


Min can ensure \leq 0 in the mean payoff game too

 $\pi = a b$

 $\mathsf{Stack} = \mathsf{a} \mathsf{b}$

Finite Game

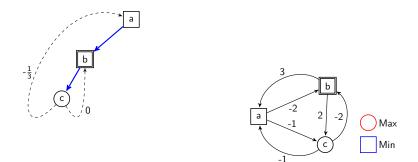


Min can ensure ≤ 0 in the mean payoff game too

 $\pi =$ a b c

 $\mathsf{Stack} = \mathsf{a} \ \mathsf{b} \ \mathsf{c}$

Finite Game

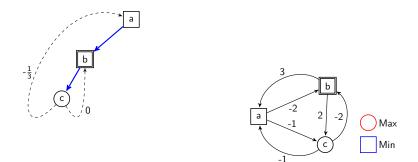


Min can ensure \leq 0 in the mean payoff game too

 $\pi =$ a b c b

Stack = a b c b

Finite Game

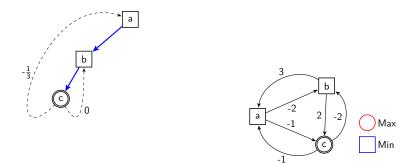


Min can ensure \leq 0 in the mean payoff game too

 $\pi =$ a b c b

 $\mathsf{Stack} = \mathsf{a} \mathsf{b}$

Finite Game

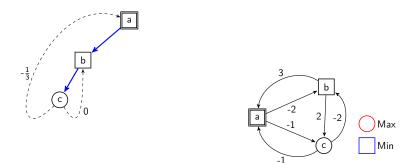


Min can ensure \leq 0 in the mean payoff game too

$$\pi =$$
 a b c b c

 $\mathsf{Stack} = \mathsf{a} \ \mathsf{b} \ \mathsf{c}$

Finite Game

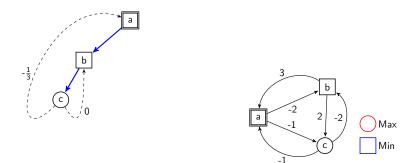


Min can ensure \leq 0 in the mean payoff game too

 $\pi =$ a b c b c a

Stack = a b c a

Finite Game

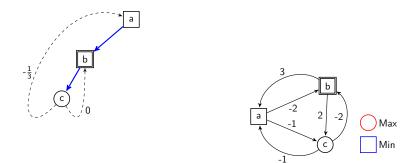


Min can ensure ≤ 0 in the mean payoff game too

 $\pi =$ a b c b c a

 $\mathsf{Stack} = \mathsf{a}$

Finite Game

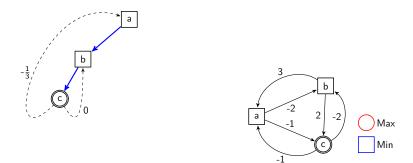


Min can ensure \leq 0 in the mean payoff game too

$$\pi =$$
 a b c b c a b

Stack = a b

Finite Game

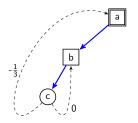


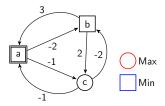
Min can ensure \leq 0 in the mean payoff game too

$$\pi =$$
 a b c b c a b c

 $\mathsf{Stack} = \mathsf{a} \ \mathsf{b} \ \mathsf{c}$

Finite Game





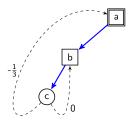
Min can ensure \leq 0 in the mean payoff game too

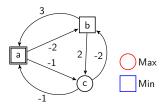
$$\pi=$$
 a b c b c a b c a

Stack = a b c a

Every time a cycle with average value ≤ 0 is eliminated

Finite Game





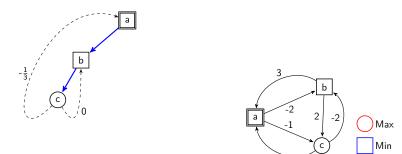
Min can ensure \leq 0 in the mean payoff game too

$$\pi =$$
 a b c b c a b c a

 $\mathsf{Stack} = \mathsf{a}$

Every time a cycle with average value ≤ 0 is eliminated

Finite Game



Min can ensure \leq 0 in the mean payoff game too

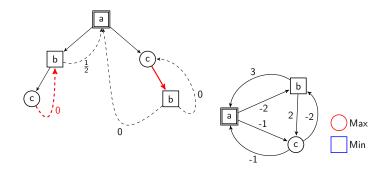
 $\pi =$ a b c b c a b c a

Stack = a

Hence limsup of averages of π is \leq 0

-1

Finite Game



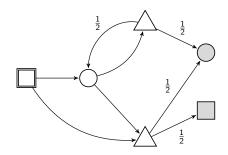
Max can ensure ≥ 0

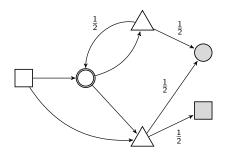
- Similarly Max can ensure liminf of the average is ≥ 0
- Hence the value of Mean payoff game is 0

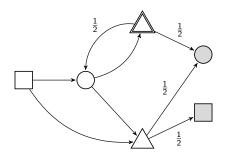
Outline

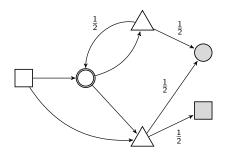
Finite Duration Games

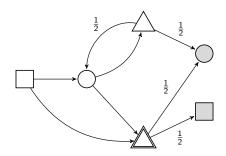
Infinite Duration Games



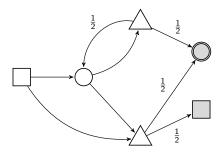


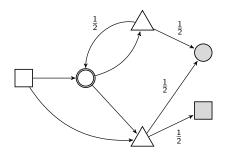


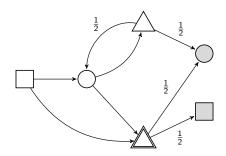




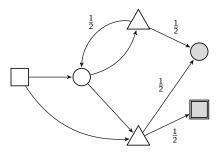
Circle Wins







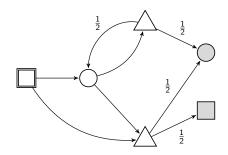
Box Wins

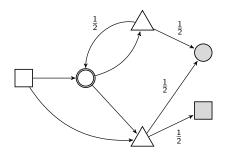


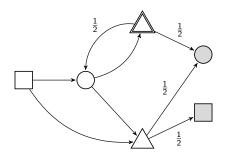
Simple Stochastic Game

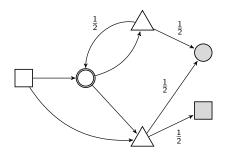


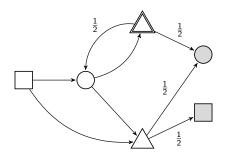
Or

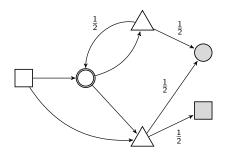


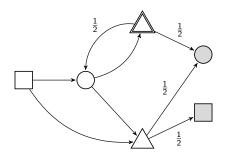


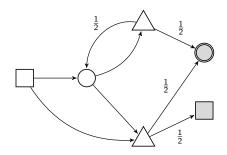




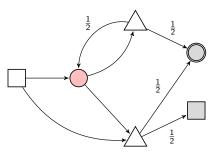


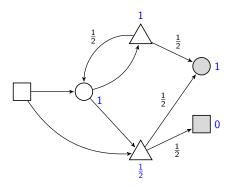


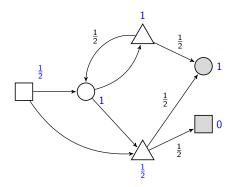




Circle can win from ○ with probability 1







$$v(\odot) = 1$$

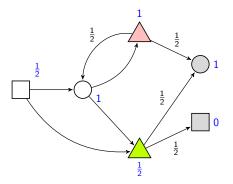
$$v(\Box) = 0$$

$$v(\bigtriangleup) = \frac{1}{2}(v(\odot) + v(\odot))$$

$$v(\bigtriangleup) = \frac{1}{2}(v(\odot) + v(\Box))$$

$$v(\odot) = \max\{v(\bigtriangleup), v(\bigtriangleup)\}$$

$$v(\Box) = \min\{v(\odot), v(\bigtriangleup)\}$$



$$v(\circ) = 1$$

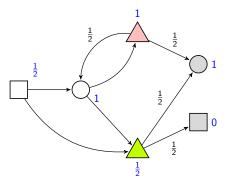
$$v(\Box) = 0$$

$$v(\bigtriangleup) = \frac{1}{2}(v(\circ) + v(\circ))$$

$$v(\bigtriangleup) = \frac{1}{2}(v(\circ) + v(\Box))$$

$$v(\circ) = \max\{v(\bigtriangleup), v(\bigtriangleup)\}$$

$$v(\Box) = \min\{v(\circ), v(\bigtriangleup)\}$$



These equations have a unique solution.

$$v(\circ) = 1$$

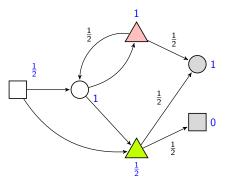
$$v(\Box) = 0$$

$$v(\bigtriangleup) = \frac{1}{2}(v(\circ) + v(\circ))$$

$$v(\bigtriangleup) = \frac{1}{2}(v(\circ) + v(\Box))$$

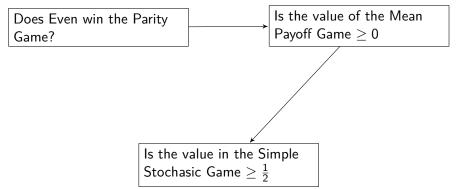
$$v(\circ) = \max\{v(\bigtriangleup), v(\bigtriangleup)\}$$

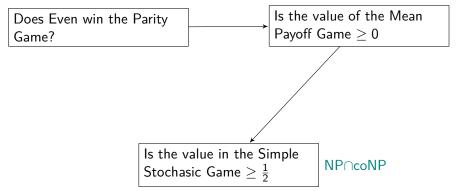
$$v(\Box) = \min\{v(\circ), v(\bigstar)\}$$

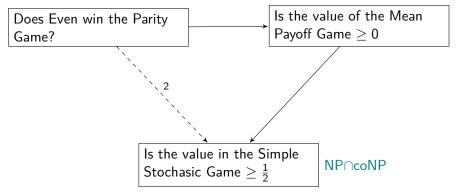


These equations have a unique solution. From state s -

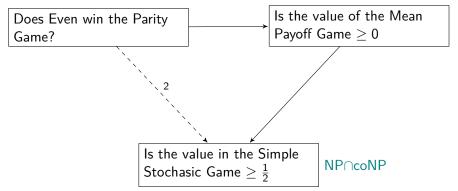
- \circ has a strategy to reach \circ with probability $\geq v(s)$
- \square has a strategy to reach \square with probability $\ge 1 v(s)$







²Chatterjee and Fijalkow, "A reduction from parity games to simple stochastic games".



Open Problem

Is there a polynomial time algorithm for any of them?

²Chatterjee and Fijalkow, "A reduction from parity games to simple stochastic games".

Timeline

- Lloyd S. Shapley. "Stochastic games". In: *Proceedings of the National Academy of Sciences* 39.10 (1953), pp. 1095–1100
- E.A. Emerson and C.S. Jutla. "Tree automata, mu-calculus and determinacy". In: IEEE Comput. Soc. Press, 1991, pp. 368–377
- Anne Condon. "The complexity of stochastic games". In: Information and Computation 96.2 (Feb. 1992), pp. 203–224
- Uri Zwick and Mike Paterson. "The complexity of mean payoff games on graphs". In: *Theoretical Computer Science* 158.1 (May 1996), pp. 343–359
- Marcin Jurdziski. "Deciding the winner in parity games is in UP co-UP". In: Information Processing Letters 68.3 (1998), pp. 119–124

Timeline

- Lloyd S. Shapley. "Stochastic games". In: *Proceedings of the National Academy of Sciences* 39.10 (1953), pp. 1095–1100
- E.A. Emerson and C.S. Jutla. "Tree automata, mu-calculus and determinacy". In: IEEE Comput. Soc. Press, 1991, pp. 368–377
- Anne Condon. "The complexity of stochastic games". In: Information and Computation 96.2 (Feb. 1992), pp. 203–224
- Uri Zwick and Mike Paterson. "The complexity of mean payoff games on graphs". In: *Theoretical Computer Science* 158.1 (May 1996), pp. 343–359
- Marcin Jurdziski. "Deciding the winner in parity games is in UP co-UP". In: Information Processing Letters 68.3 (1998), pp. 119–124

Thank you