Games

Miheer Dewaskar

Chennai Mathematical Institute

April 27, 2016

Outline

Finite Duration Games
Win-Lose Games
Payoff Games

Infinite Duration Games
Parity Games
Mean Payoff Games

Simple Stochastic Games

Outline

Finite Duration Games
Win-Lose Games
Payoff Games

Infinite Duration Games

Simple Stochastic Games

Finite games

Win-Lose game

Finite games

Win-Lose game

Circle Wins
Box Wins

Finite games

Win-Lose game

Circle Wins
Box Wins

Finite games

Win-Lose game

Circle Wins
Box Wins

Finite games

Win-Lose game

Box wins

Circle Wins
Box Wins

Finite games

Win-Lose game

Circle Wins
Box Wins

Finite games

Win-Lose game

Circle wins

Circle Wins
Box Wins

Finite games

Win-Lose game

Circle Wins
Box Wins

Finite games

Win-Lose game

Algorithm for optimal play

Circle Wins
Box Wins

Finite games

Win-Lose game

Algorithm for optimal play

Circle Wins
Box Wins

Finite games

Win-Lose game

Algorithm for optimal play
Box can always win

Circle Wins
Box Wins

Finite games

Payoff game

Maximizer
\square Minimizer

Finite games

Payoff game

Maximizer
\square Minimizer

Finite games

Payoff game

Maximizer
\square Minimizer

Finite games

Payoff game

Payoff

Min pays 4 units to Max

Finite games

Payoff game

Maximizer
\square Minimizer

Finite games

Payoff game

Payoff

Min pays -1 units to Max

\square Maximizer
\square Minimizer

Finite games

Payoff game

MinMax algorithm

Finite games

Payoff game

MinMax algorithm

Finite games

Payoff game

MinMax algorithm
Value $=1$

- Min can ensure a payoff ≤ 1
- Max can ensure a payoff ≥ 1

Finite games

Payoff game

MinMax algorithm
Value $=1$

- Min can ensure a payoff ≤ 1
- Max can ensure a payoff ≥ 1
- When both play optimally the payoff is exactly 1 .

Maximizer
\square Minimizer

Outline

Finite Duration Games

Infinite Duration Games
Parity Games
Mean Payoff Games

Simple Stochastic Games

Parity Games

Winning conditions

Parity Games

Winning conditions
$\pi_{1}=$

Parity Games

Winning conditions

$$
\pi_{1}=1
$$

Parity Games

Winning conditions

$$
\pi_{1}=15
$$

Parity Games

Winning conditions

$$
\pi_{1}=152
$$

Parity Games

Winning conditions

$$
\pi_{1}=1521
$$

Parity Games

Winning conditions

$$
\pi_{1}=15212
$$

Parity Games

Winning conditions

$$
\pi_{1}=\begin{array}{llllll}
1 & 5 & 2 & 1 & 21
\end{array}
$$

Parity Games

Winning conditions

$$
\begin{aligned}
& \pi_{1}=1
\end{aligned} \begin{array}{lllllllllll}
& 2 & 1 & 2 & 1 & 2 & \ldots \\
\inf \left(\pi_{1}\right)=\{1,2\} & \max \operatorname{lnf}\left(\pi_{1}\right)=2
\end{array}
$$

Even wins

Parity Games

Winning conditions

$$
\begin{aligned}
& \pi_{1}=1
\end{aligned} \begin{array}{lllllllllll}
& 2 & 1 & 2 & 1 & 2 & \ldots \\
\inf \left(\pi_{1}\right)=\{1,2\} & \max \operatorname{lnf}\left(\pi_{1}\right)=2
\end{array}
$$

Even wins
$\pi_{2}=$

Parity Games

Winning conditions

$$
\begin{aligned}
& \pi_{1}=1
\end{aligned} \begin{array}{lllllllllll}
& 2 & 1 & 2 & 1 & 2 & \ldots \\
\inf \left(\pi_{1}\right)=\{1,2\} & \max \operatorname{lnf}\left(\pi_{1}\right)=2
\end{array}
$$

Even wins

$$
\pi_{2}=1
$$

Parity Games

Winning conditions

$$
\begin{aligned}
& \pi_{1}=1
\end{aligned} \begin{array}{lllllllllll}
& 2 & 1 & 2 & 1 & 2 & \ldots \\
\inf \left(\pi_{1}\right)=\{1,2\} & \max \operatorname{lnf}\left(\pi_{1}\right)=2
\end{array}
$$

Even wins

$$
\pi_{2}=15
$$

Parity Games

Winning conditions

$$
\begin{aligned}
& \pi_{1}=1
\end{aligned} \begin{array}{lllllllllll}
& 2 & 1 & 2 & 1 & 2 & \ldots \\
\inf \left(\pi_{1}\right)=\{1,2\} & \max \operatorname{lnf}\left(\pi_{1}\right)=2
\end{array}
$$

Even wins

$$
\pi_{2}=152
$$

Parity Games

Winning conditions

$$
\begin{aligned}
& \pi_{1}=1
\end{aligned} \begin{array}{lllllllllll}
& 2 & 1 & 2 & 1 & 2 & \ldots \\
\inf \left(\pi_{1}\right)=\{1,2\} & \max \operatorname{lnf}\left(\pi_{1}\right)=2
\end{array}
$$

Even wins

$$
\pi_{2}=1521
$$

Parity Games

Winning conditions

$$
\begin{aligned}
& \pi_{1}=1521212 \\
& \inf \left(\pi_{1}\right)=\{1,2\} \quad \max \operatorname{lnf}\left(\pi_{1}\right)=2
\end{aligned}
$$

Even wins

$$
\pi_{2}=15215
$$

Parity Games

Winning conditions

$$
\begin{aligned}
& \pi_{1}=1
\end{aligned} \begin{array}{lllllll}
5 & 2 & 1 & 2 & 1 & 2
\end{array} \ldots
$$

Even wins
$\pi_{2}=\begin{array}{llllll}1 & 5 & 2 & 5\end{array}$ $\inf \left(\pi_{2}\right)=\{1,2,5\} \quad \max \operatorname{lnf}\left(\pi_{2}\right)=5$ Odd wins

Parity Games

Winning conditions

$$
\begin{aligned}
& \pi_{1}=1
\end{aligned} \begin{array}{lllllllll}
& 2 & 1 & 2 & 1 & 2 & \ldots \\
\inf \left(\pi_{1}\right)=\{1,2\} & \quad \max \operatorname{lnf}\left(\pi_{1}\right)=2
\end{array}
$$

Even wins

$\pi_{2}=152152$ $\inf \left(\pi_{2}\right)=\{1,2,5\} \quad \max \operatorname{lnf}\left(\pi_{2}\right)=5$ Odd wins

$\pi=$

Parity Games

Winning conditions

$$
\begin{aligned}
& \pi_{1}=1
\end{aligned} \begin{array}{lllllllll}
& 2 & 1 & 2 & 1 & 2 & \ldots \\
\inf \left(\pi_{1}\right)=\{1,2\} & \quad \max \operatorname{lnf}\left(\pi_{1}\right)=2
\end{array}
$$

Even wins
$\pi_{2}=152152$ $\inf \left(\pi_{2}\right)=\{1,2,5\} \quad \max \operatorname{lnf}\left(\pi_{2}\right)=5$ Odd wins

$$
\pi=1
$$

Parity Games

Winning conditions

$$
\begin{aligned}
& \pi_{1}=1
\end{aligned} \begin{array}{lllllllll}
& 2 & 1 & 2 & 1 & 2 & \ldots \\
\inf \left(\pi_{1}\right)=\{1,2\} & \quad \max \operatorname{lnf}\left(\pi_{1}\right)=2
\end{array}
$$

Even wins
$\pi_{2}=152152$ $\inf \left(\pi_{2}\right)=\{1,2,5\} \quad \max \operatorname{lnf}\left(\pi_{2}\right)=5$ Odd wins

$$
\pi=12
$$

Parity Games

Winning conditions

$$
\begin{aligned}
& \pi_{1}=1
\end{aligned} \begin{array}{lllllllll}
& 2 & 1 & 2 & 1 & 2 & \ldots \\
\inf \left(\pi_{1}\right)=\{1,2\} & \quad \max \operatorname{lnf}\left(\pi_{1}\right)=2
\end{array}
$$

Even wins

$\pi_{2}=152152$
$\inf \left(\pi_{2}\right)=\{1,2,5\} \quad \max \operatorname{lnf}\left(\pi_{2}\right)=5$
Odd wins

$$
\pi=123
$$

Parity Games

Winning conditions

$$
\begin{aligned}
& \pi_{1}=1
\end{aligned} \begin{array}{lllllllll}
& 2 & 1 & 2 & 1 & 2 & \ldots \\
\inf \left(\pi_{1}\right)=\{1,2\} & \quad \max \operatorname{lnf}\left(\pi_{1}\right)=2
\end{array}
$$

Even wins

$\pi_{2}=152152$ $\inf \left(\pi_{2}\right)=\{1,2,5\} \quad \max \operatorname{lnf}\left(\pi_{2}\right)=5$ Odd wins

$$
\pi=1233
$$

Parity Games

Winning conditions

$$
\begin{aligned}
& \pi_{1}=1
\end{aligned} \begin{array}{lllllllll}
& 2 & 1 & 2 & 1 & 2 & \ldots \\
\inf \left(\pi_{1}\right)=\{1,2\} & \quad \max \operatorname{lnf}\left(\pi_{1}\right)=2
\end{array}
$$

Even wins

$\pi_{2}=152152$
$\inf \left(\pi_{2}\right)=\{1,2,5\} \quad \max \operatorname{lnf}\left(\pi_{2}\right)=5$
Odd wins

$$
\pi=12336
$$

Parity Games

Winning conditions

$$
\begin{aligned}
& \pi_{1}=1
\end{aligned} \begin{array}{lllllllll}
& 2 & 1 & 2 & 1 & 2 & \ldots \\
\inf \left(\pi_{1}\right)=\{1,2\} & \quad \max \operatorname{lnf}\left(\pi_{1}\right)=2
\end{array}
$$

Even wins

$\pi_{2}=152152$
$\inf \left(\pi_{2}\right)=\{1,2,5\} \quad \max \operatorname{lnf}\left(\pi_{2}\right)=5$
Odd wins

$$
\pi=123365
$$

Parity Games

Winning conditions

$$
\begin{aligned}
& \pi_{1}=1
\end{aligned} \begin{array}{lllllllll}
& 2 & 1 & 2 & 1 & 2 & \ldots \\
\inf \left(\pi_{1}\right)=\{1,2\} & \quad \max \operatorname{lnf}\left(\pi_{1}\right)=2
\end{array}
$$

Even wins

$\pi_{2}=152152$
$\inf \left(\pi_{2}\right)=\{1,2,5\} \quad \max \operatorname{lnf}\left(\pi_{2}\right)=5$
Odd wins

$$
\pi=12333652
$$

Parity Games

Winning conditions

$$
\begin{aligned}
& \pi_{1}=1521212 \\
& \inf \left(\pi_{1}\right)=\{1,2\} \quad \max \operatorname{lnf}\left(\pi_{1}\right)=2
\end{aligned}
$$

Even wins
$\pi_{2}=152152$
$\inf \left(\pi_{2}\right)=\{1,2,5\} \quad \max \operatorname{lnf}\left(\pi_{2}\right)=5$
Odd wins

$\pi=\begin{array}{lllllllll}1 & 2 & 3 & 3 & 6 & 5 & 2 & 1 & \ldots\end{array}$
Parity $(\max \operatorname{Inf}(\pi))$ wins

Parity Games

Questions

- Does either Even or Odd have a strategy to always win?
- If so, then how to compute the winning strategy?

Parity Games

Questions

- Does either Even or Odd have a strategy to always win? Yes
- If so, then how to compute the winning strategy? By reduction to finite duration games

Parity Games

Parity Games

Parity Games

Parity Games

Parity Games

Finite game
Even has a winning strategy

Parity Games

Finite game
Every loop has max priority

--- Even Wins even

Parity Games

Finite game
Every loop has max priority
 even

Extension to infinite plays

Parity Games

Finite game
Every loop has max priority
 even

Extension to infinite plays
$\pi=1$
Stack $=1$

Parity Games

Finite game
Every loop has max priority
 even

Extension to infinite plays
$\pi=12$
Stack $=1 \quad 2$

Parity Games

Finite game
Every loop has max priority
 even

Extension to infinite plays
$\pi=121$
Stack $=1 \quad 21$

Parity Games

Finite game
Every loop has max priority
 even

Extension to infinite plays
$\pi=121$
Stack $=1$

Parity Games

Finite game
Every loop has max priority
 even

Extension to infinite plays
$\pi=\begin{array}{llll}1 & 2 & 1 & 5\end{array}$
Stack $=1 \quad 5$

Parity Games

Finite game
Every loop has max priority

Extension to infinite plays
$\pi=\begin{array}{lllll}1 & 2 & 1 & 5 & 6\end{array}$
Stack $=1 \quad 5 \quad 6$

Parity Games

Finite game
Every loop has max priority
 even

Extension to infinite plays
$\pi=\begin{array}{llllll}1 & 2 & 1 & 5 & 6 & 5\end{array}$
Stack $=1565$

Parity Games

Finite game
Every loop has max priority
 even

Extension to infinite plays
$\pi=\begin{array}{llllll}1 & 2 & 1 & 5 & 6 & 5\end{array}$
Stack $=1 \quad 5$

Parity Games

Finite game
Every loop has max priority
 even

Extension to infinite plays
$\pi=\begin{array}{lllllll}1 & 2 & 1 & 5 & 6 & 5 & 2\end{array}$
Stack $=1 \quad 5 \quad 2$

Parity Games

Finite game
Every loop has max priority
 even

Extension to infinite plays
$\pi=\begin{array}{llllllll}1 & 2 & 1 & 5 & 6 & 5 & 2 & 3\end{array}$
Stack $=1 \quad 5 \quad 2 \quad 3$

Parity Games

Finite game
Every loop has max priority
 even

Extension to infinite plays
$\pi=\begin{array}{lllllllll}1 & 2 & 1 & 5 & 6 & 5 & 2 & 3 & 6\end{array}$
Stack $=\begin{array}{lllll}1 & 5 & 2 & 3 & 6\end{array}$

Parity Games

Finite game
Every loop has max priority even

Extension to infinite plays
$\pi=\begin{array}{llllllllll}1 & 2 & 1 & 5 & 6 & 5 & 2 & 3 & 6 & 5\end{array}$

- Every eliminated cycle has max priority even

Stack $=1 \begin{array}{llllll}1 & 5 & 2 & 3 & 6 & 5\end{array}$

Parity Games

Finite game
Every loop has max priority even

Extension to infinite plays
$\pi=\begin{array}{llllllllll}1 & 2 & 1 & 5 & 6 & 5 & 2 & 3 & 6 & 5\end{array}$

- Every eliminated cycle has max priority even

Stack $=1 \quad 5 \quad \ldots$

Parity Games

Finite game
Every loop has max priority even

Extension to infinite plays
$\pi=\begin{array}{llllllllll}1 & 2 & 1 & 5 & 6 & 5 & 2 & 3 & 6 & 5\end{array}$
Stack $=1 \quad 5$

- Every eliminated cycle has max priority even
- Hence max Inf priority in π is Even

Parity Games

Better Algorithms

- Marcin Jurdzinski and Jens Vöge. "A discrete strategy improvement algorithm for solving parity games". In: Computer Aided Verification. Springer, 2000, pp. 202-215

$$
\text { Upper bound }^{1}: O\left((n / d)^{d}\right)
$$

[^0]
Parity Games

Better Algorithms

- Marcin Jurdzinski and Jens Vöge. "A discrete strategy improvement algorithm for solving parity games". In: Computer Aided Verification. Springer, 2000, pp. 202-215

$$
\text { Upper bound }^{1}: O\left((n / d)^{d}\right)
$$

- Marcin Jurdzinski, Mike Paterson, and Uri Zwick. "A Deterministic Subexponential Algorithm for Solving Parity Games". In: SIAM Journal on Computing 38.4 (Jan. 2008), pp. 1519-1532

$$
n^{O(\sqrt{n})}
$$

[^1]
Outline

Finite Duration Games

Infinite Duration Games
Parity Games
Mean Payoff Games

Simple Stochastic Games

Mean Payoff Games

Payoffs

Mean Payoff Games

Payoffs
$(a b)^{\omega}$

Mean Payoff Games

Payoffs
$(a b)^{\omega}$
a

Mean Payoff Games

Payoffs

$(a b)^{\omega}$
$a \xrightarrow{-2} b$
-2

Mean Payoff Games

Payoffs

$(a b)^{\omega}$
$\mathrm{a} \xrightarrow{-2} \mathrm{~b} \xrightarrow{+3} \mathrm{a}$
$-2+3$

Mean Payoff Games

Payoffs
$(a b)^{\omega}$
$a \xrightarrow{-2} b \xrightarrow{+3} a \xrightarrow{-2} b$
$-2+3-2$
3

Mean Payoff Games

Payoffs
$(a b)^{\omega}$
$\mathrm{a} \xrightarrow{-2} \mathrm{~b} \xrightarrow{+3} \mathrm{a} \xrightarrow{-2} \mathrm{~b} \xrightarrow{+3} \mathrm{a}$
$-2+3-2+3$
4

Mean Payoff Games

Payoffs
$(a b)^{\omega}$
$a \xrightarrow{-2} b \xrightarrow{+3} a \xrightarrow{-2} b \xrightarrow{+3} a \xrightarrow{-2} b$
$-2+3-2+3-2$
5

Mean Payoff Games

Payoffs
$(a b)^{\omega}$
$a \xrightarrow{-2} b \xrightarrow{+3} a \xrightarrow{-2} b \xrightarrow{+3} a \xrightarrow{-2} b \xrightarrow{+3} a$
$-2+3-2+3-2+3$

Mean Payoff Games

Payoffs

$(a b)^{\omega}$ Min pays $\frac{1}{2}$ units to Max
$a \xrightarrow{-2} b \xrightarrow{+3} a \xrightarrow{-2} b \xrightarrow{+3} a \xrightarrow{-2} b \xrightarrow{+3} a \ldots$
$\frac{-2+3-2+3-2+3}{6} \sim \frac{n(-2+3)}{2 n} \rightarrow \frac{1}{2}$

Max
$\square \operatorname{Min}$

Mean Payoff Games

Payoffs

$(a b)^{\omega}$ Min pays $\frac{1}{2}$ units to Max
$a \xrightarrow{-2} b \xrightarrow{+3} a \xrightarrow{-2} b \xrightarrow{+3} a \xrightarrow{-2} b \xrightarrow{+3} a \ldots$
$\frac{-2+3-2+3-2+3}{6} \sim \frac{n(-2+3)}{2 n} \rightarrow \frac{1}{2}$
$(a c b)^{\omega}$

Mean Payoff Games

Payoffs

$(a b)^{\omega}$ Min pays $\frac{1}{2}$ units to Max
$a \xrightarrow{-2} b \xrightarrow{+3} a \xrightarrow{-2} b \xrightarrow{+3} a \xrightarrow{-2} b \xrightarrow{+3} a \ldots$
$\frac{-2+3-2+3-2+3}{6} \sim \frac{n(-2+3)}{2 n} \rightarrow \frac{1}{2}$
$(a c b)^{\omega}$

Mean Payoff Games

Payoffs

$(a b)^{\omega}$ Min pays $\frac{1}{2}$ units to Max
$a \xrightarrow{-2} b \xrightarrow{+3} a \xrightarrow{-2} b \xrightarrow{+3} a \xrightarrow{-2} b \xrightarrow{+3} a \ldots$
$\frac{-2+3-2+3-2+3}{6} \sim \frac{n(-2+3)}{2 n} \rightarrow \frac{1}{2}$
$(a c b)^{\omega}$

Mean Payoff Games

Payoffs

$(a b)^{\omega}$ Min pays $\frac{1}{2}$ units to Max
$a \xrightarrow{-2} b \xrightarrow{+3} a \xrightarrow{-2} b \xrightarrow{+3} a \xrightarrow{-2} b \xrightarrow{+3} a \ldots$
$\frac{-2+3-2+3-2+3}{6} \sim \frac{n(-2+3)}{2 n} \rightarrow \frac{1}{2}$
$(a c b)^{\omega}$

Mean Payoff Games

Payoffs

$(a b)^{\omega}$ Min pays $\frac{1}{2}$ units to Max
$a \xrightarrow{-2} b \xrightarrow{+3} a \xrightarrow{-2} b \xrightarrow{+3} a \xrightarrow{-2} b \xrightarrow{+3} a \ldots$
$\frac{-2+3-2+3-2+3}{6} \sim \frac{n(-2+3)}{2 n} \rightarrow \frac{1}{2}$
$(a c b)^{\omega}$

Mean Payoff Games

Payoffs

$(a b)^{\omega}$ Min pays $\frac{1}{2}$ units to Max
$a \xrightarrow{-2} b \xrightarrow{+3} a \xrightarrow{-2} b \xrightarrow{+3} a \xrightarrow{-2} b \xrightarrow{+3} a \ldots$
$\frac{-2+3-2+3-2+3}{6} \sim \frac{n(-2+3)}{2 n} \rightarrow \frac{1}{2}$
$(a c b)^{\omega}$

Mean Payoff Games

Payoffs

$(a b)^{\omega}$ Min pays $\frac{1}{2}$ units to Max
$a \xrightarrow{-2} b \xrightarrow{+3} a \xrightarrow{-2} b \xrightarrow{+3} a \xrightarrow{-2} b \xrightarrow{+3} a \ldots$
$\frac{-2+3-2+3-2+3}{6} \sim \frac{n(-2+3)}{2 n} \rightarrow \frac{1}{2}$
$(a c b)^{\omega}$

Mean Payoff Games

Payoffs

$(a b)^{\omega}$ Min pays $\frac{1}{2}$ units to Max
$a \xrightarrow{-2} b \xrightarrow{+3} a \xrightarrow{-2} b \xrightarrow{+3} a \xrightarrow{-2} b \xrightarrow{+3} a \ldots$
$\frac{-2+3-2+3-2+3}{6} \sim \frac{n(-2+3)}{2 n} \rightarrow \frac{1}{2}$
$(a c b)^{\omega}$

Mean Payoff Games

Payoffs

$(a b)^{\omega}$ Min pays $\frac{1}{2}$ units to Max
$a \xrightarrow{-2} b \xrightarrow{+3} a \xrightarrow{-2} b \xrightarrow{+3} a \xrightarrow{-2} b \xrightarrow{+3} a \ldots$
$\frac{-2+3-2+3-2+3}{6} \sim \frac{n(-2+3)}{2 n} \rightarrow \frac{1}{2}$
$(a c b)^{\omega}$
a

Mean Payoff Games

Payoffs

$(a b)^{\omega}$ Min pays $\frac{1}{2}$ units to Max
$a \xrightarrow{-2} b \xrightarrow{+3} a \xrightarrow{-2} b \xrightarrow{+3} a \xrightarrow{-2} b \xrightarrow{+3} a \ldots$
$\frac{-2+3-2+3-2+3}{6} \sim \frac{n(-2+3)}{2 n} \rightarrow \frac{1}{2}$
$(a c b)^{\omega}$
$a^{-1} c$

- 1

Mean Payoff Games

Payoffs

$(a b)^{\omega}$ Min pays $\frac{1}{2}$ units to Max
$a \xrightarrow{-2} b \xrightarrow{+3} a \xrightarrow{-2} b \xrightarrow{+3} a \xrightarrow{-2} b \xrightarrow{+3} a \ldots$
$\frac{-2+3-2+3-2+3}{6} \sim \frac{n(-2+3)}{2 n} \rightarrow \frac{1}{2}$
$(a c b)^{\omega}$
$a \xrightarrow{-1} c \xrightarrow{-2} b$

$-1-2$

Mean Payoff Games

Payoffs

$(a b)^{\omega}$ Min pays $\frac{1}{2}$ units to Max
$a \xrightarrow{-2} b \xrightarrow{+3} a \xrightarrow{-2} b \xrightarrow{+3} a \xrightarrow{-2} b \xrightarrow{+3} a \ldots$
$\frac{-2+3-2+3-2+3}{6} \sim \frac{n(-2+3)}{2 n} \rightarrow \frac{1}{2}$
$(a c b)^{\omega}$
$a \xrightarrow{-1} c \xrightarrow{-2} b \xrightarrow{+3} a$

$-1-2+3$

Mean Payoff Games

Payoffs

$(a b)^{\omega}$ Min pays $\frac{1}{2}$ units to Max
$a \xrightarrow{-2} b \xrightarrow{+3} a \xrightarrow{-2} b \xrightarrow{+3} a \xrightarrow{-2} b \xrightarrow{+3} a \ldots$
$\frac{-2+3-2+3-2+3}{6} \sim \frac{n(-2+3)}{2 n} \rightarrow \frac{1}{2}$
$(a c b)^{\omega}$
$a \xrightarrow{-1} c \xrightarrow{-2} b \xrightarrow{+3} a \xrightarrow{-1} c$

$-1-2+3-1$

Mean Payoff Games

Payoffs

$(a b)^{\omega}$ Min pays $\frac{1}{2}$ units to Max
$a \xrightarrow{-2} b \xrightarrow{+3} a \xrightarrow{-2} b \xrightarrow{+3} a \xrightarrow{-2} b \xrightarrow{+3} a \ldots$
$\frac{-2+3-2+3-2+3}{6} \sim \frac{n(-2+3)}{2 n} \rightarrow \frac{1}{2}$
$(a c b)^{\omega}$
$a \xrightarrow{-1} c \xrightarrow{-2} b \xrightarrow{+3} a \xrightarrow{-1} c \xrightarrow{-2} b$

$-1-2+3-1-2$

Mean Payoff Games

Payoffs

$(a b)^{\omega}$ Min pays $\frac{1}{2}$ units to Max
$a \xrightarrow{-2} b \xrightarrow{+3} a \xrightarrow{-2} b \xrightarrow{+3} a \xrightarrow{-2} b \xrightarrow{+3} a \ldots$
$\frac{-2+3-2+3-2+3}{6} \sim \frac{n(-2+3)}{2 n} \rightarrow \frac{1}{2}$
$(a c b)^{\omega}$
$a \xrightarrow{-1} c \xrightarrow{-2} b \xrightarrow{+3} a \xrightarrow{-1} c \xrightarrow{-2} b \xrightarrow{+3} a$

$-1-2+3-1-2+3$

Mean Payoff Games

Payoffs

$(a b)^{\omega}$ Min pays $\frac{1}{2}$ units to Max
$a \xrightarrow{-2} b \xrightarrow{+3} a \xrightarrow{-2} b \xrightarrow{+3} a \xrightarrow{-2} b \xrightarrow{+3} a \ldots$
$\frac{-2+3-2+3-2+3}{6} \sim \frac{n(-2+3)}{2 n} \rightarrow \frac{1}{2}$
$(a c b)^{\omega}$ Min pays $-\frac{1}{3}$ units to Max
$a \xrightarrow{-1} c \xrightarrow{-2} b \xrightarrow{+3} a \xrightarrow{-1} c \xrightarrow{-2} b \xrightarrow{+3} a \ldots$

$\frac{-1-2+3-1-2+3}{6} \sim \frac{n(-1-2+3)}{3 n} \rightarrow 0$

Mean Payoff Games

Payoffs

$(a b)^{\omega}$ Min pays $\frac{1}{2}$ units to Max
$a \xrightarrow{-2} b \xrightarrow{+3} a \xrightarrow{-2} b \xrightarrow{+3} a \xrightarrow{-2} b \xrightarrow{+3} a \ldots$
$\frac{-2+3-2+3-2+3}{6} \sim \frac{n(-2+3)}{2 n} \rightarrow \frac{1}{2}$
$(a c b)^{\omega}$ Min pays $-\frac{1}{3}$ units to Max
$a \xrightarrow{-1} c \xrightarrow{-2} b \xrightarrow{+3} a \xrightarrow{-1} c \xrightarrow{-2} b \xrightarrow{+3} a \ldots$

$\frac{-1-2+3-1-2+3}{6} \sim \frac{n(-1-2+3)}{3 n} \rightarrow 0$

- Min tries to minimize lim
- Max tries to maximize lim

Mean Payoff Games

Payoffs

$(a b)^{\omega}$ Min pays $\frac{1}{2}$ units to Max
$a \xrightarrow{-2} b \xrightarrow{+3} a \xrightarrow{-2} b \xrightarrow{+3} a \xrightarrow{-2} b \xrightarrow{+3} a \ldots$
$\frac{-2+3-2+3-2+3}{6} \sim \frac{n(-2+3)}{2 n} \rightarrow \frac{1}{2}$
$(a c b)^{\omega}$ Min pays $-\frac{1}{3}$ units to Max
$a \xrightarrow{-1} c \xrightarrow{-2} b \xrightarrow{+3} a \xrightarrow{-1} c \xrightarrow{-2} b \xrightarrow{+3} a \ldots$

$\frac{-1-2+3-1-2+3}{6} \sim \frac{n(-1-2+3)}{3 n} \rightarrow 0$
Generally

- Min tries to minimize lim sup
- Max tries to maximize liminf

Mean Payoff Games

Questions

- Does the game have a value? i.e. is there a v so that
- Max can ensure liminf $\geq v$
- Min can ensure limsup $\leq v$

Mean Payoff Games

Questions

- Does the game have a value? i.e. is there a v so that
- Max can ensure liminf $\geq v$
- Min can ensure limsup $\leq v$

Yes

- How to compute the optimal strategies?

Mean Payoff Games

Questions

- Does the game have a value? i.e. is there a v so that
- Max can ensure liminf $\geq v$
- Min can ensure limsup $\leq v$

Yes

- How to compute the optimal strategies?

Solution using the finite game

Mean Payoff

Finite Game

Mean Payoff

Finite Game

Mean Payoff

Finite Game

Mean Payoff

Finite Game

Mean Payoff

Finite Game

Mean Payoff

Finite Game

Max can ensure ≥ 0 in the finite game

Mean Payoff

Finite Game

Mean Payoff

Finite Game

Min can ensure ≤ 0

Mean Payoff

Finite Game

Min can ensure ≤ 0 in the mean payoff game too

Mean Payoff

Finite Game

Min can ensure ≤ 0 in the mean payoff game too
$\pi=\mathrm{a}$

Stack $=\mathrm{a}$

Mean Payoff

Finite Game

Min can ensure ≤ 0 in the mean payoff game too
$\pi=\mathrm{a} \quad \mathrm{b}$

Stack $=\mathrm{a} \quad \mathrm{b}$

Mean Payoff

Finite Game

Min can ensure ≤ 0 in the mean payoff game too
$\pi=\mathrm{a} \quad \mathrm{b} \quad \mathrm{c}$

Stack $=\mathrm{a} \quad \mathrm{b} \quad \mathrm{c}$

Mean Payoff

Finite Game

Min can ensure ≤ 0 in the mean payoff game too
$\pi=\mathrm{a} \quad \mathrm{b} \quad \mathrm{c} \quad \mathrm{b}$

Stack $=a \quad b \quad c \quad b$

Mean Payoff

Finite Game

Min can ensure ≤ 0 in the mean payoff game too
$\pi=\mathrm{a} \quad \mathrm{b} \quad \mathrm{c} \quad \mathrm{b}$

Stack $=\mathrm{a} \quad \mathrm{b}$

Mean Payoff

Finite Game

Min can ensure ≤ 0 in the mean payoff game too
$\pi=\mathrm{a} \quad \mathrm{b} \quad \mathrm{c} \quad \mathrm{b} \quad \mathrm{c}$

Stack $=\mathrm{a} \quad \mathrm{b} \quad \mathrm{c}$

Mean Payoff

Finite Game

Min can ensure ≤ 0 in the mean payoff game too
$\pi=\mathrm{a} \quad \mathrm{b} \quad \mathrm{c} \quad \mathrm{b}$ c a

Stack $=a \quad b \quad c \quad a$

Mean Payoff

Finite Game

Min can ensure ≤ 0 in the mean payoff game too
$\pi=\mathrm{a} \quad \mathrm{b} \quad \mathrm{c} \quad \mathrm{b}$ c a

Stack $=\mathrm{a}$

Mean Payoff

Finite Game

Min can ensure ≤ 0 in the mean payoff game too
$\pi=\mathrm{a}$ b c b c a b

Stack $=a \quad b$

Mean Payoff

Finite Game

Min can ensure ≤ 0 in the mean payoff game too
$\pi=\mathrm{a} b \mathrm{c} \quad \mathrm{b} \quad \mathrm{c} a \mathrm{~b} \mathrm{c}$

Stack $=\mathrm{a} \quad \mathrm{b} \quad \mathrm{c}$

Mean Payoff

Finite Game

Min can ensure ≤ 0 in the mean payoff game too
$\pi=a \quad b \quad c \quad b \quad c \quad a \quad b \quad c \quad a$

Stack $=a \quad b \quad c \quad a$

Every time a cycle with average value ≤ 0 is eliminated

Mean Payoff

Finite Game

Min can ensure ≤ 0 in the mean payoff game too
$\pi=\mathrm{a} b \mathrm{c} \quad \mathrm{b}$ c abcac

Stack $=\mathrm{a}$

Every time a cycle with average value ≤ 0 is eliminated

Mean Payoff

Finite Game

Min can ensure ≤ 0 in the mean payoff game too
$\pi=\mathrm{a} b \mathrm{c} \quad \mathrm{b}$ c abcac

Stack $=\mathrm{a}$

Hence limsup of averages of π is ≤ 0

Mean Payoff

Finite Game

Max can ensure ≥ 0

- Similarly Max can ensure liminf of the average is ≥ 0
- Hence the value of Mean payoff game is 0

Outline

Finite Duration Games

Infinite Duration Games

Simple Stochastic Games

Simple Stochastic Game

Simple Stochastic Game

Circle Wins

Simple Stochastic Game

Simple Stochastic Game

Simple Stochastic Game

Box Wins

Simple Stochastic Game

Or

Simple Stochastic Game

Simple Stochastic Game

Circle can win from o with probability 1

Simple Stochastic Game

Values

Simple Stochastic Game

Values

Simple Stochastic Game

Values

$$
\begin{aligned}
v(\circ) & =1 \\
v(\square) & =0 \\
v(\triangle) & =\frac{1}{2}(v(\circ)+v(\circ)) \\
v(\triangle) & =\frac{1}{2}(v(\circ)+v(\square)) \\
v(\circ) & =\max \{v(\triangle), v(\triangle)\} \\
v(\square) & =\min \{v(\circ), v(\triangle)\}
\end{aligned}
$$

Simple Stochastic Game

Values

$$
\begin{aligned}
v(\circ) & =1 \\
v(\square) & =0 \\
v(\triangle) & =\frac{1}{2}(v(\circ)+v(\circ)) \\
v(\triangle) & =\frac{1}{2}(v(\circ)+v(\square)) \\
v(\circ) & =\max \{v(\triangle), v(\triangle)\} \\
v(\square) & =\min \{v(\circ), v(\triangle)\}
\end{aligned}
$$

These equations have a unique solution.

Simple Stochastic Game

Values

$$
\begin{aligned}
v(\circ) & =1 \\
v(\square) & =0 \\
v(\triangle) & =\frac{1}{2}(v(\circ)+v(\circ)) \\
v(\triangle) & =\frac{1}{2}(v(\circ)+v(\square)) \\
v(\circ) & =\max \{v(\triangle), v(\triangle)\} \\
v(\square) & =\min \{v(\circ), v(\triangle)\}
\end{aligned}
$$

These equations have a unique solution.
From state s -

- has a strategy to reach \circ with probability $\geq v(s)$
\square has a strategy to reach \square with probability $\geq 1-v(s)$

Complexity of solving games

Does Even win the Parity Game?

Is the value of the Mean
Payoff Game ≥ 0

Is the value in the Simple Stochasic Game $\geq \frac{1}{2}$

Complexity of solving games

Does Even win the Parity Game?

Complexity of solving games

${ }^{2}$ Chatterjee and Fijalkow, "A reduction from parity games to simple stochastic games".

Complexity of solving games

Open Problem

Is there a polynomial time algorithm for any of them?
${ }^{2}$ Chatterjee and Fijalkow, "A reduction from parity games to simple stochastic games".

Timeline

- Lloyd S. Shapley. "Stochastic games". In: Proceedings of the National Academy of Sciences 39.10 (1953), pp. 1095-1100
- E.A. Emerson and C.S. Jutla. "Tree automata, mu-calculus and determinacy". In: IEEE Comput. Soc. Press, 1991, pp. 368-377
- Anne Condon. "The complexity of stochastic games". In: Information and Computation 96.2 (Feb. 1992), pp. 203-224
- Uri Zwick and Mike Paterson. "The complexity of mean payoff games on graphs". In: Theoretical Computer Science 158.1 (May 1996), pp. 343-359
- Marcin Jurdziski. "Deciding the winner in parity games is in UP co-UP". . In: Information Processing Letters 68.3 (1998), pp. 119-124

Timeline

- Lloyd S. Shapley. "Stochastic games". In: Proceedings of the National Academy of Sciences 39.10 (1953), pp. 1095-1100
- E.A. Emerson and C.S. Jutla. "Tree automata, mu-calculus and determinacy". In: IEEE Comput. Soc. Press, 1991, pp. 368-377
- Anne Condon. "The complexity of stochastic games". In: Information and Computation 96.2 (Feb. 1992), pp. 203-224
- Uri Zwick and Mike Paterson. "The complexity of mean payoff games on graphs". In: Theoretical Computer Science 158.1 (May 1996), pp. 343-359
- Marcin Jurdziski. "Deciding the winner in parity games is in UP co-UP". . In: Information Processing Letters 68.3 (1998), pp. 119-124

Thank you

[^0]: ${ }^{1}$ see also Friedmann, "Exponential Lower Bounds for Solving Infinitary Payoff Games and Linear Programs".

[^1]: ${ }^{1}$ see also Friedmann, "Exponential Lower Bounds for Solving Infinitary Payoff Games and Linear Programs".

