On Algorithms for Simple Stochastic Games

Anne Condon!

Computer Sciences Department
University of Wisconsin-Madison
1210 West Dayton Street
Madison, WI 53706

Abstract

We survey a number of algorithms for the simple stochastic game problem, which is to determine the winning
probability of a type of stochastic process, where the transitions are partially controlled by two players. We
show that four natural approaches to solving the problem are incorrect, and present two new algorithms for the
problem. The first reduces the problem to that of finding a locally optimal solution to a (non-convex) quadratic
program with linear constraints. The second extends a technique of Shapley called the successive approximation
technique, by using linear programming to maximize the improvement at each approximation step. Finally, we

analyze a randomized variant of the Hoffman-Karp strategy improvement algorithm.

1 Introduction

In this paper, we study algorithms for the simple stochastic game problem. The problem is to find
the winning probability of a type of stochastic process where transitions are partially controlled by two
players. A simple stochastic game is a restriction of the general stochastic game introduced by Shapley
[10] in 1953. Although this problem is known to be in NP N co-NP (Condon [1]), no algorithm for the
problem is known to run in polynomial time. We conjecture that the problem is in P and are interested
in finding a polynomial time algorithm for the problem. Although we do not achieve this goal here, we
present a number of new results on algorithms for the problem.

Our results are as follows. We present counterexamples that show that four natural approaches are
incorrect. We also describe two new (correct) algorithms for the simple stochastic game problem. The
first reduces the problem to that of finding a locally optimal solution to a (non-convex) quadratic program
with linear constraints. The second extends a technique of Shapley [10], called the successive approxima-
tion technique, by using linear programming to maximize the improvement at each approximation step.
Finally, we analyze a randomized variant of the Hoffman-Karp strategy improvement algorithm [5] and
show that the number of iterations required is at most 2"~/(") 4 o(2"), for any function f(n) = o(n),
where n is the number of nodes of the game.

The rest of this paper is organized as follows. In Section 1.1, we define the simple stochastic game
problem and describe some fundamental properties of stochastic games. We describe previous work on
algorithms for this problem in Section 1.3. In Section 2, we present four natural algorithms for the simple
stochastic game problem and prove all are incorrect. Our new algorithms are described in Section 3.
Conclusions and open problems are presented in Section 4.

1Supported by National Science Foundation grant number DCR-8802736.

1.1 Definition and Properties of Simple Stochastic Games

A simple stochastic game (SSG) is a directed graph G = (V, E) with the following properties. The
vertex set V is the union of disjoint sets Viaz, Vinin, Vaverage, called max, min and average vertices,
together with two special vertices, called the 0-sink and the I-sink. One vertex of V is called the start
vertex. Each vertex of V has two outgoing edges, except the sink vertices, which have no outgoing edges.
Without loss of generality, assume that the vertices of G are numbered 1,2, ...n, with n — 1 and n being
the 0- and 1-sink vertices, respectively.

Associated with the game are two players, 0 and 1, who play the following game. Initially, a token
is placed on the start vertex. The token is moved along edges of the graph, according to the following
rules: whenever the token is on a min (max) vertex, player 0 (1) chooses the edge from that vertex along
which the token is moved. Whenever the token is on an average vertex, the token is moved along an
edge from that vertex which is chosen randomly and uniformly. The game ends when the token reaches
a sink vertex. Player 1 wins if the token reaches the 1-sink vertex; otherwise player 0 wins.

A min strategy T of player 0 is a set of edges of E, each with its left end at a min vertex such that
for each min vertex ¢ there is exactly one edge (7,) in 7. Informally, if (,7) € 7 then in a game where
player O uses strategy 7, the token is always moved from vertex ¢ to vertex j. Similarly, a max strategy
o of player 1 is a set of edges of E, each with its left end at a max vertex such that for each max vertex
i there is exactly one edge (,7) in o.

Corresponding to strategy o is a graph G, which is the subgraph of G obtained by removing from
each max vertex the outgoing edge that is not in the strategy o. Similarly, corresponding to a pair of
strategies 0 and 7, is a graph G, ; obtained from G, by removing from each min vertex the outgoing
edge that is not in 7. In G, ;, every max and min vertex has one outgoing edge. Thus G, . can be
considered as a Markov process where the states of the process are the vertices of G and the transition
probabilities ¢;;,1 < 4, j < n are defined as follows. If i < n—1 then ¢;; = % if ¢ is an average vertex with
outgoing edge (¢,7); ¢;; = 1 if ¢ is a max or min vertex with outgoing edge (3,) and ¢;; = 0 otherwise.
Since n — 1 and n are sink states, we define ¢nn = gn_in—1 =1, ¢gn; = 0if j # n and g,_1; = 0 if
j#Fn—1

We define the value vy - (7) of each vertex ¢ of G with respect to strategies o and 7 to be the probability
that player 1 wins the game if the start vertex is 4 and the players use strategies ¢ and 7. The optimal
value of node 4 of G is defined to be max m1n Vo, (3). The SSG problem is: given a SSG G, is the optimal

value of the start node of GG at least 1 / 27

1.1.1 Stopping Games

We assume in this paper that an SSG is a stopping game, which means that for all pairs of strategies o
and 7, in the graph G, r, there is a path from every node to a sink node. Condon [1] showed that the
SSG problem is polynomial time many-one reducible to the SSG problem where instances are restricted
to be stopping games. Hence, a polynomial time algorithm for stopping SSG’s also yields a polynomial
time algorithm for the unrestricted SSG problem.

Let o and 7 be strategies of a SSG G with n nodes. The values v, (%) can be expressed as a solution
to linear equations as follows. Let U5, = (V5,r(1),...,0s+(n — 2)). Let @ be the (n —2) x (n —2)
matrix whose ¢jth entry is g;;, that is, the probability of reaching j from ¢ in one step. Let b be the
(n — 2)-vector whose ith entry is g;,, that is, the probability of reaching the 1-sink from ¢ in one step.

Lemma 1 9, , s the unique solution to the equation Vg, = QUs,r + b. Also, I — Q is invertible, all
entries of (I — Q)~! are non-negative and the entries along the diagonal are strictly positive.

Uniqueness in the above lemma follows from the assumption that G is a stopping game. A proof can
be found in [1].

1.1.2 Optimal Values and Strategies

We next summarize properties of the optimal values of a SSG. Shapley [10] (see also [1]) showed that
for any node 1,
maxmin v, () = min max v, ().
(e T T (e
We define the optimal value vector of G to be the vector of optimal values of the nodes of G. The
optimal value vector of G is the unique solution to the following constraints (uniqueness follows from
the assumption that G is a stopping game).

v(i) = max(v(j),v(k)), if ¢ is a max node with children j and k
v(i) = min(v(j),v(k)), if i is a min node with children j and &

v(i) = 1/2(v(j) + v(k)), ifiis an average node with children j and &
vin—1)=0

v(n) =1.

We define max strategy o to be optimal with respect to min strategy 7 if for all max nodes ¢ with
child j, vsr(3) > vs,-(j). Similarly, 7 is optimal with respect to o if for all min nodes ¢ with child j,
Vo, (1) < vs,r(j). Max strategy o is optimal if for all 4, min, v, . (i) equals the optimal value of ¢ at G.
Similarly, min strategy 7 is optimal if for all 4, max, v, (i) equals the optimal value of i at G.

Shapley showed that there is a pair of optimal strategies o(opt) and 7(opt) such that if ¥ is the
optimal value vector of the game, then for all 4,1 < i < n, v(4) = Vs (opt),r(opt) (i) The following lemma
is proved in [1].

Lemma 2 The optimal value of any node of a simple stochastic game with n vertices is of the form
p/q, where p and q are integers, 0 < p,q < 4771,

1.1.3 Generalized Games

In describing our algorithms and in proving them correct, it is sometimes convenient to generalize the
definition of a SSG in two ways. First, we generalize the definition of a strategy. A probabilistic max (min)
strategy is a weighting of the edges from the max (min) nodes, such that the weights are probabilities
which sum to 1. The previous definition of a (pure) strategy is the special case where all weights are
either 0 or 1. Second, we sometimes define a game to have more than two sink nodes. Each sink node
has no outgoing edges and has an associated value in the range [0, 1]. If a sink node s has value v, then
the probability that player 1 wins, given that sink node s is reached, is v. Note that the 0-sink and
1-sink have values 0 and 1, respectively. Unless explicitly stated, our model of stochastic game is not
generalized in these ways; when it is, we refer to the model as a generalized SSG.

The following lemma is used in Section 3 and is true even for generalized games.

Lemma 3 Let G be a generalized SSG such that the sink nodes are numbered from j to m, with
values v(j),...,v(n). Let o and T be maz and min strategies of G. Then the value vy (i) of node i is
ZZ:j pi(k)v(k), where p;(k) is the probability of reaching the kth sink from node i in Gy ;.

1.2 Notation

We use the following notation throughout the paper in describing our algorithms. Let G be a SSG with
n nodes.

Let v = (v(1),...,v(n)), where v(n—1) = 0 and v(n) = 1. Let i be a node of G with children j and k.
We say a node i of G is 0-feasible if the following is true. If ¢ is an average node, v(i) = 1/2(v(j) +v(k));
if 4 is a max node, then v(i) > max{v(j),v(k)} and if ¢ is a min node, then v(¢) < min{v(j),v(k)}. We
say U is a feasible vector of G for all 4, 1 <1i <mn — 1, 7 is v-feasible.

We say node ¢ is v-stable if ¢ is v-feasible and furthermore, the following holds. If ¢ is a max node,
then v(i) = max{v(j),v(k)}, and if 7 is a min node, then v(¢) = min{v(j),v(k)}. If ¢ is not v-stable,
then ¢ is v-unstable. The vector @ is stable if for all 4, 1 <i < n — 1, ¢ is U-stable. Otherwise the vector
is unstable. Note that from the results cited in Section 1.1.2, a stable vector is the unique optimal value
vector of the game.

We say i is 0-switchable if i is a max node and v(i) < max{v(j),v(k)}, or ¢ is a min node and
v(4) > min{v(j),v(k)}. If o (7) is a strategy containing edge (7,), we say ¢’ (7') is obtained from o ()
by switching node i if o' = o — {(i,5)} + {(4,k)} (7' =7 —{(3,5)} + {(3,k)}). This can be generalized
to switching sets of nodes.

1.3 Previous Work

Shapley [10] introduced the stochastic game model in 1953. Since then, numerous variations of Shapley’s
model have been studied, and many algorithms have been proposed. We have chosen to study the simple
stochastic game because it is the simplest possible restriction of Shapley’s model, which retains just
enough complexity so that no polynomial time algorithm is known. Naturally, algorithms for the more
general models also solve the SSG problem. In this section, we summarize three techniques that have
been developed in previous work on general stochastic games, and apply them to our simple model.

The first is called successive approximation, introduced by Shapley [10], where a solution to the
problem is found from an initial feasible vector, by repeatedly updating the value of each node based
on the values of its children. This algorithm converges to the optimal value vector in the limit; however
it can require exponential time to even get within a constant factor of this value. See the example of
Figure 1. In this and all figures, min, max and average nodes are labeled N, X and A, respectively and
the 0-sink and 1-sink nodes are labeled 0 and 1, respectively.

algorithm Successive Approximation

let © be the feasible vector in which all min nodes have value 0 and all max
nodes have value 1
repeat

let ¥’ be defined as follows:

v' (1) = max{v(j),v(k)}, if i is a max node with children j and k
v/ (1) = min{v(j),v(k)}, if 7 is a min node with children j and &
V' (i) =1/2(v(j) + v(k)), if ¢ is an average node with children j and k
v(n—1)=0
v'(n) =
let v o'

until v is stable
W=l)

Figure 1: Exponential time example for Shapley’s Successive Approximation Algorithm

Suppose there are n average nodes in this figure. Then after the first iteration of the successive
approximation algorithm, the value of the min node is 1/2". After i iterations, the value is 1—(1—1/2")%.
Hence in the limit, as ¢ goes to infinity, this is 1, but the rate of convergence is exponentially slow in n.
Note that this example illustrates another useful fact: a feasible vector in which the difference between
the value of all unstable nodes and their children is very small, may not be at all close to the optimal
value vector. In this example, the initial vector is such that the only unstable node is the min node, and
the difference between it and its child is only 1/2™. Yet, in the optimal value vector, the value of this
min node is 1.

Another approach to solving general stochastic game problems is by reduction to mathematical
programming problems, usually quadratic programming problems with non-convex objective functions,
which are NP-complete. See Schultz [11] or Filar and Schultz [4] for a survey of such algorithms. When
a SSG game is restricted to just two types of nodes — either max and average, or min and average — the
problem is polynomial time solvable by reduction to linear programming. The proof is due to Derman
[2]. He showed that if G = (V, E) is a SSG with n vertices, none of which are min vertices, then the
optimal value vector of GG is the optimal solution to the following linear programming problem.

algorithm Linear Programming (for SSG’s with no min vertices)

minimize), , v(l), subject to the constraints

v(i) > v(j), if i is a max vertex and (i,j) € E

v(i) = 1/2(v(j) + v(k)), if i is an average vertex and (4, 7), (i, k) € E
v(i) >0, 1<i<n

vin—1)=0

v(n) =1

Note that the constraints simply ensure that the solution is feasible. Khachiyan [6] has shown that
the linear programming problem is computable in time polynomial in the length of the input, which is

polynomial in n in this case. The proof for case (2), where G has just min and average vertices, is very
similar.

A third method is known as the strategy improvement method, which was developed first for Markov
decision processes, which are simple stochastic games with just max and average nodes, and no min
nodes. This method was first proposed by Hoffman and Karp [5] for stochastic games. A pair of
strategies of the players is chosen initially and repeatedly improved until an optimal strategy is found.

algorithm Hoffman-Karp

let 0 and 7 be arbitrary max and min strategies, respectively
repeat

let o/ be obtained from o by switching all 9, ,-switchable max nodes
let 7’ be the min strategy that is optimal with respect to o’
let 0« o', 7 7

until v, , is stable

The proof of correctness of this algorithm is very similar to our proof in Section 3 that a randomized
variant is correct. The proof is based on the fact that at each iteration, for all 4, v, (i) > vy (i) and
if ¢ is a v, r-switchable max node, the inequality is strict. Each iteration can be executed in polynomial
time, by using Derman’s linear programming algorithm to find 7’ when ¢’ is fixed. It is not known if
this algorithm requires an exponential number of iterations in the worst case. However, Melekopoglou
and Condon [7] showed that many variations of the Hoffman-Karp algorithm require exponential time.
In these variations, instead of switching all switchable max nodes in obtaining ¢’, only one switchable
max node is switched.

Other relevant surveys of algorithms for stochastic games can be found in Vrieze [15] and Peters and
Vrieze [8]. Also Van der Wal [13] and Federgruen [3] contain results on convergence rates for successive
approximation schemes. Van der Wal [14] describes a variation of the strategy improvement algorithm
of Hoffman and Karp in which an approximation to the optimal strategy is found at every step.

2 Incorrect Algorithms

In this section, we present four algorithms for the SSG problem. These algorithms use very different
techniques, and seem to be natural algorithms for the problem. We show that all are incorrect.

2.1 Naive Linear Programming Algorithm

This algorithm extends the linear programming algorithm of Derman, described in the previous section,
to simple stochastic games. The challenge is in designing a linear objective function which simultaneously
minimizes the values of the max nodes and maximizes the values of the min nodes, subject to the
constraint that the vector of values is feasible. In this algorithm, the objective function minimizes the
sum of the values of the max nodes minus the sum of the values of the min nodes, subject to the
constraints that the solution is feasible.

algorithm Naive Linear Programming

minimize)y,

mam

o(l) = > iev, .. v(l), subject to the constraints

v(i) > v(j), if i is a max vertex and (i,j) € E

v(i) < v(j), if ¢ is a min vertex and (i,j) € E

v(i) =1/2(v(j) + v(k)), if i is an average vertex and (¢,7), (i,k) € E
v(i) >0, 1<i<n

vin—1)=0

v(n) =1

This algorithm is incorrect, as illustrated by the example of Figure 2. In the example, the value of
all max and min nodes should be 1, in which case the value of the objective function is 1. However, by
setting all the max and min nodes to 0, the constraints are still satisfied and the value of the objective
function is 0.

Figure 2: Counterexample to the Naive Linear Programming Algorithm

2.2 Modified Hoffman-Karp Algorithm

This algorithm is based loosely on the Hoffman-Karp algorithm. It proceeds in iterations, starting with
an arbitrary pair of strategies o and 7. It tries to improve on this pair by finding a max strategy ¢’ which
is optimal with respect to 7, and a min strategy 7/ which is optimal with respect to ¢’. Thus it differs
from the Hoffman-Karp algorithm by finding an optimal o', instead of just switching the 9, -switchable
max nodes to obtain ¢’. Linear programming can be used to find the strategies in each iteration, using
Derman’s technique, so that each iteration can be completed in polynomial time.

algorithm Modified Hoffman-Karp

let o and 7 be arbitrary max and min strategies, respectively
repeat

let ¢’ be an optimal max strategy with respect to 7
let 7/ be an optimal min strategy with respect to o’
let 0 o', 7+ 7'

until v, , is stable

This algorithm is incorrect, as illustrated in Figure 3. In this example, there are two max nodes,
numbered 1 and 2, and two min nodes, numbered 3 and 4. In addition, for convenience in specifying
strategies, two average nodes are numbered 5 and 6 and three sink nodes are numbered 7, 8 and 9. These
numbers appear in parentheses as labels of the corresponding nodes. We use generalized sink nodes for
simplicity, but these can be replaced by average nodes which are further connected to the 0- and 1-sink

nodes. The sink nodes are labeled by their values, for example, sink nodes numbered 7 and 8 have values
.9 and .4, respectively.

Suppose that the initial strategies are o = {{1,3},{2,6}} and 7 = {{3,8},{4,1}}. In the first
iteration, the new o is obtained by switching all edges of the initial strategy o, and subsequently, the
new 7 is obtained by switching all edges of the initial 7. In the second iteration, the new strategies are
obtained by switching all edges yet again. Thus, the third iteration is the same as the first, the fourth
iteration is the same as the second, and so on. The algorithm never finds the optimal strategies, which
are 0 = {{1,7},{2,6}} and 7 = {3,8},{4,9}}. Table 1 lists the values of the nodes as the algorithm
proceeds through the first two iterations.

Figure 3: Counterexample to the Modified Hoffman-Karp Algorithm

Iteration Strategies Values of Nodes
o T 1 2 3 4 5 6
0 {{1,3},{2,6}} {{3,8},{4,1}} |04 0.55 04 04 0.3 0.55
1 (obtain o) | {{1,7},{2,5}} {{3,8},{4,1}} | 0.9 0675 04 0.9 0.675 0.55
(obtain 7) | {{1,7},{2,5}} {{3,2},{4,9}} | 0.9 0.375 0.375 0.5 0.375 0.53125
2 (obtain o) | {{1,3},{2,6}} {{3,2},{4,9}}| 1.0 1.0 1.0 0.5 0375 1.0
(obtain 7) | {{1,3},{2,6}} {{3,8},{4,1}} |04 0.55 04 04 0.3 0.55

Table 1: Values of nodes of SSG of Figure 3 in the first two iterations of the Modified Hoffman-Karp
Algorithm

2.3 Pollatschek Avi-Itzhak Algorithm

This algorithm was proposed by Pollatschek and Avi-Itzhak [9] for general stochastic games. It is similar
to the Hoffman-Karp algorithm, except that instead of finding optimal strategies at each iteration, it
simply modifies both strategies from the previous iteration by switching all switchable nodes. Pollatschek
and Avi-Itzhak proved that the method is correct under very strong assumptions. Rao, Chandrasekaran

and Nair [12] gave a proof that the algorithm is correct for a general class of stochastic games. Van Der
Wal [14] pointed out that their proof is incorrect and gave a counterexample. His example is a general
stochastic game, not a SSG. We next describe this algorithm and show that on the example of Figure
3, the algorithm is incorrect.

algorithm Pollatschek Avi-Itzhak
let o and 7 be arbitrary max and min strategies, respectively
repeat

let ¢’ be obtained from o by switching all 7, ,-switchable max nodes
let 7’ be obtained from 7 by switching all ¥, ,-switchable min nodes
let o+ o', 7« 7'

until v, , is stable

Again, consider the example of Figure 3. Table 2 illustrates the progress of the Pollatschek Avi-
Itzhak algorithm, when the initial strategies are o = {{1,7},{2,6}} and 7 = {{3, 8}, {4,9}}. After four
iterations, the algorithm cycles.

Tteration Strategies Values of Nodes

o T 1 2 3 4 5 6
{{1,7},{2,6}} {{3,2},{4,9}} |09 1.0 1.0 0.5 0375 1.0
{{1,3},{2,6}} {{3,8},{4,9}} |04 055 04 05 0375 0.55
{{1,7},{2,6}} {{3,8},{4,1}} |09 0.55 04 09 0.675 0.55
{{1,7},{2,5}} {{3,8},{4,9}} |09 0375 04 0.5 0375 0.55
{{1,7},{2,6}} {{3,2},{4,9}} |09 1.0 1.0 0.5 0375 1.0

Bl =IO

Table 2: Values of nodes of SSG of Figure 3 in the first four iterations of the Pollatschek Avi-Itzhak
algorithm

2.4 The Naive Converge From Below Algorithm

This algorithm is based on the successive approximation algorithm of Shapley. To motivate this algo-
rithm, we first describe a correct algorithm that requires exponential time.

This correct algorithm, the modified successive approximation algorithm, differs from Shapley’s suc-
cessive approximation algorithm as follows. The sequence of vectors are such that all max nodes are
stable, so only the min nodes are unstable. In the initial vector @, the values of all min nodes are 0 and
the max nodes are v-stable. (To see that such a vector exists, consider the generalized game G’ obtained
from the original game G, by removing all outgoing edges from the min nodes and changing them to
sink nodes with value 0. Then, by Lemma 3, if ¢ is the optimal value vector of the modified game G,
then all max nodes of G’ are ¢-stable. This vector ¥ is clearly a feasible vector of the original game G,
in which all min nodes have value 0 and all max nodes are @-stable). At each iteration, a new vector 7'
is found in which the values of the min nodes are increased just as in Shapley’s algorithm, and the max
nodes remain stable. This vector can be found in polynomial time using linear programming, in a way
similar to Derman’s algorithm of Section 1.3.

algorithm Modified Successive Approximation

let © be the feasible vector in which all min nodes have value 0 and all max
nodes are v-stable
repeat

let @’ be the feasible vector such that for all min nodes ¢ with children j
and k, v'(4) = min{v(j),v(k)}, and all max nodes are stable
let o+ @'

until v is stable

This algorithm converges in the limit to the correct solution. However, it also requires exponential
time to come even within a constant factor of the limit, in the example of Figure 1.

The naive converge from below algorithm is presented next. This algorithm tries to make more
progress than the last algorithm, by using linear programming to maximize the increases of the min
nodes at every iteration. In order to do this, the max nodes must be constrained. The linear program
constrains the value of each max node to equal the child which currently has the larger value and to be
at least the value of the other child. If both children have the same value, it constrains the value of the
max node to equal one child, and alternates which child at alternate iterations. The following algorithm
makes this precise.

algorithm Naive Converge From Below

let © be the feasible vector in which all min nodes have value 0 and all max
nodes are U-stable

let o be any max strategy such that if (z,7) € o, then v(z) = v(j)

repeat

let be the optimal solution to the following linear program:
maximize Y- | (i) subject to the following constraints

z(1) < z(9), if 7 is a min node with child j
z(i) = 1/2(z(j) + z(k)), if ¢ is an average node with children j and &
z(i) = z(j) and z(¢) > xz(k), if i is a max node with children j and &
such that (i) v(j) > v(k) or
(ii) v(j) = v(k) and (¢,7) € o

~

(
(n)

let ¢’ be obtained from ¢ by switching all max nodes ¢ with children j
and k where z(j) = z(k)
let o < T, 0 < o’

z(n—1)=0
z(n) =1

until v is stable

This algorithm is incorrect, as illustrated by Figure 4. In this example, min node 3 has value 0
initially, and the max nodes have value 1/2. Let o initially be {{1,2},{2,4}}. After the first iteration,
the values of all max and min nodes are 1/2. Hence o becomes {{1,4},{2,3}}. Thus, in the second
iteration, no value changes, since the value of node 2 is constrained to be at most the value of node 4,
which is 1/2. After the second iteration, o = {{1,2},{2,4}} again, so the third iteration is the same as
the first. Thus, the values remain 1/2, though the optimal value for the max and min nodes is 1.

10

Figure 4: Counterexample to the Naive Converge from Below Algorithm

3 Correct Algorithms

In this section, we describe three correct algorithms for the SSG problem. The first reduces the problem
to that of finding a locally optimal solution to a (non-convex) quadratic program with linear constraints.
The second extends the successive approximation technique of Shapley, by using linear programming to
maximize the improvement at each approximation step. Finally, we analyze a randomized variant of the
Hoffman-Karp strategy improvement algorithm and show that the number of iterations required is at
most 27~ (") 4 o(27), for any function f(n) = o(n).

3.1 A Quadratic Programming Algorithm

In this section, we describe a quadratic program with linear constraints whose solution is the optimal
value vector of a SSG G with n nodes. Moreover, the optimal solution is the only locally optimal solution
to the quadratic program in the constrained region.

The quadratic program is as follows: minimize

F(v) = > (v(z) = v(7))(v(i) —v(k))
1 € Vinaz OF Vinin
with childreny, k

subject to the constraints

v(i) > v(4), if 7 is a max node with child j

v(i) < v(4), if 7 is a min node with child j

v(i) = 1/2(v(j) + v(k)), if ¢ is an average node with children j and k
vin—1)=0

v(n) =1

The constraints guarantee that every term in the sum of the objective function is always non-negative
in the constrained region. In fact it is clear that the objective function F'(9) is 0 if and only if the vector
v is the optimal value vector of the game.

We claim that 0 is the only locally optimal solution of the objective function in the feasible region.
Suppose to the contrary that F(7) is another locally optimal solution to the problem in the feasible
region. Let g be any number < fmin{|v(i) — v(j)| | 7 is a v-unstable node with child j}. Note that
g > 0. We show how to find a feasible solution ¥’ such that |v(i) —v'(2)| < g, for all ¢ and F (") < F(9).

This proves that v cannot be a locally optimal solution.

The vector ¢’ is defined as follows. If ¢ is a g-unstable min node, then v'(7) = v'(¢) + ¢g. Similarly, if
i is a v-unstable max node, then v'(i) = v'(¢) — g. Furthermore, all other nodes are stable.

11

We need to show that (i) for all 4, |v'(d) — v(¢)] < g; (ii) @' lies in the constrained region of the
quadratic program and (iii) F(?') < F(9).

To show (i), we show that for any ¢, v'(¢) < v(i) + g; a similar argument shows that v'(i) > v(¢) — g.
It is clearly true for nodes ¢ which are v-unstable nodes, by definition of ’. Let G’ and G” be the games
obtained from G by removing all edges from the v-unstable nodes of G so that they become generalized
sink nodes, and setting the value of such a node & to be v'(k) and v(k), respectively. Then ¢’ and v are
the optimal value vectors of the games G’ and G”, respectively.

Let 7(opt) be an optimal min strategy of G". Let v, (i) denote the value of i in game G’ when the
max and min strategies are o and 7. We claim that in the game G’, for an arbitrary strategy o, for any
& Uy (opty(8) S v(¢) + g. If this claim is true, then

V(i) = min m;uw",’ (i) < maxva (opty () S 0(@) +g.

To prove the claim, fix 7 and let p;(k) be the probability of reaching the sink node k, when strategies
o, 7(opt) are used. (This probability is the same in G” and G’). Then v(i) > > 7_ _; pi(k)v(k), since v(i)
is the optimal value of ¢ in G” and)~;_ ; pi(k)v(k) is the value of ¢ when the strategies are o and 7(opt).
Hence,

/U;,T(opt) (7’) = z Z + g) < 'U() +9.
k=j

k=7

We next show (ii), that the vector ©' lies in the constrained region of the quadratic program. If i
is a v-stable node of G, then it is also a ?'-stable node and hence clearly satisfies the constraints of
the program. Hence, suppose that 4 is a #-unstable max node; the argument for unstable min nodes is
similar. We need to show that v'(i) > v'(j), where j is a child of ¢. By definition of g, v(¢) — v(j) > 2g.
We have already shown that v'(j) < v(j) 4+ g and by definition v’ (i) = v(i) — g. Hence,

v'(i) = '(§) = (v(@) — g9) = (v(j) +9) = (i) — v(j) —29 > 0.

Finally, we show (iii), that F(v') < F(7). To see this, let i be a node with children j and k. If i is a
U-stable node, so that the term (v(i) — v(j))(v(i) — v(k)) is 0, then it is also the case that ¢ is ¥’-stable,
and so (v'(¢) —v'(4))(v'(¢) — v'(k)) is 0. If ¢ is T-unstable, say a min node (the argument is similar for a
max node), then

v'(7) = v'(@) < (v() +9) — (v(i) + 9) = v(j) —v(i) and
) < (v(k) +9) — (v(i) + g) = v(k) —v(i)

Hence F(v') < F(). To prove that F (') is strictly less than F(7), we show that for some #-unstable
1, (V' (3) — V' () (v (G) — v'(k)) < (v(i) —v(7))(v(i) —v(k)). where j and k are the children of 7.

Suppose to the contrary that for all 3-unstable nodes 4, v'(4) — v'(5) = v(i) —v(j) and v'(3) —v'(k) =
v(i) —v(k), where j and k are the children of ¢. Fix any unstable node u, say a min node (the argument
is similar if » is a max node).

Let N be the set of nodes defined inductively as follows: First, u € N. If m € N, then if m is an
average node, both its children are in N; if m is a min node with children ! and p such that v(I) < v(p)
then ! is in N and else p is in N; and if m is a max node with children ! and p such that v'(I) > v'(p),
then ! is in N, and else p is in N. We show next that for all nodes ! in N, v'(l) —v(l) = g. From this is it

12

immediate that N contains no sink nodes, since clearly, v'(n — 1) = v(n — 1) = 0 and v'(n) = v(n) = 1.
This implies that there exist strategies o and 7 such that in the graph G -, there is no path from u to a
sink node. This contradicts our assumption that G is a stopping game. Hence it must be the case that
for some unstable node i, v'() — v'(j) < v(2) — v(j) or v'(i) — v'(k) < v(i) — v(k).

We now prove that for all nodes [in N, v'(I) —v(I) = g. We do this by induction on the distance of [
from u. The base case is when I = u; since w is a 0-unstable min node, by definition of 7', v'(u) = v(u)+g.
Now suppose that [is of distance > 1 from u and that I’s parent is node m for which v'(m) —v(m) = g.
Let m’s other child be p. If m is a v-unstable node, then by assumption, v'(m) — v'(l) = v(m) — v(l).
Combining this with v'(m) —v(m) = g, it follows that v'(l) = v(l) + g. Otherwise, suppose that m is a -
stable node. If m is an average node, then g = v'(m) —v(m) = 1/2(v'(I) —v(1)) +1/2(v' (p) —v(p)) But we
have already shown that v'(I) —v(l) < g and v'(p) —v(p) < g. Hence both must be = g. If m is a v-stable
max node, then m is also #'-stable and so v'(m) = v'(l). Also, v(m) = max{v(l),v(p)} > v(l). Hence
V(1) = v(m) + g > v(l) + g. Again, since also v'(l) < v(l) + g, it must be the case that v'(l) = v(l) +g.
Finally, suppose m is a 7-stable min node, and hence also #'-stable. By construction, v(m) = v(l). Also,
v'(m) < 2'(l). Hence v'(I) > v'(m) = v(m) + g = v(l) + g. Again, since also v'(l) < v(l) + g, it must be
the case that v'(l) = v(l) + g.

This completes the proof that F(2') < F(v) and hence the proof that 0 is a locally optimal solution
to the quadratic programming problem.

3.2 Converge from Below Algorithm

This algorithm is a modification to the Naive Converge From Below algorithm. That algorithm attempted
to repeatedly improve a feasible vector by maximizing the increase of the unstable min nodes, while
constraining the max nodes to remain stable, using linear programming. However, Figure 4 showed that
the constraints on the max nodes cause the algorithm to cycle on a suboptimal solution. To avoid this
problem, we relax the constraints on the max nodes, so that the solution of the linear program may no
longer be a feasible vector of the game. Linear programming is used again to produce a new feasible
vector for the next iteration.

13

algorithm Converge From Below

let © be the feasible vector in which all min nodes have value 0 and all max
nodes are stable
repeat

let Z be the solution to the following linear program, LP(%):
maximize), z(i) subject to the following constraints

x(3) < z(4), if ¢ is a min node with child j
z(i) = 1/2(x(j) + z(k)), if 7 is an average node with children j and &
= z(j), if 4 is a max node with children j and &
such that v(j) > v(k)
z(1) = 1/2(x(j) + z(k)), if ¢ is a max node with children j and &
such that v(j) = v(k)
(
(n)

let @' be the feasible vector such that v'(i) = z(4) if ¢ is a min node and
such that all max nodes are stable
let v o'

z(n—1)=0
z(n) =1

until 7 is stable

We claim that this algorithm converges to the optimal value vector of G. We prove this as follows.
Let Z be the optimal solution to LP(7). We first show that T exists and is the optimal value vector of
some game with n nodes. Then, we show that v/ > Z > © and that the inequality Z > @ is strict at some
node. Finally, we put these two facts together to prove the claim.

Note that the vector o is a feasible solution to LP(?); hence Z exists. Also, Z is the optimal value
vector of the game G, obtained from G as follows. All max nodes of G' become average nodes in G,.. For
each such node i with children j and &, if v(5) = v(k) then 4’s children in G, are still j and k; however if
v(j) > v(k) then both children of 7 are j. The fact that Z is the optimal value vector of G, follows from
the fact that Z is the optimal solution to LP(%), which is exactly the instance of linear programming
obtained from G, by applying the linear programming algorithm described in Section 1.3. (In this case,
because the game has just min and average nodes, rather than just max and average nodes, the linear
programming problem maximizes, rather than minimizes the objective function, and the inequalities are
reversed).

We now show that Z > ©. Note that Z can be obtained from @ in the limit by applying the successive
approximation algorithm of Section 1.3 to the game G, defined in the last paragraph. Moreover, since
the game has no max nodes, the feasible vector can never decrease at any iteration of the algorithm.
Hence, T > ©. It is also straightforward to show that ¢’ > Z.

We next show that at some node I, z(I) > v(l). Let [be a v-unstable min node of G. We now
construct a feasible solution Z of LP(%), such that z(I) > v(l). From this, it follows that the optimal
solution to LP(¥) must be strictly greater than ¢ at some node. Before defining Z, we need to define a
restricted game G’ in the next paragraph.

Let G’ be the game obtained from G by removing all edges from every min node so that they become
generalized sink nodes, and setting the value of such a node & to v(k). Without loss of generality, assume
that the sink nodes of G’ are numbered j...n. Let o be the following generalized max strategy of G'.
Let i be any max node with children m and p. If v(m) > v(p) then the strategy at ¢ is to go to m with

14

probability 1. Otherwise v(m) = v(p), in which case the strategy is to go to each node with probability
1/2. With respect to this strategy, let p;(k) be the probability that sink node k is reached from node ¢,
j <k <n. Then from Lemma 3, v(i) = 3_;_, pi(k)v(k).

Let g > 0 be such that for each child I’ of the unstable min node I, g < v(l') — v(l). We now define
Z as follows. For all min nodes i # [, let 2(¢) = v(¢) and let () = v(I) + g. For each remaining node 4,
let z(1) = >, ; pi(k)z(k). Equivalently, z(i) is the value of node ¢ in the restricted game G" defined as
follows, when the max strategy is o: All edges from every min node are removed so that the min nodes
become generalized sink nodes, and the value of such a node k is z(k).

By construction, for j < k < n, v(k) < z(k) < v(k) + g. This can be extended to show that in fact
for all 4, v(i) < z(i) < v(i) + g, as follows:

v(i) = 3 pikyo(k) < 3 pi(k)a(k) = 2(6) < 3 pi(k)(w(k) + 9) = (i) + g.
k=j k=j

k=j

We claim that Z is a feasible solution to LP(7). Value x(l) is at most the value of its children
since its value is z(I) = v(l) + g < v(j) < z(j), where j is any child of I. For min node ¢ # I,
z(i) = v(i) < v(j) < z(j), so again z(i) < x(j). If i is an average node with children j and k then
z(i) = 1/2(z(j) + z(k)) since the value z(i) is the value of node ¢ in G” when the max strategy is o.
Finally consider a max node 4 with children j and k. Suppose first that v(j) = v(k). Then we need to
show that z(4) = 1/2(x(j) +z(k)). But strategy o is defined so that this is true. Similarly, if v(j) > v(k),
then o is defined so that (i) = z(j).

We have now shown the following. Suppose that @, ' and ¥" are the feasible vectors at the start
of three successive iterations. Let Z and Z’ be the optimal solutions to LP(%) and LP(%') respectively.
Then, v/ > ' > v’ > T > ©. Moreover, the inequality Z' > T is strict at some node, say 7. Since T’ and
Z are solutions to games with n nodes, by Lemma 2, z'(i) and z(4) are of the form p/q,0 < p,q < 4™~!
and hence z'(i) — x(i) > 1/4"~1. This rate of improvement, together with the fact that the vector o
at the start of each iteration is bounded above by the optimal value vector of G, imply that in 2°(%)
iterations the optimal value vector will be found. O

3.3 A Randomized Hoffman-Karp Algorithm

In this section, we analyze a randomized variant of the Hoffman-Karp algorithm.

algorithm Randomized Hoffman-Karp

choose arbitrary max and min strategies ¢ and 7 respectively
repeat

randomly and uniformly, chose 2n non-empty subsets of the max nodes
that are ¥, --switchable (these subsets need not be distinct)

let the strategies obtained from o by switching these subsets be
01y...,02n

let 71,...72, be optimal strategies of the min player with respect to
01,---,09n, respectively

let I be such that Y. | Vo,,r,(¢) > Y1y Vo7 (4), where 1 <I,m < 2n

let 6«0, T T

until v, , is stable

15

We first show that this algorithm is correct, following the proof of Hoffman and Karp. If the algorithm
halts, the strategies o and 7 of the last iteration are clearly optimal, since v, , is stable. Hence it is
sufficient to prove that the algorithm halts.

We call the strategies o and 7 at the start of an iteration the current strategies of the iteration.
Suppose that the current strategies of two successive iterations of the repeat loop, are o, 7 and o', 7/,
respectively. Let v(i) and v'(7) be the value of node i, 1 < i < n, with respect to strategies o, 7 and
o', 7', respectively. We show that for all ¢, v(i) < v'(7) and the inequality is strict for some 7. From this
it follows that the algorithm halts, since there are only a finite number of strategies, and no pair can be
repeated at the start of an iteration.

We now show that for all 4, v(i) < v'(i) and the inequality is strict for some 7. Clearly, the values
are equal at the sink nodes, which we assume are numbered n — 1 and n. Let o = (v(1),...v(n —2))%,
7 = (v(1),...v(n—2))T, 5 =Q0+band ¥ = Q%' + b for some Q,Q’,b and V', as in Lemma 1.

Let A = ¢/ — v. We show that A > 0 and that some entry is actually > 0. Adding and subtracting
Q'v+b' to A we see that

A=(QV +b)—(Qov+b)+ (Qv+b)— (Qv+b).
If6=(Qv+b)— (Qv+b), then A =Q'A+34.

Again from Lemma 1, we know that the matrix (I — Q') is invertible, since the game halts with
probability 1. Hence A = (I — Q')~14. Also, all the entries of (I — @Q’)~! are > 0 and the entries along
the diagonal are > 0. Therefore, it remains to show that § > 0 and that one entry is actually > 0.

Note that @ and Q' differ only in rows 7 where the edge at node ¢ has been switched in obtaining ¢’
and 7’ from ¢ and 7. The same is true for b and b'. If the ith row of Q and Q' are equal and also the
ith row of b and b’ are equal, then clearly the ith entry of ¢ is 0.

Otherwise, suppose that node i has children j and k and that the ith entries of Q'% + ' and Qv + b
are v(k) and v(j), respectively. Thus, the ith entry of § is v(k) — v(j). There are two cases, depending
on whether ¢ is a max or a min node.

First, suppose that 4 is a max node. Since edge (i, k) replaces (i, j) in constructing ¢’ from o, it must
be the case that v(k) > v(j). Hence the ith entry of § must be > 0. Otherwise, i is a min node. Since
T is optimal with respect to ¢ and (4, j) € 7, it must be the case that v(j) < v(k). Hence the ith entry
of § is again > 0.

We next analyze the number of iterations required by the algorithm. Let n be the number of max
nodes. We claim that the expected number of iterations of this algorithm is 27~f(") 4 20(") for any
function f(n) = o(n), where n is the number of max nodes.

We consider two types of iteration of the algorithm. We call an iteration good if there are at least
f(n)+2 0, -switchable max nodes, where ¢ and 7 are the current strategies of the iteration. Otherwise
we call an iteration bad. We claim that there are at most 2°(™) bad iterations. This is true since f(n) is
o(n), and so the number of subsets of n of size f(n) is 2°(").

We next consider good iterations. Associated with any iteration, there is a set of candidate strategies,
which are all those strategies that could be the current strategy of a future iteration of the algorithm.
A candidate strategy is eliminated in that iteration, if it is no longer a candidate strategy in the next
iteration. Our goal is to show that if an iteration is good, then with probability 1 — 2727, at least

16

27(") of these candidate strategies are eliminated. From this it follows that with probability at least
(1 —2727)2" > 1 — 27" there are at most 2"~ f(") good iterations.

Let o and 7 be the current strategies associated with some good iteration and let ¢’ be the current
max strategy of the next iteration. Let S be the set of strategies obtained by switching all the distinct
non-empty subsets of the v, --switchable nodes. Note that all the strategies of S are candidate strategies
of this iteration, and since it is a good iteration, |S| > 2/ (M)+2 _ 1. Let the value of a max strategy o
be Zi”:l Vo, ,r; (i), where 7; is the optimal min strategy with respect to o;. Order the strategies of S
with respect to their values, and let S’ be the set consisting of the best [|S|/2] strategies of S (ties are
broken arbitrarily). Then the probability that o’ € S’ is at least 1 — (1/2)?". This is because ¢’ is the
best of 2n randomly chosen strategies of S. Also, the probability that each of these randomly chosen
strategies is in S’ is > 1/2, since ’|S’| > |S]/2.

If o' € S’, then all of the strategies in S — S’ are eliminated as candidate strategies of the next
iteration. This is because all these strategies have value at most the value of ¢’. Furthermore, we have
already established that the candidate strategies of an iteration must have value strictly greater than
the current strategy of that iteration. Also, |S — §'| > (2f(M+2 — 1) — 2f(M+1 > 2/(%) " This completes
the proof that at least 2/(") candidate strategies are eliminated at a good iteration, with probability at
least 1 — 2727,

Therefore, expected number of iterations is at most

(1 —27m)2n=f(n) 4 g=ngn 4 go(n) — gn—f(n) 4 go(n),

4 Conclusions

We have demonstrated that a number of natural approaches to solving the SSG problem are incorrect.
We have also proposed two new deterministic algorithms and a randomized algorithm for the problem.
A major open question is whether these algorithms run in polynomial time.

5 Acknowledgements

Thanks to Anton Rang, Prasoon Tiwari and Manuel Blum for many insightful discussions on this work.
Thanks to Sam Pottle for many helpful comments on the presentation, and for pointing out a flaw in an
earlier version of the converge from below algorithm.

References

[1] Condon, A. The complexity of stochastic games, Information and Computation, 96(2):203-224, Febru-
ary 1992.

[2] Derman, C. Finite State Markov Decision processes, Academic Press, 1972.

[3] Federgruen, A. Successive approximation methods in undiscounted stochastic games, Operations
Research 1:794-810, 1980.

17

[4] Filar, J. A. and T. Schultz, Non-linear programming and stationary strategies in stochastic games,
Mathematical Programming 35:243-247, 1987.

[5] Hoffman, A. and Karp, R. On nonterminating stochastic games, Management Science 12:359-370,
1966.

[6] Khachiyan, L. G. A polynomial time algorithm for linear programming. Soviet Math Dokl., 20:191-
194, 1979.

[7] Melekopoglou, M. and A. Condon. On the Complexity of the Policy Iteration Algorithm for Sim-
ple Stochastic Games, University of Wisconsin-Madison Computer Sciences Department Technical
Report Number 941, June 1990.

[8] Peters, H. J. M and O. J. Vrieze. Surveys in game theory and related topics, CWI Tract 39, Center
for Mathematics and Computer Science, Amsterdam, 1987.

[9] Pollatschek, M. A. and B. Avi-Itzhak. Algorithms for stochastic games with geometrical interpreta-
tion, Management Science 15:399-415, 1969.

[10] Shapley, S. Stochastic games, Proceedings of the National Academy of Sciences, U.S.A, 39:1095-1100,
1953.

[11] Schultz, T. A. Mathematical Programming and Stochastic Games, Ph. D. Dissertation, Johns Hop-
kins University, Baltimore, Maryland, 1987.

[12] Rao, S. S., Chandrasekaran, R. and Nair, K. P. K. Algorithms for discounted stochastic games,
Journal of Optimization Theory and Applications, 11(6):627-637,1973.

[13] Van Der Wal, J. Discounted Markov games: successive approximations and stopping times, Inter-
national Journal of Game Theory, 6:11-22, 1977.

[14] Van Der Wal, J. Discounted Markov games: generalized policy iteration method, Journal of Opti-
mization Theory and Applications, 25(1):125-138,1978.

[15] Vrieze, O.J., Stochastic games with finite state and action spaces, CWI Tract 33, Center for Math-
ematics and Computer Science, Amsterdam, 1987.

18

