A Dolev-Yao model for Zero Knowledge

A. Baskar, R. Ramanujam, and S. P. Suresh

1 Chennai Mathematical Institute, Chennai. abaskar@cmi.ac.in
2 Institute of Mathematical Sciences, Chennai. jam@imsc.res.in
3 Chennai Mathematical Institute, Chennai. spsuresh@cmi.ac.1in

Abstract. In cryptographic protocols, zero knowledge proofs are employed for a principal A to communicate some
non-trivial information ¢ to B while at the same time ensuring that B cannot derive any information “stronger” than
t. Often this implies that B can verify that some property holds without being able to produce a proof of this. While a
rich theory of zero knowledge proofs exists, there are few formal models addressing verification questions. We propose
an extension of the standard Dolev-Yao model of cryptographic protocols which involves not only constructibility
of terms but also a form of verifiability. We present a proof system for term derivability, which is employed to yield a
decision procedure for checking whether a given protocol meets its zero knowledge specification.

1 Introduction

Zero-knowledge proofs were introduced by [GMR89] and were immediately seen to be an attractive
technique for implementing information hiding. [GMW¢1] gave a variety of zero-knowledge proofs
demonstrating the applicability of the technique and today, it is extensively used in electronic voting
protocols, contract signing protocols and designated verifier proofs ([JCJos], [LBD o4], [CGS97]).

On the other hand, security protocols are known to be difficult to design and hard to analyze,
principally due to the concurrent execution of such protocols, leading to information transfer across
many interleaved runs. Discovery of design flaws in early key distribution and authentication proto-
cols ([NS78], [Low96]) led to the advent of formal methods in verification of cryptographic proto-
cols ([MSo1], [RTo3], [CLS03], to name a few references). A key abstraction in such employment
of formal methods is that of the Dolev-Yao model, in which cryptographic operations are idealized
and proofs can be carried out without the complications relating to implementation of cryptographic
primitives, random numbers and error probabilities. Symbolic abstraction has proved to be useful in
the study of a range of security protocols (see [Belo3], [DKRog], [Creo8], for instance). Recent re-
search has further demonstrated that such symbolic models can be proved to be sound with repect to
underlying computational models (see, for instance, [ARo2], [Heros], [CKKWo06]) thus achieving
a satisfactory two-level layering of security proofs.

The standard Dolev-Yao model offers a term algebra with operators for encryption and pairing.
Recently, a number of extensions have been studied in different contexts [CDLoé6]. The model has
also been extended to include analysis of flaws such as guessing attacks [Bauos]. In this context, it is
natural to consider extensions of the Dolev-Yao model for analysis of cryptographic protocols that
employ zero-knowledge proofs as well.

Two approaches suggest themselves. One is to symbolically represent a zero-knowledge proof as
an explicit constructor in the term algebra, say z& with appropriate parameters, and study protocols
using such terms in communications. Separately, one ensures that guarantees given by proofs with

such symbolic abstraction are applicable to protocol implementations where the abstractions are re-
alised by cryptographic zero-knowledge proofs. This is the line of work successfully carried out by
[BMUo8] and [BUo8].

Another approach is to so extend the Dolev-Yao model such as to formalize aspects of crypto-
graphic zero-knowledge proof construction as well, within the symbolic abstraction. The underly-
ing idea is that an idealization of the sequence of operations that constitute a cryptographic zero-
knowledge proof is itself possible within such an extended Dolev-Yao model. This is in the spirit of
logical studies of security protocols, where we wish to identify patterns of reasoning relating to in-
formation transfer and hiding. The advantage of such an approach is that computational soundness
of underlying abstractions can be ‘lifted’ to the construction. This is the approach we follow in this
paper.

In general, a zero-knowledge proof is a proof of a statement a. A principal A tries to convince
another principal B that a is true, but in such a way that for any 3 such that 8 D a and ~(a D),
B does not receive any new information as to whether £ holds or not. In the context of Dolev-Yao
models, refers to some property of a set of terms X without revealing X itself.

This is the central idea of our abstraction: when a term ¢ is constructible by a principal A in the
Dolev-Yao model, she has complete and certain information about ¢. If she has a way to send ¢ to B
whereby B can verify some property of ¢ (for instance ¢ has a pattern as substructure) without getting
to know ¢ itself, we can build such capabilities to stitch zero-knowledge proofs together.

How do we bring such a capability in a formal model? We employ another standard notion, that
of a typed term. This is of the form ¢ |} p, where ¢ is a term formed using the operations of pairing
and encryption starting from atomic terms, while p is a pattern built using pairing, encryption, and
disjunction starting from atomic terms, and [(denoting an unknown term).

Consider the following example protocol, stated using such typed term:

V= A0, ")} i) YO @ LD, i)
A=V (0 ") pussice) privare(ay U0
A—C: {{(7)’ r)}public(C)}private(A)‘U’D

The first message is typed with a disjunctive pattern. The rest of the communications are typed
with the pattern [J, to indicate the fact that no non-trivial type information is being passed about
them. In this manner, zero knowledge proofs are not communicated, but instead the content of the
proof is expressed as a typing for the appropriate term.

We now sketch further examples:

— If someone has provided a proof that a term ¢ is of the form {¢'},, (for a fixed k, and arbitrary ¢'),
this might be represented by the typed term ¢ |} {0},

- A proofof the fact that two terms ¢ and ¢ are encrypted using the same key & might be represented
by (¢,)4 ({0}, {T})-

— That ¢ is either {0}, or {1}, is represented by ¢ |} {0}, & {1},.

— Thatcither ¢ or ¢’ is of the form 7 can be represented by (for instance) (¢, ¢"){}(,00) & (O, 7).

— That ¢ is encrypted by cither k or &’ can be represented by {¢}, { {¢} 4, If ¢ is a term known to
A (a nonce generated by A, say) and the inverse of key is also known to her, then she can in fact

verify more of the structure of {¢}, (in particular, that the given term is indeed encrypted using
k and not k’). Such considerations are important in modelling examples like the whistle blower’s

problem [Cla].

In general, protocols in our model communicate a typed term ¢ |} p where p is a disjunctive
pattern p, @ p,. The typed term should be derivable by the sender, but the receiver can in general
not resolve the disjunction. Then interesting questions about “leak of knowledge” can be asked. If the
protocol intends only # |} p to be known by an agent A, but she gets to know ¢ |} p’ for a “stronger
pattern” p’, that would constitute a leak.

Thus the central contribution of the paper is the setting up of a proof system for when a given
typed term is derivable from a set of typed terms, and its use in proving the decidability of the ver-
ification problem for “information leakage”. What is notable about this system is that we do non-
trivial reasoning with disjunction and contradiction. In contrast, the typical proof systems that one
encounters in relation to security protocols essentially reason with conjunction and some form of
implication, with some algebraic rules.

2 The term model and derivations

In this section, we present the basic term model, and also the rules for deriving typed judgements.

Fix a finite set of agents Ag, which includes the intruder 7, which is an abstraction that quantifies
over the malicious forces at work to compromise security. The intruder is assumed to have unbounded
memory, has access to all that travels on the public channel, can forge and block messages.

Fix a countable set of fresh secrets .4". ('This includes random, unguessable nonces as well as tem-
porary session keys.) B = N U Ag is the set of basic terms. The set of keys, &, is defined to be
N U{public(A), private(A),shared(A, B)|A, B € Ag}. Here public(A), private(A), and shared(A, B) de-
note the public key of A, private key of A, and (long-term) shared key between A and B, respec-
tively. We define inv(k) for every k € A as follows: inv(public(A)) = private(A), inv(private(A)) =
public(A),and inv(k) = k for every other k € . The set 7 of terms is given by the following syntax:

T w=m|(t,t")| {t},

where m ranges over & U Ag, and ¢,t’ over 7. Here (¢,t’) denotes the pair consisting of ¢ and ¢/,
and {¢}, denotes the term ¢ encrypted using ¢’.

Given a term, its set of subterms s#(¢) is defined in the usual manner: st(m) = m; s#((¢,t')) =
{(2,t")}Ust(t)Ust(t"); se({t},/) = {{t},,} Ust(¢)Usz(¢"). The notion of inverse is extended to all terms
t by letting inv(t) =t forall t ¢ X

Terms conform to certain patterns. A pattern has the same structure as a term, except for two
important differences: we use a special pattern [to signify that nothing is known about the structure
of a given term; and we use disjunction, in the form p @ p’, to signify that a given term has cither the
structure specified in p or the structure specified in p’. Patterns are given by the following syntax:

@ =0alm|(p,p) | {p}, 1 p® 7
where m € ' UAgand p,p’' € 2.

We extend the notion of inverse to an arbitrary basic pattern p € & by letting inv(p) = p if
p & A and p is not of the form p, @ p,. We define inv(p @ p’) to be inv(p) @ inv(p’). The notion of
subpatterns of a pattern p, s#(p), is also defined in the usual manner.

A typed term is of the form £ |}’ p where ¢ is a term, p isa pattern, and i € {0, 1}. (We will explain
the need for the superscript 7 shortly.)

Given two patterns p and ¢, we define when p is incompatible with g (in symbols: p#g) by the
following rules:

if m # n then m#n for m,n € AB

m#(q,q') and m#{q} form € B

(p,p*aty

pHq @ q' if p#q and p#q’

p#qifg#p
We say that a term ¢ is compatible with a pattern p if =(t#p). We say that a typed term ¢ |}’ p is
well-formed if ¢ is compatible with p.

We next describe rules that let one derive new terms from old. The rules, given in Figure 1, involve
sequents of the form X F ¢ |}’ p where X U {t |}’ p} is a set of typed terms. We use X, ¢ |}’ p asa
shorthand for X U {t |}’ p}. Weuse X I ¢ |}’ p to also denote the fact that the sequent X F ¢ |}’ p has
aderivation. Welet X = {t |} p | X F |}/ p}.

Some of the rules are routine and some are quite complicated. We discuss the important aspects
of the proof system in some detail.

1. A has complete knowledge of the terms she has generated, and thus for such constructed terms ¢,
she has }' £ in her database. She believes in the typingjudgement sent across by the other agents,
presumably because the typingjudgement comes with a zero knowledge proof which A can verify.
For such verified terms ¢, she has ¢ {}° p in her database.

2. Constructed terms are automatically deemed to have been verified, but not all verified terms need
be constructed.

3. Only constructed terms can be used in constructing further new terms, while verified terms can
be used to verify the structure of further terms.

4. Itis possible to verify that a given term has more structure than what is revealed by the sender. For
instance, if A has received a typed term {m}, {} {1}, Where »2 is a term already constructed by
her, and decrypts this term using the inverse of £ (which she has generated or constructed), she
can verify that the term is of type {m},.

5. Important to inferring more structure for a given term is the disjunction elimination rule. We just
rule out some of the cases that lead to a contradiction.

6. We do not have a rule for disjunction introduction, or any other form of weakening of types, to
keep the proof system simpler. But it is important to allow some form of weakening in the model.
This is to allow agents to reveal only some partial structure of a term another agent. We take care
of this in the model by saying that a typed message of the form ¢ |}’ p can be communicated even
when t |}’ p” is known to the sender for a “stronger” pattern p’.

We note two important properties of the proof system below. The proofs are by a more-or-less
routine induction on the structure of derivations.

XFelip XCX' i>j

ﬁAxiom - weaken
Xt pkelip X'Felip
X'_(tO)[l)U'j(pO’pl)
—_—— 9l (i=0,1)
XFelip XU p XEu ¥ pi
———— pair
/ i / .
XE(&) (p,p) XF (1) 00
—— split, (i =0,1)
Xkl O
XFeYlp XFYp
encrypt
1
XFEieh ety XE{e} UHpd, X Fim(e) Y ino(p”)
decrypt
1
XF tUOp X Finv(t/)UIinv(p/) XEedp
verifyEncrypt
XF e} 11p)
Xbelip XFelip’ p#p’ Xtel'p tpeB t#p
contr 6'07117‘/
XFEY' XEzy'p
Xtelpep Xl priWp Xl p'Filp
+-elim

XFTYp

Fig. 1. The derivation rules

Proposition 1. If X is a set of well-formed typed terms, then any t\) p € X is well-formed.
Proposition 2. If X is a set of well-formed typed terms such that for all w |}' ¢ € X, u = q, and if
XEelp thent=p.

The derivability problem asks, given a set of typed terms X and a typed term ¢ |}’ p, whether

t |} p € X. The following theorem is central to the application of this proof system to protocols. The
proof of it will occupy us in Section 4.

Theorem 3. The derivability problem is decidable.

3 The protocol model

The model we present here is based on the papers [RSos] and [RSo6]. The term model has already

been discussed in detail in Section 2. We shall look at the definition of protocols and their runs.

Protocols

Protocols are typically given as a sequence of communications of the form A— B:t, which denotes
the sending of ¢ by A and its receipt by B. But when a protocol is executed, one needs to consider the
sends and receives as separate actions. Further, we need notation to indicate when certain nonces are
supposed to be generated afresh every time an instance of a message is sent by some agent during a
run of the protocol.

The new element in the model in this paper is that we allow typed terms in the communications.
This is essential to model the use of zero-knowledge proofs in protocols. The protocol steps which
communicate zero-knowledge proofs for a particular fact (that ¢ and ¢’ are both encrypted terms,
where the encryption key is &, for instance) is replaced by the communication of a typed term ((¢,)|}
({O},,{03},), in this case). The other terms are typed with the pattern .

The important point to note is that the communications of the protocol do not mention whether
the terms communicated are constructed or verified. That is just part of the analysis.

We introduce the notion of actions first. An action is cither a send action of the form A!B: (M) |} p
or a receive action of the form A?B:t |} p, where ¢ |} p is a well-formed typed term, and A and B are
agent names. By an A-action, we mean A!B: (M)t |} p or A?B:t |} p, for some B and ¢ |} p. In all the
send actions, M is a set of typed terms of the form m |} m where m € s(t). These are the nonces
supposed to be freshly generated as part of the send action. For an action 4 of the form A!B:(M)¢ |} p
or A?B:t) p, term(a) is defined to be ¢ |} p.

We emphasize that while the sender name in a send action, and a receiver name in a receive action
denote the actual agents that send and receive the messages, respectively, in a send action we can only
name the intended receiver, and in a receive action we can only name the purported sender. As we will
see later, every send action is an instantaneous receive by the intruder, and similarly, every receive
action is an instantaneous send by the intruder.

A communicationisof theformA—B:(M)t || p.lf c = A—B:(M)t |} p,thensend(c) = A'B:(M)t |} p,
and rec(c) = B?A:t || p.

A protocol specification (or simply protocol) Pr is a tuple (const, ¢, -+ ¢;, P, N) which satisfies
the following conditions:

for each 7 </, ¢; is a communication A, — B, :(M,)¢, |} p,

- {t,Upps---st, py}is aset of well-formed typed terms, and

const C 9B is a set of constants of the protocol,

P is a set each of whose elements is of the form (A, ¢ |} p) for some A € Ag and some typed term
t |} p. This specifies the positive knowledge requirements.

N is a set cach of whose elements is of the form (A4, ¢ |} p) for some A € Ag and some typed term
t{} p that occurs in Pr. This specifies the negative knowledge requirements.

For ease of notation, we refer to protocols using the sequence of communications. The idea is that
const(Pr) should be interpreted the same way throughout any run of the protocol, while the other
basic terms can get different interpretations in different sessions of a single run of a protocol.

Given a protocol Pr = ¢, -+ ¢, one can extract its set of roles {7, ..., 7,,} as follows: consider the
sequence of actions 7 = send(c,)rec(c,)- - - send(c,)rec(c,), and for every A that is either a sender or a
recipient in the protocol, consider the subsequence of all A-actions in 7). This is the A-role of Pr. The

idea is that an agent participating in the protocol can execute many sessions of a role in the course of
a single run, by instantiating the non-constants in many different ways.

Runs of a protocol

A substitution ¢ is amap from 98 to 7 such that 0(A4¢) C Agand o(I) =1 and 6(AN") C N . We say
that a substitution o is suitable for a protocol Pr if for every basic term 7 specified to be a constant
of the protocol, o(m) = m. For an arbitrary term ¢ and pattern p, 0(¢) and o(p) are defined in the
obvious manner. Fora typed term ¢ |} p, o(t | p) = o (¢){ o (p).

An event of a protocol Prisatriple e = (1, 0, /p) where n isarole of Pr, o is a substitution suitable
for Pr,and 1 < /Jp < ||.Foreventse = (n,0,lp)and e’ = (n/,0”,lp") of Pr,we say that e < ¢’ (meaning
that e is in the local past of ¢') if n =1/, 0 = o', and lp < [p/. For an event e = (7, 0,lp) of Pr, the
action of e, act(e) is defined to be o (a,,), where n = a, - 4, and term(e) = term(act(e)).

An state is a tuple (s,) ¢, Where s, C 7 for each A € Ag. The initial state of P, denoted by
initstate(Pr), is the tuple (s4) 1 4, such that forall A € 4g,

sy = {m'm | m € AgU {private(A), public(A)} U {public(B),shared(A,B) | A # B}}.

We need to define when the various send and receive actions are enabled, and the state updates
that happen as a result of the communications. This is on standard lines, but some points need to
be highlighted. For a send action to be enabled, all the nonces that are designated as fresh should
not be derived by anyone in that state. These will get added to the sender’s state as part of the send
action. Further, the communicated term should be constructible by the agent, that is, £ |}! p should be
derivable by the agent. But she is allowed to communicate a weaker pattern p. Further, the intruder
(who plays the part of the network) gets £ {}? p into its state, which will be erased once the message is
delivered. This is to model the fact that zero knowledge proofs cannot be replayed.

The notions of an action enabled at a state, and update(s,a), the update of a state s on an action
a, are defined as follows:

— A send action a of the form A!B: (M)t |} p is enabled at any state s iff ¢ |}' t € s, UM, and for all
ml|lmeM, m||' m &5c for every C (including A).
A receive actiona = A?B:t |} p is enabled at s iff one of the following two cases holds:

o t|’pes,

o t|ltes,.
update(s, A'B:(M)t{} p) =" where s} = s, UM, s; =5, U{t}* p},and s = s for C £ 1.
update(s,A?B:t | p) = s" where s, = s, U {t ° p},s) = (5, \ t Y* p)Ut §° p,and s/ = s for
C ¢{B,I}.
update(s,n) for astate s and a sequence of actions 7 is defined in the obvious manner. Given a protocol
Prand a sequence of its events &, infstate(&) is defined to be update(initstate(Pr), act(£)).

Given a protocol Pr, a sequence e, - - - ¢, of events of Pr is said to be an run of Pr iff the following

conditions hold:

foralli,j <ksuchthati #j,¢ #e;,
forall i <k and forall e <e;, there exists j < i such thate; = ¢, and
forall i <k, act(e;) is enabled at infszate(e, - --¢;_,).

Arun¢ =e,---¢, of Pr(withe, =(»,,0,,lp;) forcach i < k) isa b-bounded run (for b a natural
number) if |{(n,,0;) | i <k} < b.

4 The decidability of the proof system

We follow the standard approach of reducing every derivation in our system to a normal derivation,
and then proving a subterm property for normal proofs. This bounds the size of normal proofs for a
given sequent X ¢ |}’ p. Thus we only need to search over a bounded set of proofs to check whether
tlipeX.

The normalization rules are quite standard. We basically avoid detours (an application of the sp/iz
rule immediately following an application of the pair rule, for example), and permute the application
of rules so that no major premise of any rule of a proof is the conclusion of a disjunction elimination or
a contradiction rule. We say that 7z is a normal proof if no further normalization rules can be applied
to it. A representative sample of the normalization rules is given below:

- Replace any proof of the form

. -,
- T v

Xkelip XEOU Y
—————— pair
X (6,) (p.p)
—_——— ity
XEel'p
by the following proof:
m
Xkelip
- Replace any proof of the form
‘n -
Xtellp XESYY o
————— encrypt .
Xl—{t}t/UI {p}pz X & ino(t Y inv(p")
decrypt
Xke|'p
by the following proof:
n
Xke|'p
- Replace any proof of the form
. . o
XkeYpop Xelpkulq X' p'Fullq L
. +-elim -
Xtulq Xl—ulwa
r
Xtalq

by the following proof:

s ‘77.'/ ‘ZD'/ ‘7'[/

e Nlpkelg XLV Xl phulq XELY g
. r r
XFelipap XFalg Xtalig
- +-elim
Xtalig

- Replace any proof of the form

- T

XFelip t,peB t#p -
Cﬂnﬂ/ B
Xl-uUlq Xl—ululq/

r

XFalylg
by the following proof:
Xl—;Uip LPERB tHp

Xkallq

[0711‘7/

Theorem 4. Every proof can be converted to a normal proof.

We omit a proof of this fact. It is an easy adaptation of a standard proof that can be found in
[GLT89], for instance. The following theorem states an important property of normal proofs.

Theorem s. Let 7w be a normal proof of X \= t |} p and let u\)) q be a typed term occurring in 7. Then
rest(X U{t})

Proof. We will only sketch the proof, as it involves a standard argument. We shall prove a stronger
statement: if X F # |}/ ¢ is the conclusion of a sp/it rule or a decrypt rule, r € st(X), and if it is the
conclusion of some other rule, r € s#(X U {¢}).

We crucially use the fact that in a normal proof, the conclusion # |}/ q of a contr or contr’ or +-elim
rule is not the major premise of any other rule. This means that # is either the conclusion ¢, or the
minor premise of the decrypt rule or the +-¢lim rule. But this means that # is a subterm of the major
premise of that rule.

Another thing worth noting is that, since there is no disjunction introduction rule, the major
premise v {}¥ 7 of a disjunction elimination rule is the conclusion of a decrypt rule or a split rule, and
hence v € s#(X). Similarly if v {|* r is the major premise of a decrypt rule, v € s#(X).

Based on these observations, a straightforward induction on the structure of derivations helps us
prove the theorem. 1

We have bounded the set of terms that can occur in a proof of X I ¢ |} p, but what about the set
of typed terms? We show below that this is also bounded. More specifically, given a set of typed terms
X, and a term ¢, we show that the number of patterns p such that X F £}’ p is bounded.

Given a set of typed terms X, we define closure, (X) to be the least set such that:

X C closure,(X),

— if (¢,t") (p, p’) € closure, (X), then t |}’ p,t' |’ p’ € closure,(X),

- if {t}, W {p}, € dosure,(X), then t |}/ p,t' |}’ p’ € closure,(X), and
- iftl) p® p’ € closure,(X), then t |’ p,t |}’ p’ € closure,(X).

Given a set of typed terms X and a term ¢, we define closure,(X, t) as follows:

= closure,(X) C closure,(X, t),
- if (¢, ") est(X U{t})andif t)’ p, ') p’ € closure,(X, t), then (¢,t") |} (p, p’) € closure,(X , t),
and

- if{t}, €st (X U{t})andif t |’ p,t' |’ p’ € closure,(X,t), then {t}, |’ {p}, € closure,(X).
We make a couple of observations that are routine to prove:

Lemma 6. closure,(closure,(X , t)) C closurey(X , t), and closure,(closure,(X , t), t) C closure,(X, t).

Lemma 7. |closure (X)| < m - |X| for some constant m. |closure(X, t)| < (|X U{t}|)? where d is the
maximum depth of any term in st(X U{t}).

Theorem 8. Lez X be a set of typed terms and t be a term. Let 70 be a normal proofof X &=t |}/ p for
some p and 1. Then for any typed term u\) q occurring in 1, ul)) q € closure,(X, t).

This is again a straightforward proof by induction on the structure of a normal proof.

Theorem 3 is an immediate consequence of the above theorem. There is a standard deterministic
algorithm that checks, given X and ¢ |} p, whether the term is derivable from X in time polynomial
in the size of closure,(X, t).

Application to the information leakage problem

We describe the information leakage problem below. But for that we need a definition of when one
pattern p is stronger than another pattern g. We shall formally define it below, but the idea is that for
all terms ¢, if ¢ is compatible with p, it is also compatible with g, but there is at least one term ¢’ that
is compatible with ¢ but incompatible with p.

We first define when p and g are equally strong (in symbols: p ~ g). ~ is the smallest congruence
on patterns such that

O~0O& p,

p~pOD,
(p@p,9)~(p,0)®(p'sq)
(g, p®p)~(q,p)®(q,p")
{rop't, ~{r},®{p'}, and
{q}p@p’ ~ {q}p @ {q}p/'

We now define when p is as strong as ¢ (in symbols: p 77 g). 7~ is the least binary relation over
the set of patterns that is reflexive, transitive, and such that:

10

p~qg=>pq

j 2o n!

piﬁ@p / / /

pZar 2qad =02 (g9 {r}y g},

We say that p is stronger than g (in symbols: p > ¢) if p 7~ g and =(p ~ ¢q).
The information leakage problem asks, given a protocol Pr = (const, ¢, - - ¢;, P, N),and a b, whether
the following holds:

1. forevery (A, ¢} p) € P, there exists a b-bounded run & =, --- ¢, of Pr (with e, = (n,0,/p)) and
i €{0,1} such that o(¢)}' o (p) € inﬁmteg(A)(f), and

2. for every (A,t |} p) € N, there exists no b-bounded run & = ¢, ---e, of Pr such that (letting
e, = (n,0,0p)), there no stronger pattern p’ > o(p) such that o (¢)|°p’ € inﬁtateg(A)(g).

Theorem 9. The information leakage problem is decidable.

Proof. Much of the proof is on standard lines, except for the verification of the positive and negative
knowledge requirements.

W first notice that for any given protocol Pr, the set of b-bounded runs of Pr. Moreover this
set can be computed as follows: Consider all sequences of events which are of length at most &’ (a
bound that is determined by 4). Such a sequence is a run if and only if it is admissible. The non-trivial
component in the check for admissibility is the check for whether send events are enabled. For this

one has to verify that £ |}t € X for an appropriate X (which represents the state at the end of all the
previous events in the sequence under consideration). Theorem 3 guarantees that we can effectively
perform this test.

Once we compute the set of b-bounded runs, we need to check the knowledge requirements.
For a positive specification (4,t |}’ p), search for a b-bounded run & = e,---¢, of Pr (with ¢, =
(n,0,lp)) such that o (¢)}' o(p) € inﬁmteg(A)(g). Theorem 3 once again ensures that we can do this
test effectively.

For a negative specification (A, t |}’ p), we need to check all b-bounded runs & = e, ---¢, of Pr
(letting e, = (1, o, 1p)), to ensure that there is no stronger pattern p’ = o(p) such that o(¢)|}° p’ €
infitate (€). Once we fixarun & and X = infitate, (), we need to verify that there is no pattern
p’ stronger than o(p) is derivable for ¢ from X. In general, there is no bound on the set of stronger
patterns than a given pattern p. But we only need to check for patterns derived from X. Theorem 8
assures us that there are only boundedly many patterns for ¢ derivable from X. Now we just need to
check if any one them is stronger than o(p). Thus one can effectively verify the negative knowledge
requirements as well.

Hence the information leakage problem is decidable. 1

References

[ARo2] Martin Abadi and Phillip Rogaway. Reconciling two views of cryptography (the computational soundness of formal
encryption). Journal of Cryptology, 15(2):103-127, 2002.

II

[Bauos]
[Belos]
[BMUos$]
[BUo8]
[CDLo6]

[CGS97]

Mathieu Baudet. Deciding security of protocols against off-line guessing attacks. In CCS ‘o5 Proceedings of the 12th ACM
conféreme on Computer and communications security, pages 16—25, New York, NY, USA, 2005. ACM.

Giampaolo Bella. Inductive Verification of Smartcard Protocols. Journal of Computer Security, 11(1):87-132, 2003.
Michael Backes, Matteo Maffei, and Dominique Unruh. Zero-Knowledge in the Applied Pi-calculus and Automated
Verification of the Direct Anonymous Attestation Protocol. In IEEE Symposium on Security and Privacy, pages 202-215,
2008.

Michael Backes and Dominique Unruh. Computational Soundness of Symbolic Zero-Knowledge Proofs Against Active
Attackers. In Proceedings of the 215t IEEE Computer Security Foundations Symposium, pages 255-269, 2008.

Véronique Cortier, Stéphanie Delaune, and Pascal Lafourcade. A survey of algebraic properties used in cryptographic
protocols. Journal of Computer Security, 14(1):1-43, 2006.

Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A secure and optimally efficient multi-authority election
scheme. In Advances in Cryptology - EUROCRYPT 97, pages 103-118, 1997.

[CKKWo6] Véronique Cortier, Steve Kremer, Ralf Kiisters, and Bogdan Warinschi. Computationally sound symbolic secrecy in the

[Cla]

[CLSo3]

[Creo8]

[DKRo9]
[GLTS89]
[GMRSo]
[GMWo1]
[Heros]
(JCJos]

[LBD%04]

[Lowoé]
[MSo1]
[NS78]
[RSos]
[RSo6]

[RTo3]

presence of hash functions. In FSTTCS, pages 176—187, 2006.

Andrew Clausen. Logical composition of zero-knowledge proofs. Electronic version found in
WWw.cis.upenn.edu/~mkearns/teaching/Crypto/zkp-disj.pdf.

Hubert Comon-Lundh and Vitaly Shmatikov. Intruder Deductions, Constraint Solving and Insecurity Decisions in
Presence of Exclusive or. In Proceedings of the 18th IEEE Synposium on Logic in Computer Science (LICS), pages 271-280,
June 2003.

C.J.E Cremers. The Scyther Tool: Verification, falsification, and analysis of security protocols. In Computer Aided Verifi-
cation, 20th International Conference, CAV 2008, Princeton, USA, Proc., volume s123/2008 of Lecture Notes in Computer
Science, pages 414—418. Springer, 2008.

Stéphanie Delaune, Steve Kremer, and Mark D. Ryan. Verifying privacy-type properties of electronic voting protocols.
Journal of Computer Security, 2009. To appear.

Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types, volume 7 of Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 1989.

Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive proof systems. SLAM
Journal of Computing, 18(1):186-208, 1989.

Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that Yield Nothing but their Validity, or All Languages in NP
have Zero-Knowledge Proof Systems. Journal of the ACM, 38(1):691-729, 1991.

Jonathan Herzog. A computational interpretation of dolev-yao adversaries. Theoretical Computer Science, 340(1):57-81,
2005.

Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-resistant electronic elections. In WPES ‘os: Proceedings of
the 2005 ACM workshop on Privacy in the electronic society, pages 61-70, 2005.

Byoungcheon Lee, Colin Boyd, Ed Dawson, Kwangjo Kim, Jeongmo Yang, and Seungjae Yoo. Providing receipt-freeness
in mixnet-based voting protocols. In Proceedings of Information Security and Cryptology (ICISC’03), volume 2971 of
LNCS, pages 245-258, 2004.

Gavin Lowe. Breaking and fixing the Needham-Schroeder public key protocol using FDR. In Proceedings of TACAS 96,
volume 1055 of Lecture Notes in Computer Science, pages 147-166, 1996.

Jonathan K. Millen and Vitaly Shmatikov. Constraint solving for bounded-process cryptographic protocol analysis. In
ACM Conference on Computer and Communications Security, pages 166—175, 2001.

Roger M. Needham and Michael D. Schroeder. Using Encryption for Authentication in Large Networks of Computers.
Commaunications of the ACM, 21(12):993-999, 1978.

R. Ramanujam and S. P. Suresh. Decidability of context-explicit security protocols. Journal of Computer Security,
13(1):135-165, 2005.

R.Ramanujam and S. P. Suresh. A (restricted) quantifier elimination for security protocols. Theoretical Computer Science,
367:228-256, 2006.

Michaél Rusinowitch and Mathieu Turuani. Protocol Insecurity with Finite Number of Sessions and Composed Keys is
NP-complete. Theoretical Computer Science, 299:451—475, 2003.

I2

