
Existential Assertions for Voting Protocols

R. Ramanujam1, Vaishnavi Sundararajan2, and S.P. Suresh2

1 Institute of Mathematical Sciences Chennai, India.
jam@imsc.res.in

2 Chennai Mathematical Institute, Chennai, India.
{vaishnavi, spsuresh}@cmi.ac.in

Abstract. In [22], we extend the Dolev-Yao model with assertions. We
build on that work and add existential abstraction to the language,
which allows us to translate common constructs used in voting proto-
cols into proof properties. We also give an equivalence-based definition
of anonymity in this model, and prove anonymity for the FOO voting
protocol.

1 Anonymity

Formal verification of security protocols often involves the analysis of a property
where the relationship between an agent and a message sent by him/her needs
to be kept secret. This property, called “anonymity”, is a version of the general
unlinkability property, and one of much interest. There can be multiple examples
of such anonymity requirements, including healthcare records, online shopping
history, and movie ratings [20]. Electronic voting protocols are a prime example
of a field where ensuring and verifying anonymity is crucial.

It is interesting to see how protocols are modelled symbolically for the anal-
ysis of such properties. In the Dolev-Yao model [10], one often requires special
operators in order to capture certain behaviour. Many voting schemes employ
an operation known as a blind signature [8]. A blind signature is one where the
underlying object can be hidden (via a blinding factor), the now-hidden ob-
ject signed, and then the blind removed to have the signature percolate down
to the underlying object. The FOO voting protocol given in [11] crucially uses
blind signatures in order to obtain a signature on an encrypted object. [7] shows
that the derivability problem for protocols involving blind signatures becomes
DEXPTIME-hard. Protocols which do not use blind signatures often use homo-
morphic encryption or mix nets, which also make the modelling and verification
quite complex [17].

Note that in most common models, terms are the only objects communi-
cated. A “certificate” of an agent’s validity – which is an intrinsically different
object from a term containing an agent’s vote, for example – is also modelled
as a term in the term algebra. [4,5], for example, augment the Dolev-Yao term
syntax with an extra primitive ZK, which can be used to create a term that
codes up a zero-knowledge proof. However, no direct logical inference is possible
with these proof terms, and therefore, it is difficult to reason about what further

knowledge agents can obtain using them. [22] proposes a departure from this
paradigm, using assertions as a further abstraction that can be used for mod-
elling protocols. Assertions, which code up certificates and have a separate proof
system, can be sent by agents in addition to terms. The assertion algebra allows
designers to model protocols involving certification in a more explicatory man-
ner (by maintaining terms and certificates as separate objects). It also allows
analysts to capture any increase in agents’ knowledge achieved by deduction at
the level of certificates.

So what are these assertions and how do they behave? Assertions include
statements about various terms appearing in the protocol. These include in-
stances of application-specific predicates and equalities between two different
symbolic terms. Assertions can also be combined using the usual propositional
connectives and (∧) and or (∨). They also include a says operator, which works
as an ownership mechanism for assertions, and disallows other agents from for-
warding such an assertion in their own name. Perhaps the most crucial (and
useful) addition to the assertion language here (over the system in [22]) is the
existential quantifier. This allows us to quantify out any term from an assertion,
thereby effectively hiding the actual term about which that assertion is made.
Since existential assertions thus hide the private data used to generate a certifi-
cate, while revealing some partial information, they seem especially useful for
capturing blinding (and similar operations with this goal) in voting protocols.

1.1 Related Work

Research on anonymity has been carried out for many years now. In the applied-
pi calculus, [16] verifies anonymity for the FOO protocol, [2] studies general un-
linkability and shows that this implies anonymity, and [19] provides an applied-pi
based model incorporating aspects of the underlying communication mechanism
(anonymous channels in particular).

There are also many epistemic logic-based approaches. [14] provides a logical
framework built on modal epistemic logic for anonymity in multiagent systems;
[12,23] also define information-hiding properties in terms of agent knowledge; [15]
provides a modular framework that allows one to analyze general unlinkability
properties using function views, along with extensive case studies on anonymity
and privacy.

Theorem provers have also been used to verify anonymity. [6] uses an auto-
matic theorem prover MCMAS for verification; [3] also specifies general unlinka-
bility as an extension to the Inductive Method for security protocol verification
in the theorem prover Isabelle.

In this paper, we extract a logical core of reasoning about certificates, trans-
late the typical constructs used for voting protocols into proof properties, and
employ equivalence-based reasoning for verifying anonymity. We also apply this
technique to model two voting protocols, namely FOO and Helios, and to analyze
anonymity for FOO.

2

2 Modelling the FOO protocol

2.1 Introduction to FOO

In [11], the authors introduce the FOO protocol for electronic voting, which
has inspired many subsequent protocols. This protocol uses blinding functions
and bit commitments in order to satisfy many desirable security properties,
including anonymity. The voter V sends to the authority A his name, along
with a blindsigned commitment to the vote v. The authority signs this term, and
sends it back to V . V now unblinds this to obtain a signature on his commitment
to the vote v, and sends that to the collector C. C adds the encrypted vote and
V ’s commitment to the public bulletin board. V then sends to C the random
bit r he used to create the vote commitment, so C can access the vote and
update his tally. The protocol is presented in Figure 1a (see [11,16] for a detailed
explanation). Sends marked by # are over anonymous channels.

V → A : V, [blind(commit(v, r), b)]V

A→ V : [blind(commit(v, r), b)]A

V # C : [commit(v, r)]A

C → : list, [commit(v, r)]A

V → C : r

(a) FOO Protocol with terms.
[x]A denotes x signed by A.

V → A : {v}rA , V says { ∃x, r : {x}r = {v}rA
∧ valid(x) }

A : deny ∃x : voted(V, x)

A : insert voted(V, {v}rA)

A→ V : A says

[elg(V) ∧ voted(V, {v}rA)

∧ V says { ∃x, r : {x}r = {v}rA
∧ valid(x) }]

V # C : {v}rC , rC ,
∃X ∃y, s : A says

[elg(X) ∧ voted(X, {y}s)

∧ X says { ∃x, r : {x}r = {y}s
∧ valid(x) }]

∧ y = v

(b) FOO Protocol with assertions.

Fig. 1: FOO Protocol: Modelling with terms only and with assertions

2.2 Modelling FOO with Assertions

In Figure 1b, we present the FOO protocol as modelled using assertions.

3

The voter V contacts the authority A with his vote v encrypted using a
random key rA. V also sends a certificate linking his name to his encrypted vote
v. The V says prefix links V to the certificate about v, and thus informs the
authority that V wishes to vote using the valid vote v, the encrypted form of
which has been sent with the certificate. Note that this certificate automatically
rules out replay attacks (of the kind where another agent V ′ copies V ’s published
data off the bulletin board and replays it in her own name).

The authority A checks that the voter V has not voted earlier. If this check
passes, A adds the fact that V has voted with the encrypted term {v}rA to her
database (so that V cannot vote again in the future) via an insert action. A
then issues a certificate stating that V is a valid voter and wishes to vote with
the encrypted term he sent A earlier, and that V claims that the term encrypted
therein is a valid vote. The voter V now anonymously sends to the counter C
the vote v encrypted in a new random key. This is accompanied by an existential
assertion, which hides the voter’s identity from C, while still convincing C that
A has certified V and the sent vote to be valid.

We need three predicates here – valid, elg, and voted. The first two are
predicates for stating the validity of the vote and the eligibility of the voter,
respectively. The voted predicate is used for linking the voter and the vote. As
we shall see in Section 4, we can add such protocol-specific predicates to the
assertion language in order to communicate succinct certificates (for example,
here we use valid(v), instead of providing a disjunction over the finite set of
valid votes for the value of v, which would grow longer as the set of allowable
values grows larger).

3 Modelling Helios 2.0

3.1 Introduction to Helios

[1] introduces the voting scheme called Helios which has the desirable property
of public auditability, i.e., even if Helios is fully corrupt, one can verify the
integrity of an election outsourced to it. Helios provides unconditional integrity,
while privacy is guaranteed if one trusts the Helios server, which doubles up
as election administrator and trustee. The voter sends his vote to the Ballot
Preparation System, which creates an encrypted ballot, which is then sealed and
cast. The voter’s identity and ballot are then posted on the public bulletin board.
On closing the election, Helios removes voter names, shuffles all ballots, produces
a proof of correct shuffling, and posts these on the board. After allowing some
time for auditors to check the shuffling, Helios decrypts each ballot, produces
a proof of correct decryption, and posts the tally on the bulletin board. Helios
crucially uses auditing by various participants in order to guarantee correctness.

3.2 Helios 2.0

[9] demonstrates an attack on vote privacy in the basic Helios system in [1],
where, by controlling more than half the voters, an adversary can get the com-
promised voters to copy a single (honest) voter’s encrypted ballot off the bulletin

4

board, and from the tally know whom that voter voted for. Note that this hap-
pens in spite of the Helios system itself being non-corrupt. In order to fix this,
they introduce measures to weed out replayed ballots, and a linking mechanism
between every ballot and the voter whose vote it is supposed to encrypt. They
also replace the shuffling mechanism by a homomorphic encryption operation,
and introduce trustees who are distinct from the election administrator. This in-
troduces an extra assurance of vote privacy, since a corrupt administrator needs
to corrupt some trustees in order to see a voter’s unencrypted vote.

V → S : v, V says valid(v)

S → V : b, S says {∃v : b = ballot(v) ∧ V says valid(v)}
V → S : cast

S → A : b, S says {∃v : b = ballot(v) ∧ V says valid(v)}
A : deny voted(V)

A : insert voted(V)

A→ BB : b, A says S says {∃v : b = ballot(v) ∧ V says valid(v)}
Suppose b1, . . . , bk were the ballots cast and published on the bulletin board.

A→ BB : t, A says [∃s : t = ballot(s) ∧

{∃v1, . . . , vk : s = sum(v1, . . . , vk) ∧
k∧

i=1

bi = ballot(vi)}]

Fig. 2: Helios 2.0 Protocol with assertions

3.3 Modelling Helios 2.0 with Assertions

The voter first inputs his vote to a script which creates his ballot and sends it
back to him with an assertion stating correctness. The voter can then choose to
cast this vote, at which point the script submits his ballot and the assertion to the
administrator. The administrator publishes the ballot and the assertion on the
bulletin board. After some known deadline, the administrator homomorphically
combines all ballots, and publishes the encrypted tally along with an assertion
stating correctness of the tally. The trustees can then decrypt this tally, and the
administrator publishes the result.

In Figure 2 we model Helios 2.0 with assertions. We do not include the final
step, where the trustees decrypt the final encrypted tally and publish it onto
the bulletin board. Note that this model, much like the terms-only model in [9],
requires us to add a homomorphic encryption operation to our term algebra.
However, we can incorporate the weeding out of replayed ballots and establishing
the link between ballots and voters by the use of assertions alone, instead of

5

having to send extra terms. Note that in order for an agent V2 to copy V1’s vote
and replay it to A, V2 would need to make an assertion of the form S says {∃v :
b = ballot(v) ∧ V2 says valid(v)}, which would contradict the sending in V1’s
name. Thus we can establish a link between vote and voter, while also disallowing
replays. We merely need to add a homomorphic encryption operation to the
term algebra, since our assertions, as of now, are not capable of capturing this
operation.

4 Assertions: Theory

We fix the following countable sets – a set V of variables, a set Ag of agents,
a set N of nonces, and a set of K of keys. We assume that every k ∈ K
has an inverse key, denoted inv(k). The set of basic terms B is defined to be
Ag ∪N ∪K . The set of terms T is given by the following syntax:

t := m | (t1, t2) | {t}k

where m ∈ B ∪ V , and k ∈ K ∪ V . A term with no variables occurring in it is
called a ground term.

ax
X ∪ {t} ` t

X ` t1 X ` t2
pair

X ` (t1, t2)

X ` (t1, t2)
split

X ` ti

X ` t X ` k
enc

X ` {t}k

X ` {t}k X ` inv(k)
dec

X ` t
Table 1: The Dolev-Yao derivation system

The system of rules for deriving new ground terms from old is given in Table 1.
The rules are presented in terms of sequents X ` t where X is a finite set of
ground terms, and t is a ground term.

4.1 Assertions and derivations

We now present the formal details of the model with assertions, a version of which
was first proposed in [22]. The set of assertions, A , is given by the following
syntax (fixing a set of variables, and a set of predicates for each arity):

α := t = t′ | α1 ∨ α2 | α1 ∧ α2 | ∃x : α | m says α
| valid(m) | elg(m) | . . . | m sent t | m sent α

6

where t ∈ T , m ∈ Ag∪V , and valid and elg are application-specific predicates.
The ellipses signify that one may add more such simple predicates, depending
on the application requirements (as in the FOO protocol, from Section 2.2). A
ground assertion is one with no free variables.

The set of assertions is a positive fragment of existential first-order logic. The
intention is that in addition to ground terms, agents also communicate ground
assertions to each other. Agents are allowed to assert equality of terms, and
basic predicates on terms, as well as disjunctions and conjunctions. They can
also “sign” assertions by use of the says operator. They also have the capability
of existentially abstracting some terms from an assertion, thereby modelling
witness hiding. The sole use of the sent operator is to enable an observer to
record who communicated a term or an assertion.

X `dy m
[m ∈ B ∪ V]

X,Φ ` m = m

ax
X,Φ ∪ {α} ` α

X,Φ ` α(t) X,Φ ` t = t′

X,Φ ` α(t′)

X,Φ ` s = t X, Φ ` t = u

X,Φ ` s = u

X,Φ ` s = t

X, Φ ` t = s

X,Φ ` (s0, s1) = (t0, t1)

X,Φ ` si = ti

X,Φ ` s = s′ X,Φ ` t = t′

X,Φ ` (s, t) = (s′, t′)

X,Φ ` {s0}s1 = {t0}t1
•

X,Φ ` si = ti

X,Φ ` s = s′ X,Φ ` m = m′

X,Φ ` {s}m = {s′}m′

X,Φ ` m = n
⊥ [m,n ∈ B,m 6= n]

X,Φ ` α

X,Φ ` α X `dy sk(A)
saysA

X,Φ ` A says α

X,Φ ` α X,Φ ` β
∧i

X, Φ ` α ∧ β

X,Φ ` α1 ∧ α2

∧e
X,Φ ` αi

X,Φ ` A says α
strip

X,Φ ` α

X,Φ ` αi

∨i
X, Φ ` α1 ∨ α2

X,Φ ` α ∨ β X,Φ ∪ {α} ` δ X,Φ ∪ {β} ` δ
∨e

X,Φ ` δ

X,Φ ` α(t)
∃i

X, Φ ` ∃x : α(x)

X,Φ ` ∃x : α(x) X,Φ ∪ {α(y)} ` β
∃e

X,Φ ` β

Table 2: Derivation rules for assertions. We assume that X `dy x for all variables
x, and that inv(x) = x. In the • rule, we require that X `dy inv(s1) and X `dy
inv(t1). In the ∃e rule, we require that y 6∈ Vars(X,Φ ∪ {β}).

In the course of participating in a protocol, agents accumulate a database of
ground terms and ground assertions communicated to them. The proof system
for assertions is presented in Table 2. The rules are presented in terms of sequents
X,Φ ` α, where X is a finite set of ground terms and Φ is a finite set of assertions
(which are not necessarily ground).

7

Equality assertions form a central part of communications between agents.
Note that an agent A can derive t = t only when all basic subterms of t can be
derived by A. The recipient of an equality assertion can use the rules provided in
Table 2 to reason further about the terms involved therein. Our rules for equality
are fairly intuitive and reflect basic properties of the pairing and encryption op-
erations. Equality assertions are most likely to be used in existentially quantified
assertions. Notable among the other rules are saysA, which allows the possessor
of sk(A) to “sign” an assertion in A’s name, and strip, which allows one to strip
the sign in A says α and use α in local reasoning.

These rules allow agents to carry out non-trivial inferences, potentially learn-
ing more than was intended by the protocol. Suppose an agent A has a term
{v}k, which he knows be a nonce encrypted with some key, but whose inverse
he does not have access to. One would presume that A therefore should have
no idea about the value of v. However, it is possible for assertions about {v}k
to reveal more information to A. Suppose A manages to obtain two certificates
∃x, y : {v}k = {x}y ∧ (x = 0∨x = 1) and ∃x, y : {v}k = {x}y ∧ (x = 0∨x = 2).
Let us call these assertions ∃x, y : α(x, y) and ∃x, y : α′(x, y). These two asser-
tions are in A’s database of assertions Φ. Let a, b, a′, b′ be new variables that
do not occur in Φ. Consider Φ ∪ {α(a, b), α′(a′, b′)}. From {v}k = {a}b and
{v}k = {a′}b′ , we get {a}b = {a′}b′ , and hence a = a′ and b = b′. From the
other parts of α and α′, and using transitivity, we get a = 0 ∨ a = 1 and
a = 0 ∨ a = 2. We use disjunction elimination to get a = 0. From this we con-
clude that {v}k = {0}b, and hence Φ ∪ {α(a, b), α′(a′, b′)} ` ∃y : ({v}k = {0}y).
Therefore, using the ∃e rule, we get Φ ` ∃y : ({v}k = {0}y).

In the formal model of [4,5], each zkp term proves a formula involving some
private and some public variables. The recipient of a zkp term is deemed to have
knowledge of the terms used in place of the public variables, but not the private
ones. We adopt a similar convention. For an assertion α, if an equality of the
form t = t′ occurs in it, or if α involves the application of a predicate to a term
t, then α reveals t. However, if a term of the form {v}k, say, appears in α, then
α does not reveal v. We also adopt the convention that every term revealed by
an assertion is sent earlier in the protocol.

4.2 Actions, roles and protocols

There are six type of actions – send, anonymous send, receive, confirm, deny,
and insert. Sends, anonymous sends, and receives are of the form +A: (~m)(t, α),
+A∗ : (~m)(t, α) and −A : (t, α) respectively, where A ∈ Ag ∪ {id} (where id
is a dedicated variable that stands for the agent performing the action), ~m ⊆
V ∪N ∪K stands for nonces and keys that are fresh which should be instantiated
with hitherto unused values in each occurrence of this action, t ∈ T and α ∈ A .
The A: confirm α and A: deny α actions allow A to branch on whether or not
he can derive α, while A : insert α allows A to add previously unknown true
assertions into her database. For A ∈ Ag ∪ {id}, an A-action is an action which
involves A. A ground action is one without any variable occurrence. An A-role

8

is a finite sequence of A-actions. A role is an A-role for some A ∈ Ag ∪ {id}. A
protocol Pr is a finite set of roles.

Given a sequence of actions η = a1 · · · an, we say that the variable x originates
at i if x occurs in ai and does not occur in aj for any j < i. A variable x occurring
in a role η is said to be bound if it originates at i and either ai is a receive action,
or ai = +A: (~y)(t, α) is a send action with x ∈ ~y.

As an example, we show the voter role for the FOO protocol from Section 2.
In this role, v and id stand for the vote and voter respectively, while k, k′ are
fresh keys, and auth is a bound variable (since it originates in a receive) which
stands for the authority with whom the voter interacts.

+id : (k) {v}k, id says {∃x, r : {x}r = {v}k ∧ valid(x)}
−id : auth says [elg(id) ∧ voted(id, {v}k)

∧ id says { ∃x, r : {x}r = {v}k ∧ valid(x) }]

+id∗ : (k′) ({v}k′ , k′),
∃X, y, s : auth says [elg(X) ∧ voted(X, {y}s)
∧ X says {∃x, r : {x}r = {y}s ∧ valid(x)}] ∧ y = v

The authority and counter roles can also be extracted from the protocol
description in a similar manner.

4.3 Runs of a protocol

Even though the roles of a protocol mention variables, its runs (or executions)
consist only of ground terms and assertions exchanged in various instances of
the roles. An instance of a role is formally specified by a substitution σ, which
is a partial map from V to the set of all ground terms. We lift σ for terms,
assertions and actions in the standard manner. σ is said to be suitable for an
action a if σ(a) is an action, i.e. a typing discipline is followed. A substitution is
suitable for a role η if it is defined on all free variables of η and suitable for all
actions in η.

A session of a protocol Pr is a sequence of actions of the form σ(η), where
η ∈ Pr and σ is suitable for η.

A run of a protocol is an interleaving of sessions in which each agent can
construct the messages that it communicates. This is formalized by a notion of
knowledge state, which represents all the terms and assertions that each agent
knows. A control state is a record of progress made by an agent in the various
sessions he/she participates in.

A knowledge state ks is a tuple ((XA, ΦA)A∈Ag), where XA (resp. ΦA) is the
set of ground terms (resp. ground assertions) belonging to an agent A. A control
state S is a finite set of sequences of actions. A protocol state is a pair (ks, S)
where ks is a knowledge state and S is a control state.

9

Definition 1. Let (ks, S) and (ks′, S′) be two states of a protocol Pr, and let b be

a ground action. We say that (ks, S)
b−→ (ks′, S′) iff there is a session η = a·η′ ∈ S

and a substitution σ suitable for η′ such that:

– b = σ(a)

– S′ = (S \ {η}) ∪ {σ(η′)}
– ks

b−→ ks′ as given in Table 3.

In Definition 1, we add σ(η′) rather than η′, in order to update the substi-
tution associated with the session on executing the action. This update reflects
the new values generated for each fresh nonce variable (in case the action is a
send) or the new bindings for input variables (in case the action is a receive). For
instance, if η = a ·η′ where a = −A: ((x, y), α(x, y)) and b = −A: ((t, t′), α(t, t′)),
then σ = [x := t, y := t′]. Any occurrence of x in η′ is bound to t.

Action b Enabling conditions Updates

+A: (~m)(t, α)
XA ∪ ~m ` t X ′A = XA ∪ ~m X ′I = XI ∪ {t}

XA ∪ ~m,ΦA ` α Φ′I = ΦI ∪ {α,A sent t, A sent α}

+A∗: (~m)(t, α)
XA ∪ ~m ` t X ′A = XA ∪ ~m X ′I = XI ∪ {t}

XA ∪ ~m,ΦA ` α Φ′I = ΦI ∪ {α}

−A: (t, α)
XI ` t X ′A = XA ∪ {t}

XI , ΦI ` α Φ′A = ΦA ∪ {α}
A: confirm α XA, ΦA ` α No change

A: deny α XA, ΦA 0 α No change

A: insert α Always enabled Φ′A = ΦA ∪ {α}

Table 3: Enabling conditions for ks
b−→ ks′. We assume that for each agent A,

(XA, ΦA) and (X ′A, Φ
′
A) represent A’s knowledge in ks and ks′, respectively.

Note the crucial difference between the updates for sends and anonymous
sends – in the former, the intruder updates its state with A sent t and A sent α,
whereas in the latter, no sender information is available to any observer (includ-
ing the intruder).

An initial control state of Pr is a finite set of sessions of Pr. In the initial
knowledge state, each agent has her own secret keys and shared keys, all public
keys in her database, and potentially some constants of Pr.

Definition 2. A run of a protocol Pr is (ks0, a1 · · · an) such that ks0 is an initial
knowledge state, and there exist sequences ks1, . . . , ksn and S0, . . . , Sn such that
(ksi−1, Si−1)

ai−→ (ksi, Si) for all i ≤ n.

10

4.4 Notes on implementability

A central aspect of this model is that communicated assertions are “believed”
by the recipients. This is reflected in the updates for receive actions. On the
other hand, it is not possible for a malicious agent to inject “falsehoods” into
the system, as evidenced by the enabling conditions which only allow derivable
assertions to be communicated. How might all this be realized in practice?

An implementation is to demand that every communicated assertion be
translated into an appropriate zero knowledge proof. But suppose an agent re-
ceives ZKPs for assertions α and β from A and B, and wishes to send α ∧ β to
someone else. For this, she should have the capacity to produce a ZKP for α∧β.
This implements the ∧i rule in our system. Clearly this requires some mechanism
for composing ZKPs. Such a system has been studied in [18], which proposes a
logical language close to ours, and also discusses modular construction of ZKPs,
based on the seminal work on composability of ZKPs [13].

However, [18] has some restrictions on the proof rules for which one can
modularly construct ZKPs. For instance, they do not consider disjunction elimi-
nation or existential elimination. Nevertheless, we consider these rules since they
are at the heart of potential attacks (as illustrated by the earlier example). This
situation can be handled formally by making a distinction between rules that
are “safe for composition” and rules that are not. A rule like ∧i is safe for com-
position, for example, whereas ∨e might not be. We then adopt the restriction
that we communicate assertions that are derived using only safe rules. If the
derivation of an assertion necessarily involves unsafe rules, then it cannot be
communicated to another agent, even though this derivation itself is allowed for
local reasoning. In this paper, we therefore consider both local reasoning to de-
rive more assertions (to gain more knowledge about some secrets, for instance)
as well as deriving communicable assertions.

5 Formalizing anonymity

Informally, we say that a voting protocol satisfies anonymity if in all executions
of the protocol, no adversary can deduce the connection between a voter and her
vote. One way to formalise it is to consider a run ρ where voter V0 voted 0 and
voter V1 voted 1, and show that there is some run ρ′ where the votes of V0 and
V1 are swapped and every other voter acts the same as in ρ, such that even the
most powerful intruder I (who has access to all keys of the authorities) cannot
distinguish ρ from ρ′.

Definition 3. Let (ks, ρ) and (ks′, ρ′) be two runs of Pr, where ρ = a1 · · · an and
ρ′ = a′1 · · · a′n. Let ti and t′i be the terms communicated in ai and a′i, respectively.
Let (X,Φ) and (X ′, Φ′) be the knowledge states of I at the end of each run.

We say that (ks, ρ) is I-indistinguishable from (ks′, ρ′) – denoted (ks, ρ) ∼I
(ks′, ρ′) – if for all assertions α(x1, . . . , xk) and all sequences i1 < · · · < ik ≤ n:

X,Φ ` α(ti1 , . . . , tik) iff X ′, Φ′ ` α(t′i1 , . . . , t
′
ik

).

11

One can view the parameters x1, . . . , xk occurring in the above definition as
handles, and the mapping from x1, . . . , xk to ti1 , . . . , tik as an active substitution.
Parametrized assertions α(x1, . . . , xk) constitute tests on each run of the proto-
col. Thus the above notion is related to the notion of static equivalence that is
central to protocol modelling in the applied-pi calculus [4,5,16]. Note that the
notion of indistinguishability we use here is trace-based, as that fits naturally
with our model. But it is also possible to have a bisimulation-based definition,
and adapt our proof ideas.

Consider a voting protocol Pr with three roles – voter, authority and counter,
and two phases: authorization and voting. For simplicity, we assume that there
are two fixed agents A and C who play the authority and counter role, respec-
tively. If there is only one voter in a run, then obviously his/her vote can be
linked to him/her. If a voter’s vote is counted during the authorization phase,
then we might have a situation where a vote is cast by a voter before anyone else
has been authorized. This again is an easy violation of anonymity. Therefore we
assume that in any run of Pr, there are at least two agents playing the voter
role, and all Vi → A actions precede all Vj → C actions.

Fix voter names V0, V1, and votes v0 and v1. A session η of Pr is said to be
an (i, j)-session if η maps id to Vi and v to vj .

Definition 4. We say that Pr satisfies anonymity if for every initial knowledge
state ks = (X,Φ) such that XA ∪ XC ⊆ XI , and for every run (ks, ρ) which
includes a (0, 0)-session and a (1, 1)-session, there is a run (ks, ρ′) which includes
a (1, 0)-session and a (0, 1)-session such that (ks, ρ) ∼I (ks, ρ′).

Theorem 5. The FOO protocol satisfies anonymity.

Proof Recall the voter role for FOO from Section 4.2. Consider a run (ks, ρ)
of FOO whose initial control state is S ∪ {η0, η1}, where η0 is the (0, 0)-session
and η1 is the (1, 1)-session. Let η2 and η3 be the (0, 1)-session and (1, 0)-session,
respectively. We construct a run ρ′ which includes η2 and η3 such that (ks, ρ) ∼I
(ks, ρ′). The session η0 assigns values p and r to the keys k and k′ from the role
description, while η1 assigns values q and s respectively. For ease of notation, we
denote v0 and v1 by u and v respectively, and d = {u}p and e = {v}q.

Suppose ρ = a1 · · · an. Assume without loss of generality that both sessions η0
and η1 are fully played out in ρ. Also without loss of generality, let i < j < k < l
be indices such that the send actions of η0 are ai and ak, and the send actions
of η1 are aj and al, where

ai = +V0: (p)(d, β(d)) and ak = +V ∗0 : (r)(({u}r, r), γ(u))

aj = +V1: (q)(e, β(e)) and al = +V ∗1 : (s)(({v}s, s), γ(v))

We build ρ′ = b1 · · · bn as shown in Figure 3.
Observe that ρ′ is also a run of FOO starting from the state (ks, S∪{η2, η3}),

where η2 contains bi and bl, and η3 contains bj and bk. We crucially use the fact
that we do not fix the instances of the fresh nonces a priori, so we can swap the
action containing p as a fresh nonce with the one containing q as a fresh nonce,
for example.

12

ρ a1 . ai . . aj . . ak . . al . an

ρ′ b1 . bi . . bj . . bk . . bl . bn

.

.

.

.

. . . .

Fig. 3: Building ρ′ from ρ. The dashed arrows capture bm = am[d 7→ e, e 7→ d],
for all m 6∈ {l, k}. For m ∈ {l, k}, the thick arrows stand for bm = am[V0 7→
V1, V1 7→ V0].

For any term t (resp. assertion α), we define swp(t) (resp. swp(α)) to be the
result of changing all occurrences of d to e and vice versa. swp is lifted to sets
of terms and assertions as usual.

Let (X,Φ) and (X ′, Φ′) be the knowledge states of I at the end of ρ and
ρ′ respectively. It is evident from the construction of ρ′ that X ′ = swp(X).
Furthermore, it is easy to see that neither X nor X ′ derive either p or q, and
that X `dy t iff X ′ `dy swp(t).

It can also be seen that Φ′ = swp(Φ), as elaborated below. For every m, if
am communicates α, then bm communicates swp(α). The other formulas added
to Φ are sent assertions. For every action am other than ak and al, the sender
of bm is unchanged from am. Therefore, a sent assertion with the same sender
name would be added to Φ and Φ′. For ak and al, no sent assertions are added
since these are anonymous sends. Therefore, Φ′ = swp(Φ).

We now prove that X,Φ ` α(ti1 , . . . , tik) iff X ′, Φ′ ` α(t′i1 , . . . , t
′
ik

), for all
assertions α(x1, . . . , xk). It suffices to prove that X,Φ ` α iff X ′, Φ′ ` swp(α)
for all α. For every ∃ : δ, let yδ be a variable that does not occur in Φ. A set Θ
is said to be closed under witnesses if δ(yδ) ∈ Θ for all ∃y : δ ∈ Θ. Let Π be
the smallest superset of Φ closed under witnesses. We use Π ′ to denote swp(Π).
It can be shown by an analysis of derivations that X,Φ ` α iff X,Π `1 α and
X ′, Φ′ ` α iff X ′, Π ′ `1 α, where `1 denotes derivability without using the ∃e
rule. Note that both X,Π and X ′, Π ′ are safe for d and e in the following sense.
They do not derive equalities of the form p = t or q = t for any term t, and they
do not derive equalities of the form d = t′ or e = t′ where t′ is a term containing
a non-variable. We now prove the final claim needed for indistinguishability of
ρ and ρ′.

Claim. For any α, X,Π `1 α iff X ′, Π ′ `1 swp(α).

Proof of Claim We prove the implication from left to right, by induction
on structure of derivations. The other direction holds by symmetry. Suppose π
is a derivation of X,Π ` α, with last rule r.

r = ax: Suppose α ∈ Π. It follows that swp(α) ∈ Π ′.

13

r is equality of encrypted terms: π looks as follows.

π0···
X,Π ` s = s′

π1···
X,Π ` m = m′

X,Π ` {s}m = {s′}m′

Suppose {s}m is either d or e. Then m is either p or q, and this would mean
that p = m′ or q = m′ is derivable, contradicting safety of X,Π. Therefore
{s}m is not equal to either d or e. By induction hypothesis, swp(s = s′) is
derivable from X ′, Π ′, and hence swp({s}m = {s′}m′) is also derivable.

r is equality of decrypted terms: In this case, π is of the following form

π0···
X,Π ` {s}m = {s′}m′

π1···
X `dy inv(m)

π2···
X `dy inv(m′)

X,Π ` s = s′

By induction hypothesis, it follows that X ′, Π ′ ` swp({s}m) = swp({s′}m′).
Observe that neither {s}m nor {s′}m′ is the same as d or e (for otherwise
we would have that X `dy p or X `dy q, which is an impossibility). Thus
any occurrence of d or e in {s}m is inside s, and similarly for {s′}m′ . Thus
swp({s}m) = {swp(s)}m and swp({s′}m′) = {swp(s′)}m′ . Therefore swp(s) =
swp(s′) is also derivable. (inv(m) and inv(m′) are derivable from X ′ since
they are derivable from X and do not mention d or e.)

The rest of the cases are on similar lines (or simpler, appealing to the induction
hypothesis). a

6 Conclusion

In this paper, we extended the model of [22] by adding exisential assertions to
the language, as a tool to hide private data used to generate certificates. These
assertions are especially useful in coding up constructs that are common to voting
protocols. We showed how to specify protocols in this model, and formalised the
notion of anonymity in terms of indistinguishability. In a non-trivial example of
analysis in our model, we proved anonymity for the FOO protocol.

One way of extending this model is by adding a background theory of uni-
versally quantified sentences. Such a theory is a standard part of many autho-
rization systems. For instance, if an agent A communicates to B the assertion
∃x : voted(V, x) and if the background theory contains the assertion

∀X,x : {voted(X,x)⇒ elg(X)}

then B can conclude elg(V). More detailed examples are found in [4,18]. It is
an important ingredient in many systems, and we can easily incorporate it in
our theoretical model.

14

References

1. B. Adida. Helios: Web-Based Open-Audit Voting. In Proc. of the 17th conference
on Security symposium (SS’08), pages 335–348, 2008.

2. M. Arapinis, T. Chothia, E. Ritter, and M. Ryan. Analysing Unlinkability and
Anonymity using the Applied Pi Calculus. In 23rd IEEE Computer Security Foun-
dations Symposium, pages 107–121, 2010.

3. D. Butin, D. Gray, and G. Bella. Towards Verifying Voter Privacy Through Un-
linkability. In Proc. ESSoS13, LNCS, pages 91–106, 2013.

4. M. Backes, C. Hritcu, and M. Maffei. Type-Checking Zero-Knowledge. In Proc.
15th ACM CCS, pages 357–370, 2008.

5. M. Backes, M. Maffei and D. Unruh. Zero-Knowledge in the Applied Pi-calculus
and Automated Verification of the Direct Anonymous Attestation Protocol. In
IEEE Symposium on Security and Privacy, pages 202–215, 2008.

6. I. Boureanu, A. V. Jones, and A. Lomuscio. Automatic Verification of Epistemic
Specifications under Convergent Equational Theories. In Proc. 11th AAMAS, pages
1141–1148, 2012.

7. A. Baskar, R. Ramanujam, and S. P. Suresh. A dexptime-Complete Dolev-Yao The-
ory with Distributive Encryption. In Proc. Mathematical Foundations of Computer
Science LNCS 6281, pages 102–113, 2010.

8. D. Chaum. Blind Signatures for Untraceable Payments. In Advances in Cryptology,
pages 199–203, 1983.

9. V. Cortier, and B. Smyth. Attacking and Fixing Helios: An Analysis of Ballot
Secrecy. In Proc. Computer Security Foundations Symposium, pages 297–311, 2011.

10. D. Dolev, and A. Yao. On the security of public key protocols. In IEEE Transac-
tions on Information Theory, 198–208, 1983.

11. A. Fujioka, T. Okamoto, and K. Ohta. A Practical Secret Voting Scheme for
Large Scale Elections. In International Workshop on the Theory and Application
of Cryptographic Techniques, pages 244–251, 1992.

12. J.W. Gray, and P.F. Syverson. A Logical Approach to Multilevel Security of Prob-
abilistic Systems. In Distributed Computing, 11, pages 73–90, 1998.

13. J. Groth, and A. Sahai. Efficient Non-interactive Proof Systems for Bilinear
Groups. In Advances in Cryptology – EUROCRYPT 2008, pages 415–432, 2008.

14. J. Y. Halpern, and K. R. O’Neill. Anonymity and Information Hiding in Multiagent
Systems. In Journal of Computer Security, 13(3), pages 483–514, 2005.

15. D. Hughes, and V. Shmatikov. Information hiding, Anonymity and Privacy: A
Modular Approach. In Journal of Computer security 12(1), pages 3-36, 2004.

16. S. Kremer, and M. Ryan. Analysis of an Electronic Voting Protocol in the Applied
Pi Calculus. In European Symposium on Programming, pages 186–200, 2005.

17. Pascal Lafourcade, Denis Lugiez, and Ralf Treinen. Intruder Deduction for the
Equational Theory of Abelian Groups with Distributive Encryption. Information
and Computation, 205(4):581–623, April 2007.

18. M. Maffei, K. Pecina, and M. Reinert. Security and Privacy by Declarative Design.
In IEEE 26th CSF Symposium, pages 81–96, 2013.

19. S. Mauw, J. Verschuren, and E. P. de Vink. Data Anonymity in the FOO Voting
Scheme. In Electronic Notes in Theoretical Computer Science (168), pages 5–28,
2007.

20. The Netflix Prize. http://www.netflixprize.com/index.html

21. A. J. Paverd, A. Martin, and I. Brown. Modelling and Automat-
ically Analysing Privacy Properties for Honest-but-Curious Adversaries.

15

Technical Report, https://www.cs.ox.ac.uk/people/andrew.paverd/casper/

casper-privacy-report.pdf, 2014.
22. R. Ramanujam, V. Sundararajan, and S. P. Suresh. Extending Dolev-Yao with

Assertions. In Proc. ICISS, LNCS 8880, pages 50–68, 2014.
23. P.F. Syverson, and S.G. Stubblebine. Group Principals and the Formalization of

Anonymity. In Proc. FM, LNCS 1708, pages 814–833, 1999.

16

