
A DEXPTIME-complete Dolev-Yao theory with distributive
encryption

A Baskar, R Ramanujam, and S P Suresh

 Chennai Mathematical Institute
Chennai, India
{abaskar,spsuresh}@cmi.ac.in

 e Institute of Mathematical Sciences
Chennai, India
jam@imsc.res.in

Abstract

In the context of modelling cryptographic tools like blind signatures and homomorphic encryption, the Dolev-
Yao model is typically extended with an operator over which encryption is distributive. We consider one such
theory which lacks any obvious locality property and show that its derivability problem is hard: in fact, it
is dexptime-complete. e result holds also when blind pairing is associative. e lower bound contrasts
with ptime decidability for restricted theories of blind signatures, and the upper bound with non-elementary
decidability for abelian group operators with distributive encryption.

 Introduction

Dolev-Yao style models [] for cryptographic protocols (the so-called “symbolic models”) use a term
algebra containing operations like pairing, encryption, signatures, hash functions, and nonces to build
terms that are sent as messages in the protocol. e adversary against a protocol is modeled as a powerful
network, which is only restricted in the way in which messages may be derived from the ones sent by the
“honest” principals. Since these models are used for algorithmic analysis, the following term derivability
problem is of basic interest: given a finite set of terms X and a term t , is there a way for the adversary to
derive t from X ?

In this paper, we study a security problem for a set of cryptographic primitives in an extension of the
Dolev-Yao model which includes a blind pairing that commutes over encryption. at is, we can “push”
an encryption by key k inside [t , t ′] and get [{t}k ,{t ′}k]. We can also form a blind pair [t , t ′] from
t and t ′, and extract t ′ or t from [t , t ′], provided we have the other part of the blind pair. We show
that the existence of a passive attack (that is, by an attacker who cannot forge messages) is decidable in
exponential time.

ough the blind pairing constructor finds natural use in the Dolev-Yao modelling of electronic
voting protocols [], more restricted uses of blind pairing may well suffice in many applications. What
then can be interesting about such a result, in a framework with a fixed set of primitives, a weak attacker
model and offering an algorithm with such high complexity? Perhaps the fact that the algorithm is
presented as an automaton construction; but then it should be noted that the original Dolev-Yao paper
used an automaton construction (indeed, a deterministic one) to solve the secrecy problem for a class of
protocols called ping-pong protocols.

Indeed the result is of a technical nature and relates to the theoretician’s toolkit in the study of Dolev-
Yao models. e standard strategy to prove the derivability problem decidable is to prove a so-called
locality property [, ], that if t is derivable from X , then there is a special kind of derivation (a
normal derivation)π such that every term occurring inπ comes from S(X ∪{t}), where S is a function
mapping a finite set of terms to another finite set of terms. Typically S is the subterm function st, but
in many cases it is a minor variant. e locality property is used to provide a decision procedure for the
derivability problem (which is typically a ptime algorithm).

 Dolev-Yao theory with distributive encryption

As we will show later, our system does not have an obvious locality property, and so we cannot follow
the standard route to decidability. In fact, we can construct a set of terms X and a term t such that the set
of terms occurring in any derivation of t from X is exponential in the size of X ∪{t}. is suggests that
it would be difficult to define a function S of the kind mentioned above such that any term occurring in
a normal derivation of t from X comes from S(X ∪{t}).

e first technical contribution of this paper is to show a way of working around this difficulty. We
prove a weak locality property: we define a function S which maps every finite set of terms X to an infinite
set of terms S(X). We then prove that all terms occurring in a normal derivation of t from X are from
S(X ∪ {t}), and that the set of terms in S(X ∪ {t}) that are derivable from X is regular. is facilitates
an automaton construction and yields a decision procedure for checking whether t is derivable from X .

e second technical contribution is to settle the complexity of the derivability problem by prov-
ing dexptime-hardness by reduction from the backwards reachability problem for alternating pushdown
systems. While many lower bound results for the active intruder deduction problem exist in the literat-
ure, under various settings, this is one of the few lower bound results for the passive intruder deduction
problem.

e third technical contribution of the paper is the use (in our decision procedure) of the alternating
automaton saturation technique in itself (similar to the one in []). In fact, the lower bound reduction
shows the close connections to alternating pushdown systems, and so it is no surprise that automaton
saturation, one of the standard tools for analysis of pushdown systems, is used for our upper bound proofs.
is should also be viewed in the context of the use of tree automata for protocol verification, specifically
the idea of representing (an over-approximation of) the set of deducible terms using tree automata. is
has been explored in a number of papers [, , ]. Applications of two-way alternating tree automata
to security protocol verification has been touched upon in []. e saturation technique that we use
offers yet another tool that may be of use in other contexts.

Where does the high complexity of this problem originate from? It arises from the fact that blind
pairing is distributive over encryption. is can be seen in the light of results on closely related construct-
ors.

ere is a more restricted way of modelling blind signatures: as seen in [, , ]. is is to consider
two operators, blind and unblind with the following rules:

unblind(blind(m, r), r) = m
unblind(sign(blind(m, r), k), r) = sign(m, k)

e restriction here is that the r in the above equations is an atomic term, typically a random number, and
whenever a blind pair is signed, the signature gets pushed only to the first component and not the second.
Because of this, the system enjoys a locality property, and the basic derivability problem is decidable in
ptime.

In earlier work in [], we proposed essentially the same system described in this paper, but we imposed
a restriction that the second component of blind pairs are always of the form n or {n}k where n is an
atomic term (or nonce). And the only rule that involves pushing an encryption inside a blind pair is the
derivation of [{t}k , n] from [t ,{n}inv(k)] and k . is restricted system also satisfies a locality property.

At the other end of the spectrum, a much more powerful system is considered in []. ey study an
abelian group operator+ such that {t1+· · ·+ tn}k = {t1}k+· · ·+{tn}k , i.e. encryption is homomorphic
over +. ey employ a very involved argument and prove the derivability problem in the general case
to be decidable with a non-elementary upper bound. ey also give a dexptime algorithm in the case
when the operator is xor, and a ptime algorithm in the so-called binary case. e blind pair operator we
consider has very different characteristics than xor, and the arguments in [] do not apply here.

A Baskar, R Ramanujam, and S P Suresh 

 Extension of the Dolev-Yaomodel with blind pairs

Assume a set of basic terms N , containing the set of keys K . Let inv(k) be a function on K such that
inv(inv(k)) = k . e set of terms T is defined to be:

T ::= m | (t1, t2) | [t1, t2] | {t}k
where m ∈N , k ∈K , and t , t1, and t2 range over T .

e set of subterms of t , st(t), is the smallest X ⊆ T such that ) t ∈ X , ) if (t , t ′) ∈ X or
[t , t ′] ∈ X , then {t , t ′} ⊆ X , and ) if {t}k ∈ X then {t , k} ⊆ X . st(X) is defined to be

∪
t∈X st(t).

A keyword is an element of K ∗. Given a term t and a keyword x = k1 · · ·kn , {t}x = {· · · {t}k1
· · · }kn

.
If x = ϵ, {t}x is t itself.

For simplicity, we assume henceforth that all terms are normal. ese are terms which do not contain
a subterm of the form {[t1, t2]}k . For a term t , we get its normal form t↓ by “pushing encryptions over
blind pairs, all the way inside.” Formally, it is defined as follows:

m↓= m for m ∈N

(t1, t2)↓= (t1↓, t2↓)
[t1, t2]↓= [t1↓, t2↓]
{t}k↓=
(
[{t1}k↓,{t2}k↓] if t = [t1, t2]
{t↓}k otherwise

▶ Definition . A derivation or a proof π of X ⊢ t is a tree whose nodes are labelled by terms, whose
root is labelled t , whose leaves are instances of the Ax rule and labelled by terms from X , and whose
internal nodes are instances of one of the analz-rules or synth-rules in Figure . We use X ⊢ t to also
denote that there is a proof of X ⊢ t . For a set of terms X , clos(X) = {t |X ⊢ t} is the closure of X .

analz-rules
{t}k↓ inv(k)

decrypt
t

(t0, t1)
spliti

ti

[t0, t1]↓ ti↓
blindspliti

t1−i

synth-rules Ax (t ∈X)
t

t k
encrypt{t}k↓

t1 t2
pair

(t1, t2)

t1 t2
blindpair

[t1, t2]

Figure Proof system for normal terms (with assumptions from X ⊆T). In the decrypt rule, {t}k↓ is the major
premise and k is the minor premise. In the blindspliti rule, [t0, t1]↓ is the major premise and ti is the minor
premise.

▶Definition. e derivability problem (or the passive intruder deduction problem) is the following:
given a finite set X ⊆T and t ∈T , determine whether X ⊢ t .

As we mentioned in the introduction, the standard strategy to prove this problem decidable is to
define a notion of normal proofs, show that every proof can be transformed to a normal proof, and
prove a so-called locality property, that every term occurring in a normal proof of X ⊢ t comes from
S(X ∪{t}), where S : 2T → 2T is a function mapping a finite set of terms to another finite set of terms.
Typically S is the subterm function st, but in many cases it is a minor variant. is typically yields a
ptime algorithm for the derivability problem.

But there is no obvious locality property for the proof system considered here. For instance, to derive
the term {a}k from [a, b], {b}k and k , we necessarily need to go via the term [{a}k ,{b}k], which is not

 Dolev-Yao theory with distributive encryption

a subterm of either the premises or the conclusion. In fact, the structure of terms occurring in a proof of
X ⊢ t can get very complex. For example, one can code up some kind of a counter – a set X of O(n)
terms and another term t , each of size O(1) with X ⊢ t but such that every proof of t from X has at
least 2n terms occurring in it. e idea is to put enough terms in X that can build (using the encrypt
and blindsplit rules) a term r with an encryption sequence consisting of an arbitrary number of blocks
of length n. When (and only when) successive blocks code up consecutive n-bit binary numbers, the
structure of X ensures that the encryptions can be peeled off from r inside out. is ensures that there
are 2n such blocks and hence an exponential sized proof. e example is given in detail in Appendix A.

 Normal proofs

Even though our proof system lacks an obvious locality property, we can prove a weak locality property,
which will help us derive a decision procedure for the derivability problem. is section is devoted to a
proof of the weak locality property (or weak subterm property).

We first define the notion of a normal proof. ese are proofs got by applying the transformations of
Figure  repeatedly. Any subproof that matches the pattern on the left column is meant to be replaced by
the proof on the right column in the same row. e idea behind normalization is to perform applications
of the encrypt and decrypt rules as early as possible in the proof.

··· π′
t ′

··· π′′
t ′′
r

t

··· δ
k

encrypt{t}k↓

··· π′
t ′

··· δ
k

encrypt{t ′}k↓

··· π′′
t ′′

··· δ
k

encrypt{t ′′}k↓
r{t}k↓

··· π′{t ′}k↓
··· π′′{t ′′}k↓

r{t}k↓
··· δ

inv(k)
decrypt

t

··· π′{t ′}k↓
··· δ

inv(k)
decrypt

t ′

··· π′′{t ′′}k↓
··· δ

inv(k)
decrypt

t ′′
r

t

Figure e normalization rules. Rule r is meant to be either blindpair (in which case t = [t ′, t ′′]), or blindsplit0
(in which case t ′ = [t ′′, t]), or blindsplit1 (in which case t ′ = [t , t ′′]).

▶ Definition . A proof π of t from assumptions X is a minimal proof if t occurs only in the root of
the proof.

A proof π is a normal proof if the following two conditions hold:
. every subproof of π is minimal, and
. the transformations in Figure  cannot be applied to π.

▶ Lemma . Whenever X ⊢ t , there is a normal proof of t from X .

e proof is straightforward, and can be found in Appendix B.
We now state the weak locality property for normal proofs. e standard locality property can be

viewed as giving a bound on the “width” and encryption depth of terms occurring in a proof of X ⊢ t .
We prove a weaker property, where only the width of terms is bounded. So the set of terms occurring
in any normal proof of X ⊢ t is got by encrypting terms (perhaps repeatedly) from a “core” set, using

A Baskar, R Ramanujam, and S P Suresh 

keys derivable from X . e core, it turns out, is st(X ∪{t}). For every p ∈ st(X ∪{t}), define Lp to be
{x ∈ (st(X ∪{t})∩K)∗ |X ⊢ {p}x}. We shall show in the next section that Lp is regular for each p.

We introduce a bit of notation first that will help us conveniently state the weak locality lemma. We
say that a proof π of X ⊢ t is purely synthetic if:

it ends in an application of the Ax or blindpair or pair rules, or
it ends in an application of the encrypt rule and t↓ is not a blind pair.

▶ Lemma  (Weak locality property). Let π be a normal proof of t from X , and let δ be a subproof of π
with root labelled r . en the following hold:
. For every u occurring in δ, there is a term p ∈ st(X ∪ {t}) and a keyword x such that u = {p}x .

Moreover, if δ is not a purely synthetic proof then p ∈ st(X).
. If the last rule of δ is decrypt or split with major premise r1, then r1 ∈ st(X).
e main difficulty is in coming up with the right statement. e proof itself is a standard induction on
derivations, with an exhaustive case analysis, and is presented in full detail in Appendix B.

 The automaton construction

We recall here some definitions relating to alternating pushdown systems (APDSs) and alternating auto-
mata (with ϵ-moves). e former will be needed for the lower bound argument in the next section, and
the latter for the decision procedure to be presented here.

An alternating pushdown system is a triple P = (P,Γ, ,→), where P is a finite set of control locations,
Γ is a finite stack alphabet, and ,→⊆ P ×Γ∗×2(P×Γ∗) is a finite set of transition rules. We write transitions
as (a, x) ,→{(b1, x1), . . . , (bn , xn)}. A configuration is a pair (a, x) where a ∈ P and x ∈ Γ∗. Given a set
of configurations C , a configuration (a, x), and i ≥ 0, we say that (a, x)⇒P,i C iff:
(a, x) ∈C and i = 0, or
there is a transition (a, y) ,→ {(b1, y1), . . . , (bn , yn)} of P , z ∈ Γ∗, and i1, . . . , in such that i =
i1+ · · ·+ in + 1 and x = y z and (b j , y j z)⇒P,i j

C for all j ∈ {1, . . . , n}.
We say that (a, x)⇒P C iff (a, x)⇒P,i C for some i ≥ 0.

An alternating automaton is an APDS P = (Q,Σ, ,→) such that ,→⊆Q × (Σ∪ {ϵ})× 2(Q×{ϵ}).
For q ∈Q , a ∈ Σ∪ {ϵ}, and C ⊆Q , we use q

a
,→ C to denote the fact that (q ,a,C ×{ϵ}) ∈,→. For

ease of notation, we will also write q
a
,→ q ′ to mean q

a
,→ {q ′}. Given C ⊆ Q, and x ∈ Σ∗, we use

the notation q
x⇒P,i C to mean that (q , x)⇒P,i C × {ϵ}. For C = {q1, . . . , qm} and C ′ ⊆ Q, we

use the notation C
x⇒P,i C ′ to mean that for all j ≤ m, there exists i j such that q j

x⇒P,i j
C ′, and

i = i1+· · ·+ im . We also say q
x⇒P C and C

x⇒P C ′ to mean that there is some i such that q
x⇒P,i C

and C
x⇒P,i C ′, respectively.

We typically drop the superscript P if it is clear from the context which APDS is referred to.
Fix a finite set of terms X0 and a term t0. We let Y0 denote st(X0 ∪ {t0}) and K0 = Y0 ∩K . In

this section, we address the question of whether there exists a normal proof of t0 from X0. Lemma 
provides a key to the solution – every term occurring in such a proof is of the form {p}x for p ∈ Y0
and x ∈K∗0 . erefore it is easy to see that the different Lp (for p ∈ Y0) satisfy the following equations
(among others):

k x ∈Lp iff x ∈L{p}k
if x ∈Lp and x ∈Lp ′ then x ∈L[p, p ′]
if x ∈Lp and x ∈L[p, p ′] then x ∈Lp ′

if x ∈Lp ′ and x ∈L[p, p ′] then x ∈Lp

if x ∈Lp and ϵ ∈Lk then xk ∈Lp

if ϵ ∈L{p}k and ϵ ∈Linv(k) then ϵ ∈Lp

 Dolev-Yao theory with distributive encryption

is immediately suggests the construction of an alternating automaton A such that for every t ∈ Y
and keyword x, x ∈ Lt if and only if there is an accepting run of A on the word x from the state t .
en checking whether X ⊢ t0 (or in other words, ϵ ∈Lt0

) is simply a matter of checking if there is an
accepting run of A on ϵ from the state t0.

e states of the automaton are terms from Y0 and the transitions are a direct transcription of the
above equations. For instance there is an edge labelled k from t to {t}k , and there is an (and-)edge
labelled ϵ from t to the set {[t , t ′], t ′}. We introduce a final state f and introduce an ϵ-labelled edge
from t to f whenever ϵ ∈Lt . But notice that if k x ∈Lt then x ∈L{t}k , and this cannot be represented
directly by a transition in the automaton. us we define a revised automaton that has an edge labelled
ϵ from {t}k to q whenever the original automaton has an edge labelled k from t to q . In fact, it does
not suffice to stop after revising the automaton once. e procedure has to be repeated till no more new
edges can be added.

us we define a sequence of alternating automata A0,A1, . . . ,Ai , . . ., each of which adds transitions
to the previous one, as given by the definition in Figure . Some examples that illustrate the saturation
procedure are presented in Appendix C.

For each i ≥ 0, Ai is given by (Q,Σ, ,→i , F) where Q = Y0 ∪ { f } (f ̸∈ Y0), Σ = K0, and F = { f }. We
define ,→i by induction.
,→0 is the smallest subset of Q × (Σ∪{ϵ})× 2Q that satisfies the following:

. if t ∈ Y0, k ∈K0 such that {t}k↓∈ Y0, then t
k
,→0 {{t}k↓}.

. if t , t ′, t ′′ ∈ Y0 such that t is the conclusion of an instance of the blindpair or blindspliti rules with
premises t ′ and t ′′, then t

ϵ
,→0 {t ′, t ′′}.

,→i+1 is the smallest subset of Q × (Σ∪{ϵ})× 2Q such that:

. if q
a⇒i C , then q

a
,→i+1 C .

. if {t}k↓∈ Y0 and t
k⇒i C , then {t}k↓ ϵ,→i+1 C .

. if k ∈K0 and k
ϵ⇒i { f }, then f

k
,→i+1 { f }.

. if Γ⊆ Y0, t ∈ Y0, and if there is an instance r of one of the rules of Figure  (nullary, unary or binary)
whose set of premises is (exactly) Γ and conclusion is t—note that Ax is a nullary rule, and hence this
clause covers all t ∈X0—the following holds:

if u
ϵ⇒i { f } for every u ∈ Γ, then t

ϵ
,→i+1 { f }.

Figure  e sequence of automata for analysing X0 ⊢ t0, with Y0 = st(X0 ∪ {t0}) and K0 = Y0 ∩K . We use
,→i for ,→Ai

and⇒i for⇒Ai
.

We would like to emphasize that saturating an alternating automaton fits in very naturally with our
problem. For example, X ⊢ m where X = {[{t}k , m], t , k}. To detect this, we need to test if m

ϵ
,→i { f }

for some i . is test turns out to be true for i = 4, as witnessed by the following sequence of edges and
paths. Other constructions like two-way automata do not seem immediately applicable to this situation.

m
ϵ
,→0 {[{t}k , m],{t}k}.

t
ϵ
,→1 { f }, k

ϵ
,→1 { f }, [{t}k , m]

ϵ
,→1 { f }.

f
k
,→2 { f }, t

k⇒2 { f }.
{t}k ϵ

,→3 { f }. (is is the crucial use of saturation.) m
ϵ⇒3 { f }.

m
ϵ
,→4 { f }.

e following lemma essentially shows that the saturation procedure terminates in exponential time.
e proof is in Appendix D.

A Baskar, R Ramanujam, and S P Suresh 

▶ Lemma . . For all i ≥ 0 and all a ∈Σ∪{ϵ}, the relation a⇒i is constructible from ,→i in time 2O(d),
where d = |Q|.

. For all i ≥ 0 and all a ∈Σ, the relation a
,→i+1 is constructible from⇒i in time 2O(d).

. ere exists d ′ ≤ d 2 · 2d such that for all i ≥ d ′, q ∈ Q , a ∈ Σ∪ {ϵ}, and C ⊆ Q , q
a
,→i C if and

only if q
a
,→d ′ C .

We now present theorems that assert the correctness of the above construction. It is sound, i.e. none
of the automata accept an x starting from r where {r }x is not derivable from X0; and that it is complete,
i.e. whenever {r }x is derived from X0, one of the Ai ’s has an accepting run over x starting from r . To
simplify the statement and proof in the rest of this section, we first introduce the following notations:

for X ⊆T and keyword x, we use X ⊢ x to mean that X ⊢ k for every k occurring in x.
for C ⊆ Y0 and keyword y, {C }y = {{t}y↓| t ∈C }.
for q ∈Q,C ⊆Q , q

x⇒i ,d C iff q
x⇒Ai ,d

C .

for C ,C ′ ⊆Q , C
x⇒i ,d C ′ iff C

x⇒Ai ,d
C ′.

▶ Theorem  (Soundness). For any i , any t ∈ Y0, and any keyword x, if t
x⇒i { f }, then X0 ⊢ {t}x↓.

Soundness is an immediate consequence of the following lemma, taking C = { f } and y = ϵ.

▶ Lemma . Suppose i , d ≥ 0, t ∈ Y0, x, y ∈K∗0 , and C ⊆Q (with D =C ∩Y0). Suppose the following

also hold: ) t
x⇒i ,d C , and ) C ⊆ Y0 or X0 ⊢ y. en X0 ∪{D}y ⊢ {t}xy .

As one may expect, the proof is by induction on the size of the path from x to C , but the difficulty with
the proof is that in a run over x from t to C , each path may hit f after reading a different prefix of x.
Hence the inductive statement is subtle and this is why the statement of the Lemma is complex. In fact,
formulatng Lemma  precisely turned out to be the trickiest part of the upper bound proof. Due to lack
of space, we present the proof in Appendix D.

▶ Theorem  (Completeness). For any t ∈ Y0 and any keyword x, if X0 ⊢ {t}x↓, then there exists i ≥ 0

such that t
x⇒i { f }.

e proof is by induction on derivations, and is presented in full detail in Appendix D.

▶ Theorem . Given X0 ⊆T and t0 ∈T , it is decidable in dexptime whether X0 ⊢ t0.

Proof. Let X0 and t0 be given, and let Y0 = st(X0 ∪{t0}).
By Lemma , there is d ′ such that for all q ∈Q , a ∈Σ∪{ϵ}, and C ⊆Q , and any i ≥ 0,

if q
a
,→i C then q

a
,→d ′ C .

Further ,→d ′ is computable in time 2O(d), where d = |Y0|.
By the soundness theorem (eorem ), for all i , any t ∈ Y0 and any keyword x, if t

x⇒i { f }, then
X0 ⊢ {t}x ↓. In particular, this holds for i = d ′. On the other hand, by the completeness theorem
(eorem ), whenever X0 ⊢ {t}x↓ for t ∈ Y0 and keyword x, there is an i such that t

x⇒i { f }, and
hence t

x⇒d ′ { f }. us to check whether X0 ⊢ t0, it suffices to check if t0
ϵ⇒d ′ { f }. But by construction,

if t0
ϵ⇒d ′ { f }, then t0

ϵ
,→d ′+1 { f }, but this means that t0

ϵ
,→d ′ { f }.

us one only needs to check—in constant time—whether t0
ϵ
,→d ′ { f }. us the derivability prob-

lem is solvable in dexptime. ◀

 Dolev-Yao theory with distributive encryption

 A DEXPTIME lower bound for the derivability problem

We recall the following fact about alternating pushdown systems.

▶ Theorem  ([]). e backwards-reachability problem for alternating pushdown systems, which
asks, given an APDS P and configurations (s , xs) and (f , x f), whether (s , xs)⇒P (f , x f), is dexptime-
complete.

We reduce this problem to the problem of checking whether X ⊢ t in our proof system, given X ⊆T

and t ∈T .
Assume that we are given an APDS P = (P,Γ, ,→), and two configurations (s , xs) and (f , x f). Let

us assume that the rules in ,→ are numbered 1 to ℓ.
We will take M = P ∪ {cm | 1≤ m ≤ ℓ} to be a set of atomic terms, and K = Γ∪ {d , e} to be a set

of non-symmetric keys (such that none of them is the inverse of another, and such that d , e ̸∈ Γ).
We translate each rule to a term as follows. Suppose the mth rule is:

(a, x) ,→{(b1, x1), . . . , (bn , xn)}.
is gets translated to the following term rm :

rm = [[· · ·[[r′m ,{b1}x1
],{b2}x2

], · · · ,{bn−1}xn−1
],{bn}xn

], where
r′m = [[· · ·[[{cm}d ,{a}x],{b1}x1

], · · · ,{bn−1}xn−1
],{bn}xn

].

We take X to be the set {rm | 1≤ m ≤ ℓ}∪ {{ f }x f e} ∪ {{cm}d | 1≤ m ≤ ℓ} ∪Γ∪{e}.
e reduction is almost a straight transcription of the APDS rules. But we need to take some care

because given a blind pair [t , t ′], we can split it using either t or t ′. Further, we have to avoid an
accidental split of rm using a part of rn , for distinct m, n ≤ ℓ. is explains the need for the “tags” cm
(m ≤ ℓ).

We claim that (s , xs)⇒P (f , x f) iff X ⊢ {s}xs e . A detailed proof for both directions is presented in
Appendix E. Here we just present a high-level sketch of the proof.

We now introduce the following bit of notation, for conveniently presenting the argument. For any
term t whose normal form is [t1, . . . , tn], we define comps(t) to be the set {t1, . . . , tn}. If t ∈ st(X) such
that {cm}d ∈ st(t), then residues(t) is defined by the following:

residues(rm) = ;
if t ̸= rm , then residues(t) = residues([t , t ′])∪ {t ′}, where t ′ is the unique term such that [t , t ′] ∈
st(rm).

e harder direction of the proof is given by the following lemma.

▶ Lemma . For any configuration (a, x), if there is a normal proof of X ⊢ {a}xe , then

(a, x)⇒P (f , x f)

e lemma follows easily, by induction on the size of normal proofs, from the next assertion.

▶ Lemma . If there is a normal proof π of X ⊢ {a}xe , then either (a, x) = (f , x f) or there is a rule of
P , (a, y) ,→{(b1, y1), . . . , (bn , yn)}, and z ∈ Γ∗ such that x = y z , and for each j ≤ n, a subproof π j of
π with conclusion X ⊢ {b j }y j ze .

Proof. e observation that drives the proof of this lemma is the following. Its proof is given in Ap-
pendix E.

For any normal proof π of X ⊢ {a}xe and any subproof δ of π with conclusion {p}we , and any
m ≤ ℓ:

A Baskar, R Ramanujam, and S P Suresh 

. if the last rule of δ is an application of blindpair, and if {cm}d ∈ st(p), then for every {r }we ∈
comps({p}we), X ⊢ {r }we is the conclusion of some subproof of δ.

. if the last rule of δ is an application of blindsplit, and if {cm}d ∈ st(p), then X ⊢ {r }we is the
conclusion of some subproof of δ, for every r ∈ residues(p).
Let π be a normal proof of X ⊢ {a}xe and suppose that (a, x) ̸= (f , x f). en it is clear that for all

prefixes y of xe , {a}y ̸∈ X . us π does not end in an application of encrypt (an easy consequence of
the structure of X , and proved in the appendix). It obviously cannot end in an application of blindpair.
So it is clear that the last rule is an application of blindsplit, with major premise t and minor premise
t ′. Now t is a blind pair, and hence there is a unique p ∈ st(X) and z ∈ Γ∗ such that t = {p}ze
(again a consequence of the structure of X , and proved in detail in the appendix). It can be seen that
{cm}d ∈ st(p) for some m ≤ ℓ. If t is obtained as the result of an application of encrypt, then it can be
seen that p = rm and thus p has no residues, and hence it is vacuously true that {r }ze occurs in δ for
all r ∈ residues(p). Otherwise, t is the result of a blind split, and hence, by the observation at the start
of the proof, {r }ze occurs in δ for all r ∈ residues(p).

Now if p ∈ st(r′m), then among the residues of p will be found {b j }y j
for every (b j , y j) on the right

hand side of the rule numbered m. So by what has been proved above, there is a subproof π j of π whose
conclusion is X ⊢ {b j }y j ze , and we are done.

Suppose p ̸∈ st(r′m). en, it can be seen that t ′ = {p ′}ze for some p ′ ∈ st(X) such that r′m ∈ st(p ′).
Now clearly p ′ ̸∈X (since it is a proper subterm of rm , missing a component of the form {a}w as it does)
and hence t ′ is not the result of an application of encrypt (again an easy consequence of the structure of X ,
and proved in the appendix). It cannot also be the result of an application of blindsplit, since then one of
the premises has to be {a}xe , contradicting minimality. us t ′ is the result of an application blindpair,
but the previous lemma tells us that {r }ze for all {r }ze ∈ comps({p ′}ze). But notice that r′m ∈ st(p ′), and
hence we can conclude that among comps(p ′) will be found {b j }y j

for every (b j , y j) on the right hand
side of the rule numbered m. So by the observation at the start of the proof, we can conclude that for
each j , there is a subproof π j of π whose conclusion is X ⊢ {b j }y j ze , and we are done. ◀

And the following theorem is the end result.

▶ Theorem . e passive intruder deduction problem is dexptime-hard.

 Discussion

We can think of a number of extensions of our system by considering more algebraic properties of the
blind pair operator, like associativity, commutativity, unitariness, etc. It then becomes more convenient to
treat an extension of the Dolev-Yao model with a polyadic+ operator, over which encryption distributes.
In this framework, a very powerful system is studied in [], where + is treated as an abelian group
operator.

e decidability results in [] are driven by a set of normalization rules whose effect is drastically
different from ours. Our rules ensure that the “width” of terms occurring in a normal proof of X ⊢ t is
bounded by X ∪{t}. But their normalization rules ensure that the encryption depth of terms occurring
in a normal proof of X ⊢ t is bounded by X ∪{t}. On the other hand, the width of terms, represented
by coefficients in the +-terms, can grow unboundedly. e rest of their decidability proof is an involved
argument using algebraic methods.

e techniques of our paper do not seem to extend to the system with an abelian group operator,
nor for slightly weaker systems where + is associative and commutative, or when + is a (not necessarily
commutative) group operator and the term syntax allows terms of the form −t . But the techniques
for our upper bound proofs extends to the case when + is just an associative operator (not necessarily
commutative, or has inverses). ese results will be presented in a companion paper. Another extension

 Dolev-Yao theory with distributive encryption

that is usually considered is encryption with constructed keys rather than atomic keys. e upper bound
results go through for this system as well, with much of the hard work lying in extending the weak locality
theorem.

We have concentrated on the passive intruder in this paper. It is interesting to consider the active
intruder deduction problem for these systems, and more generally, investigate techniques for decidability
of the secrecy problem when we do not necessarily have a locality property for passive intruder deductions
but only an automaton-based decision procedure. at is left for future work.

References

 A. Baskar, R. Ramanujam, and S.P. Suresh. Knowledge-based modelling of voting protocols. In Dov
Samet, editor, Proceedings of the th Conference oneoretical Aspects of Rationality and Knowledge, pages
–, .

 Vincent Bernat and Hubert Comon-Lundh. Normal proofs in intruder theories. In ASIAN, pages
–, .

 A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata: Application to
model-checking. In Proc. of CONCUR’, pages –, .

 H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison, and M. Tom-
masi. Tree Automata Techniques and Applications. . Available on: http://www.grappa.univ-
lille3.fr/tata.

 Hubert Comon-Lundh and Vitaly Shmatikov. Intruder Deductions, Constraint Solving and Insecurity
Decisions in Presence of Exclusive or. In Proceedings of the th IEEE Synposium on Logic in Computer
Science (LICS), pages –, June .

 Véronique Cortier, Michaël Rusinowitch, and Eugen Zalinescu. A resolution strategy for verifying
cryptographic protocols with cbc encryption and blind signatures. In PPDP, pages –, .

 Stéphanie Delaune, Steve Kremer, and Mark D. Ryan. Verifying privacy-type properties of electronic
voting protocols. Journal of Computer Security, ():–, July .

 Danny Dolev and Andrew Yao. On the Security of public-key protocols. IEEE Transactions on Inform-
ation eory, :–, .

 Atsushi Fujioka, Tatsuaki Okamoto, and Kaazuo Ohta. A practical secret voting scheme for large scale
elections. In ASIACRYPT, pages –, .

 omas Genet and Francis Klay. Rewriting for cryptographic protocol verification. Technical report,
CNET-France Telecom, .

 Jean Goubault Larrecq. A method for automatic cryptographic protocol verification. In Proceedings
of the th IPDPS Workshops , volume  of Lecture Notes in Computer Science, pages –,
.

 Pascal Lafourcade, Denis Lugiez, and Ralf Treinen. Intruder deduction for the equational theory of
abelian groups with distributive encryption. Information and Computation, ():–, April
.

 David Monniaux. Abstracting cryptographic protocols with tree automata. In Static analysis symposium,
volume  of Lecture Notes in Computer Science, pages –, .

 Michaël Rusinowitch and Mathieu Turuani. Protocol Insecurity with Finite Number of Sessions and
Composed Keys is NP-complete. eoretical Computer Science, :–, .

 Dejvuth Suwimonteerabuth, Stefan Schwoon, and Javier Esparza. Efficient algorithms for alternat-
ing pushdown systems with an application to the computation of certificate chains. In Susanne Graf
and Wenhui Zhang, editors, th International Symposium on Automated Technology for Verification and
Analysis (ATVA), volume  of Lecture Notes in Computer Science, pages –, Beijing, China,
October . Springer.

A Baskar, R Ramanujam, and S P Suresh 

A Lower bound example

e following example constructs a set of terms X (containing 10 · n+ 12 terms each of constant size)
and a term t (also of constant size) such that X ⊢ t , but every proof of X ⊢ t contains a term of size at
least 2n .

We will assume four keys k , k ′, k0, k1 which are all non-symmetric and not inverses of one another.
For notational simplicity, we use {t}i instead of {t}ki

. We let m be reverse of the n-bit binary represent-
ation of m ∈ {0, . . . , 2n−1}. We shall show how to start with a set of terms of encryption depth at most
, and derive another term of encryption depth at most , while necessarily seeing a term of the form
{e}k2n−1k···ki+1ki k···0k ′ . In this example, all lowercase letters other than k and its variants above stand for
atomic terms.

Here are the terms that allow us to build up a term of the form {e}kir kir−1k···ki1k ′ . We will introduce
more terms later that help us force i j+1 = i j + 1 in the above.

{s}k ′ ,[{a1}0, s],[{a2}0,a1], . . . ,[{an}0,an−1],[{b}k ,an]

[{c1}0, b],[{c1}1, b],[{c2}0, c1],[{c2}1, c1], . . . ,[{cn}0, cn−1],[{cn}1, cn−1]

[{b}k , cn]

[{d1}1, b],[{d2}1, d1], . . . ,[{dn}1, dn−1],[{e}k , dn]

We will now try to go down from {e}kir kir−1k···ki1k ′ to { f }k ′ while checking that consecutive blocks
code up consecutive numbers. e logic is simple. If the term encrypted is still e , it means that every
“bit” to the right of the “current bit position” is a 0. If this is the case, and the current bit is i , the
corresponding bit in the previous block should be 1− i . Once a 1 has been seen to the right of the
current bit position, and the current bit is i , the corresponding bit in the previous block should be i .
Once a 1 has been seen, the term that is encrypted is changed from e to f . We also let g and h code
up the fact that we are looking to verify that the corresponding bit in the previous block is a 0 and 1,
respectively.

[{e}k , e],[[{e}0,{hn}0], e],[[{e}1,{gn}1], f]

[{ f }k , e],[[{ f }0,{gn}0], f],[[{ f }1,{hn}1], f]

[{gn}0, gn−1],[{gn}1, gn−1],[{gn−1}0, gn−2],[{gn−1}1, gn−2], . . . ,[{g1}0, p]

[{gn}k , gn],[{gn−1}k , gn−1], . . . ,[{g1}k , g1]

[{hn}0, hn−1],[{hn}1, hn−1],[{hn−1}0, hn−2],[{hn−1}1, hn−2], . . . ,[{h1}1, p]

[{hn}k , hn],[{hn−1}k , hn−1], . . . ,[{h1}k , h1]

[{p}k , p],[{p}0, p],[{p}1, p],[{p}k ′ ,{s}k ′]
Take X be the set of all the above terms. We claim that the term { f }k ′ is derived from X , but that

the term {e}k2n−1k···ki+1ki k···0k ′ will necessarily have to occur in any proof of { f }k ′ from X .

 Dolev-Yao theory with distributive encryption

B Normalization proofs

▶ Lemma . Whenever X ⊢ t , there is a normal proof of t from X .

Proof. For every proof π, we define a measure d (π) recursively as follows:
if π ends in an Ax rule, d (π) = 1,
if π has immediate subproofs π′ and π′′ and ends in an application of a rule other than encrypt or
decrypt, then d (π) = d (π′)+ d (π′′)+ 1, and
if π ends in an application of either encrypt or decrypt and has immediate subproofs π′ and π′′, then
d (π) = 2d (π′)+d (π′′).

We can view normal proofs as the result of repeatedly applying the reduction steps in Figure  a reduction
step which replaces proofs by subproofs which have the same root. And it suffices to show that for each
of these reduction steps that transforms π to π′, d (π′) < d (π). is immediately proves that the
normalization procedure terminates.

e non-trivial cases are the reductions in Figure . For these, we observe that the measure of the
proof on the left is 2d (π′)+d (π′′)+d (δ)+1, while the measure of the proof on the right is 2d (π′)+d (δ) +
2d (π′′)+d (δ)+ 1. Let d (π′) = m, d (π′′) = n, and d (δ) = p, and assume without loss of generality that
m ≥ n. en—since m, n, p > 0—2m+n+p+1 > 2m+p+1+ 1≥ 2m+p + 2n+p + 1. is concludes the
proof. ◀
▶ Lemma. Let π be a normal proof of t from X , and let δ be a subproof of π with root labelled r . en
the following hold:
. If δ is not a purely synthetic proof, for every u occurring in δ there is p ∈ st(X) and keyword x such that

u = {p}x↓.
. If δ is a purely synthetic proof, for every u occurring in δ, either u ∈ st(r) or there is p ∈ st(X) and

keyword x such that u = {p}x↓.
. If the last rule of δ is decrypt or split with major premise r1, then r1 ∈ st(X).
Proof. We do an induction on the structure of proofs. We assume the claim for every proper subproof
δ ′ of δ, and prove it for δ itself.

Suppose δ is of the following form:

Ax
r

en r ∈X ⊆ st(X), and we are done.
Suppose δ is the following form (and r = (r ′, r ′′)):
··· δ ′
r ′

··· δ ′′
r ′′

pair
r

In this case, δ is a purely synthetic proof, and we aim to prove that for every u occurring in δ, either
u ∈ st(r) or there is p ∈ st(X) and keyword x such that u = {p}x↓. But any such u either occurs
in δ ′ or δ ′′ or is the same as r . In the first case, by induction hypothesis, u ∈ st(r ′) or there exists
p ∈ st(X) and keyword x such that u = {p}x↓. But since r ′ ∈ st(r), u ∈ st(r) or u = {p}x↓, and
we are done. We argue similarly in the second case. Finally r ∈ st(r), and so we are done in the third
case as well.
Suppose δ is of the following form:

··· δ ′
(r, r ′)

split
r

A Baskar, R Ramanujam, and S P Suresh 

We have to consider the following cases:
. Suppose δ ′ is not a purely synthetic proof and for every u occurring in δ ′ there is a p ′ ∈ st(X)

and keyword x ′ such that u = {p ′}x ′↓. In particular, there is a p ∈ st(X) and keyword x such
that (r, r ′) = {p}x↓. But this means that x = ϵ and (r, r ′) = p ∈ st(X). So r ∈ st(X) as well.
us we have proved that for every u occurring in δ, there is a p ∈ st(X) and keyword x such
that u = {p}x↓. We have also proved that the major premise of the last rule is in st(X).

. Suppose δ ′ is a purely synthetic proof. But then δ ′ has to end in an application of the pair rule,
and therefore one of the premises of the last rule of δ ′ has to be r , and this contradicts minimality
of δ. So this case is not possible.

Suppose δ is the following form (and r = [r ′, r ′′]):

··· δ ′
r ′

··· δ ′′
r ′′

blindpair
r

We argue exactly as in the case when the last rule is pair.
Suppose δ is of the following form:

··· δ ′
[r, s]

··· δ ′′s
blindsplit1r

We have to consider the following cases:
. Suppose δ ′ is not a purely synthetic proof and for every u occurring in δ ′ there is a p ′ ∈ st(X)

and keyword x ′ such that u = {p ′}x ′↓. In particular, there is a p ∈ st(X) and keyword x such
that [r, s] = {p}x↓.
Turning our attention to u occurring in δ ′′, either u ∈ st(s) or there is v ∈ st(X) and keyword
y such that u = {v}y↓. But recall that s ∈ st([r, s]) and there is p ∈ st(X) and keyword x such
that [r, s] = {p}x . erefore if u ∈ st(s), clearly there is v ′ ∈ st(X) such that u = {v ′}x .
It also immediately follows that r = {q}x ↓ for some q ∈ st(X). us we have proved that for
every u occurring in δ, there is a p ∈ st(X) and keyword x such that u = {p}x↓.

. Suppose δ ′ is a purely synthetic proof. But then δ ′ does not end with an instance of the encrypt
rule, and hence ends with an instance of the blindpair rule. But that contradicts the minimality
of δ, as we can see by reasoning similar to the case when δ ends with a split. So this case is not
possible.

Suppose δ is of the following form (and r = {r ′}k↓):
··· δ ′
r ′

··· δ ′′
k

encrypt
r

We have to consider the following cases:
. Suppose r is not a blind pair, and hence δ is a purely synthetic proof. en we aim to prove

that for every u occurring in δ, either u ∈ st(r) or there is p ∈ st(X) and keyword x such that
u = {p}x↓. But any such u either occurs in δ ′ or occurs in δ ′′ or is the same as r . In the first
case, by induction hypothesis, either u ∈ st(r ′) or there exists p ∈ st(X) and keyword x such that
u = {p}x↓. But since r ′ ∈ st(r), the desired conclusion follows. We argue similarly in the second
case, when u occurs in δ ′′. Finally r ∈ st(r), and so we are done in the third case as well.

 Dolev-Yao theory with distributive encryption

. Suppose r is a blind pair, and hence δ is not a purely synthetic proof. We aim to prove that for
every u occurring in δ, there is p ∈ st(X) and keyword x such that u = {p}x↓. We consider the
following subcases:

a. Suppose δ ′ is not a purely synthetic proof and for every u occurring in δ ′ there is a p ′ ∈ st(X)
and keyword x ′ such that u = {p ′}x ′↓. In particular, there is a p ∈ st(X) and keyword x such
that r ′ = {p}x↓. But this means that r = {p}xk↓. If u occurs in δ ′′, then since k is atomic,
δ ′′ ends in an analz rule, and so there is a q ∈ st(X) and keyword y such that u = {q}y ↓.
us we have proved that for every u occurring in δ, there is a p ∈ st(X) and keyword x such
that u = {p}x↓.

b. Suppose δ ′ is a purely synthetic proof. We note that r ′ is a blind pair, and hence the last rule
of δ ′ is not encrypt (since δ ′ is purely synthetic). e only other possibility is that the last rule
of δ ′ is blindpair, but that would violate the normality of δ, as one of the transformations
specified by the first row of Figure  would apply to δ. So this case is not possible.

Suppose δ is of the following form:

··· δ ′{r }k
··· δ ′′

inv(k)
decrypt

r

We first note that inv(k) is an atomic key and hence δ ′′ should end with the analz rule. Hence for
every u occurring in δ ′′, there exists p ∈ st(X) and a keyword x such that u = {p}x↓.
We now consider δ ′. It cannot end in a blindpair rule, since one of the rules specified by the second
row of Figure  would apply to δ, thereby contradicting normality of δ. Nor can δ ′ end in an
encrypt rule, since then the major premise of the last rule of δ ′ would be r , and this contradicts the
minimality of δ. e only possibilities therefore are that δ ′ ends in an application of split or decrypt
or blindsplit. In the first two cases, we know by induction hypothesis that the major premise r1 of
the last rule of δ ′ is in st(X). Hence {r }k , as well as r , are in st(X) as well.

We now consider the case when the last rule of δ ′ is blindsplit1. Let r1 be the major premise of this
rule, and r2 the minor premise. Now it cannot be the case that r1 is of the form [{r }k ,{r ′}k]. For,
in that case r2 would have been {r ′}k , and one of the normalization rules specified by the second
row of Figure  would have applied to δ, and this contradicts its normality.

We also know from the induction hypothesis (applied to δ ′) that there is a p ∈ st(X) and a keyword
x such that r1 = {p}x . But since r1 is [{r }k , r2], where r2 is not of the form {r ′}k for any r ′, we
conclude that x = ϵ and r1 = p ∈ st(X). It follows that r ∈ st(X) as well.

◀

C Examples of the automaton construction

e first example we look at is a derivation of {t}k from X = {[t , t ′],{t ′}k , k}. We will show parts of
the successive stages of the automaton construction corresponding to this derivation. In this example
and the next, we have only displayed enough states and edges that help us verify the existence of the
appropriate derivation.

A Baskar, R Ramanujam, and S P Suresh 

..t

.t ′

.[t , t ′]

.{t ′}k

.f

.k

.

.

.k

.
Stage . Notice that
the dotted edges
are part of the same
and-edge.

..t

.t ′

.[t , t ′]

.{t ′}k

.f

.k

.

.

.k

.

.

.

.
Stage . At this stage
we add edges to f
from all terms de-
rivable using the Ax
rule.

..t

.t ′

.[t , t ′]

.{t ′}k

.f

.k

.

.

.k

.k

.

.

.k

.

.
Stage . e k-
labelled edge from
f to f is added be-
cause of the edge
from k to f . e
k-labelled edge from
t ′ to f is added be-
cause there was a k-
labelled path from t ′
to f in the previous
stage.

 Dolev-Yao theory with distributive encryption

..t

.t ′

.[t , t ′]

.{t ′}k

.f

.k

.

. .k

.k

.k

.

.

.k

.

.
Stage . e k-
labelled edge from
t to f is added be-
cause there are k-
labelled paths both
from [t , t ′] and t ′
in the previous stage.
is edge verifies
that X ⊢ {t}k .

e second example is a derivation of t from the set X = {[t ,{t ′}k], t ′, k}.

..t

.{t ′}k

.[t ,{t ′}k] .f

.t ′

.k

.

.

.
Stage . Notice that
the dotted edges
are part of the same
and-edge.

..t

.{t ′}k

.[t ,{t ′}k] .f

.t ′

.k

.

.

.

.
.

.
Stage . At this stage
we add edges to f
from all terms de-
rivable using the Ax
rule.

A Baskar, R Ramanujam, and S P Suresh 

..t

.{t ′}k

.[t ,{t ′}k] .f

.t ′

.k

.

.

.

.
.

.k

.
Stage . e k-
labelled edge from
f to f is added be-
cause of the edge
from k to f .

..t

.{t ′}k

.[t ,{t ′}k] .f

.t ′

.k

.

.

.

.
.

.k

.

.
Stage . e edge
from {t ′}k to f is
added because it is
derivable in one step
from t ′ and k and
there are edges from
both t ′ and k to f .

..t

.{t ′}k

.[t ,{t ′}k] .f

.t ′

.k

.

.

.

.
.

.k

.

.

.
Stage . e ϵ-
labelled edge from
t to f is added be-
cause there are ϵ-
labelled edges both
from {t ′}k and
[t ,{t ′}k] to f in
the previous stage.
is edge verifies
that X ⊢ t .

D Proofs for the automaton construction

▶ Lemma . . For all i ≥ 0 and all a ∈ Σ ∪ {ϵ}, the relation a⇒i is constructible from ,→i in time
2O(d), where d = |Q|.

 Dolev-Yao theory with distributive encryption

. For all i ≥ 0 and all a ∈Σ, the relation a
,→i+1 is constructible from⇒i in time 2O(d).

. ere exists d ′ ≤ d 2 · 2d such that for all i ≥ d ′, q ∈ Q , a ∈ Σ∪ {ϵ}, and C ⊆ Q, q
a
,→i C if and

only if q
a
,→d ′ C .

Proof. . We first compute
ϵ⇒i inductively as follows:

q
ϵ⇒i ,0 C if and only if C = {q},

q
ϵ⇒i , j+1 C if and only if either q

ϵ⇒i , j C or there is C ′ ⊆Q such that q
ϵ
,→i C ′ and C ′

ϵ⇒i , j C .

It is clear that
ϵ⇒i is computable in d ·2d iterations of the above induction, each step taking at most

d · 2d time. Once q
ϵ⇒i is computed, q

a⇒i is computed inductively as follows (for a ∈Σ):
q

a⇒i ,1 C if and only if q
a
,→i C ,

q
a⇒i , j+1 C if and only if q

a⇒i , j C or there is C ′ ⊆Q such that q
ϵ
,→i C ′ and C ′

a⇒i , j C .

Again it is clear that
a⇒i is computed in time 2O(d), once

ϵ⇒i has been computed. us the overall
time needed is 2O(d).

. is is easily seen from the construction.
. Observe that whenever q

a⇒i C , it is also the case that q
a⇒i+1 C , and the number of possible triples

in any⇒ j is d 2 · 2d . us the desired statement follows.
◀

▶ Lemma . For all t , t ′ ∈ Y0, C ⊆ Y0, and keywords x, x ′ such that {t}x↓= {t ′}x ′↓, if t
x⇒i C for

some i , then there is a j ≥ i such that t ′
x ′⇒ j C .

Proof. ere are two cases to consider.
Suppose x ′ = k1 · · ·kn x, and thus t = {t ′}k1···kn

. en it is easy to see that:

t ′
k1
,→i {t ′}k1

k2
,→i · · ·

kn
,→i {t ′}k1···kn

x⇒i C .

Suppose x = k1 · · ·kn x ′, and thus t ′ = {t}k1···kn
. Suppose that

t
k1⇒i D1

k2⇒i D2 · · ·Dn−1

kn⇒i Dn
x ′⇒i C .

en, it is also the case that

{t}k1

ϵ
,→i+1 D1

k2⇒i D2 · · ·Dn−1

kn⇒i Dn
x ′⇒i C .

But then {t}k1

k2⇒i+1 D2 and so

{t}k1k2

ϵ
,→i+2 D2 · · ·Dn−1

kn⇒i Dn
x ′⇒i C .

Arguing likewise, we have

{t}k1···kn

ϵ
,→i+n Dn

x ′⇒i C .

Hence t ′
x ′⇒i+n C , and we are done.

◀
▶ Theorem . (Completeness) For any t ∈ Y0 and any keyword x, if X0 ⊢ {t}x↓, then there exists i ≥ 0

such that t
x⇒i { f }.

A Baskar, R Ramanujam, and S P Suresh 

Proof. e proof is by induction on the structure of (normal) proofs. Let π be a normal proof of {t}x↓
from X . e following cases need to be considered:

Suppose the last rule r ofπ has premises Γ⊆ Y0 and conclusion {t}x↓∈ Y0. By induction hypothesis,
there is an i such that for all u ∈ Γ, u

ϵ⇒i { f }. But our construction guarantees that {t}x↓ ϵ,→i+1 { f }.
By Lemma , this means that t

x⇒ j { f } for some j > i .
It follows by weak locality of normal proofs that this subsumes the cases where π ends in an applic-
ation of the Ax, pair, split, and decrypt rules.
Suppose π is the following proof:

··· π′{t}x ′↓
··· π′′
k
encrypt{t}x ′k↓

By induction hypothesis, there is an i such that t
x ′⇒i { f } and k

ϵ
,→i { f }. Hence f

k
,→i+1 { f }, and

thus t
x ′k⇒i+1 { f }.

Suppose π ends in a blindspliti rule or a blindpair rule. e reasoning in all three cases is similar. We
consider the case when π has the following form:

··· π′
X ⊢ [{t}x↓, t ′]

··· π′′
X ⊢ t ′

blindsplit1X ⊢ {t}x↓
By Lemma , we know that [{t}x ↓, t ′] is of the form {r }y ↓ for some r ∈ Y0. But this r has
to be of the form [u, u ′]. And therefore t ′ = {u ′}y ↓. Now by induction hypothesis, there is i

such that [u, u ′]
y⇒i { f } and u ′

y⇒i { f }. But by construction, u
ϵ
,→0 {[u, u ′], u ′}, and thus

u
ϵ
,→i {[u, u ′], u ′}. erefore u

y⇒i { f }. But now {t}x ↓= {u}y ↓, and hence by Lemma ,

t
x⇒ j { f } for some j .

◀
▶ Lemma. Suppose i , d ≥ 0, t ∈ Y0, x, y ∈K∗0 , and C ⊆Q (with D =C ∩Y0). Suppose the following

also hold: ) t
x⇒i ,d C , and ) C ⊆ Y0 or X0 ⊢ y. en X0 ∪{D}y ⊢ {t}xy .

Proof. Case i = 0: Suppose t
x⇒0,d C , and either C ⊆ Y0 or X0 ⊢ y. Now if t

x⇒0,1 C , it has to be the
case that x = ϵ and C =D = {t}. en it is immediate that X0 ∪{D}y ⊢ {t}xy .
So suppose x = ax ′ for some a ∈ Σ∪ {ϵ}, and there is a C ′ ⊆ Q (with D ′ = C ′ ∩Y0) such that

t
a
,→0 C ′

x ′⇒0,d ′ C for some d ′ < d . en by induction hypothesis (on d), X0 ∪ {D}y ⊢ {u}x ′y for
every u ∈ D ′. So it suffices to prove that X0 ∪ {D ′}x ′y ⊢ {t}ax ′y . Now there are two main cases to
consider:

Suppose a = k and C ′ =D ′ = {{t}k}. en it is clear that {D ′}x ′y ⊢ {{t}k}x ′y .
Suppose a = ϵ and C ′ = D ′ = {[t , t ′], t ′}. Again it is immediate that {D ′}x ′y ⊢ {t}x ′y . e
blindsplit0 and blindpair cases are similar.

Case i = j + 1: Suppose t
x⇒ j+1,d C and either C ⊆ Y0 or X ⊢ y. Either t

x⇒ j C in which case we are
done (by the induction hypothesis on i), or d > 1. In the second case, suppose x = ax ′ for some

a ∈ Σ∪ {ϵ} and there is a C ′ ⊆Q (with D ′ = C ′ ∩Q) such that t
a
,→ j+1 C ′

x ′⇒ j+1,d ′ C for some
d ′ < d . en by induction hypothesis (on d), X0 ∪ {D}y ⊢ {u}x ′y for every u ∈ D ′. So it suffices
to prove that X0 ∪{D ′}x ′y ⊢ {t}ax ′y .

 Dolev-Yao theory with distributive encryption

We note that if f is in C ′, f is also in C , and that f
x ′⇒ j+1 { f } (since C ′

x ′⇒ j+1,d ′ C), and X ⊢ y

(since C ̸⊆ Y0). But if f
x ′⇒ j+1 { f }, by definition of ,→ j+1, it means that k

ϵ
,→ j { f } for every k

occurring in x ′. By induction hypothesis (on i), X0 ⊢ k for each such k, and hence X0 ⊢ x ′. us
either C ′ ⊆ Y0 or X0 ⊢ x ′y. Now there are three cases to consider:

Suppose t
a⇒ j C ′. By induction hypothesis (on i), X0 ∪{D ′}x ′y ⊢ {t}ax ′y .

Suppose t = {t ′}k and a = ϵ and t
k⇒ j C ′. It follows that X0∪{D ′}x ′y ⊢ {t ′}k x ′y , by induction

hypothesis (on i). us X0 ∪{D ′}x ′y ⊢ {t}x ′y .
Suppose a = ϵ, C ′ = { f }, t ∈ Y0 is the conclusion of some rule with premises Γ ⊆ Y0, and
p
ϵ⇒ j { f } for every p ∈ Γ. Since p

ϵ⇒ j { f }, we can apply the induction hypothesis (on i) taking
x = y = ϵ and conclude that X0 ⊢ p, for all p ∈ Γ. It follows that X0 ⊢ t . But since C ′ ̸⊆ Y0,
X0 ⊢ x ′y. So X0 ⊢ {t}x ′y .

◀

E The lower bound proofs

▶ Lemma . For all configurations (a, x) and all i ≥ 0, if (a, x)⇒i {(f , x f)} then X ⊢ {a}xe .

Proof. We prove this by induction on i . If i = 0 then (a, x) = (f , x f) and thus X ⊢ {a}xe , since
{ f }x f e ∈X . If i > 0, there is a rule of P (numbered m, say), (a, y) ,→{(b1, y1), . . . , (bn , yn)}, z ∈ Γ∗,
and i1, . . . , in ≥ 0 such that x = y z and (c j , y j z) ⇒i j

{(f , x f)} for all j ∈ {1, . . . , n}, and that i =
i1 + · · ·+ in + 1. By induction we know that X ⊢ {b j }y j ze for all j . We observe that we can encrypt
r j using the sequence of keys ze , and then by a series of applications of the blindsplit rule with all the
{bi}yi ze , get [{cm}d ze ,{a}y ze]. We can now encrypt {cm}d using the sequence of keys ze , and then
apply the blindsplit rule to get {a}y ze = {a}xe , as desired. ◀
▶ Lemma . . No term t ∈X is a subterm of another term t ′ ∈X .
. e only term t in st(X) such that e ∈ st(t) is { f }x f e .
. If p ∈ st(X) is a blind pair, then e ̸∈ st(p).
. If p ∈ st(X) and cm ∈ st(p) then p ∈ st(rm).
. If p ∈ st(X) and p is a blind pair, then {cm}d ∈ st(p) for a unique m ≤ ℓ and p is not of the form
{q}k for any q and k.

. If {p ′}w ′ is the major premise of a blindsplit rule whose conclusion {p}w contains {cm}d as a subterm
(for some m ≤ ℓ), then w = w ′.

▶ Lemma . Let π be a normal proof of X ⊢ {a}xe , where (a, x) is a configuration of P . en
. every term occurring r in π is of the form {p}w where p ∈ st(X) and w ∈ Γ∗ ∪Γ∗e .
. if r is a blind pair, there is a unique p and w such that r = {p}w .
Proof. . e subterm property for normal proofs guarantees that every term occurring in π is of the

form {p}w , where p ∈ st(X ∪{a}) and w ∈ (Γ∪{e})∗. Let us first observe that a ∈ st(X) and hence
p ∈ st(X). Suppose a term of the form {q}ye y ′ occurs in π, where y ′ ̸= ϵ. Since the conclusion of
π is {a}xe where x ∈ Γ∗, there has to be an occurrence of a rule in π with one of its premises of
the form {r }ze z ′ with r ∈ st(X) and z ′ ̸= ϵ, and conclusion {t}w (with t ∈ st(X), e ̸∈ st(t), and
w ∈ Γ∗ ∪Γ∗e).
But this rule cannot be an encrypt. Nor can it be a blindpair, since then t has to have an occurrence
of e , but the only term in st(X) with an e is { f }x f e and that cannot be derived using an instance of
blindpair. Suppose {t}w is derived from {r }ze z ′ and {t ′}w ′ using blindsplit. If {r }ze z ′ is the major
premise of this blindsplit rule, then it is easy to see that {t}w is of the form {u}ze z ′ . But since {t}w is

A Baskar, R Ramanujam, and S P Suresh 

not of that form, it is clear that {t ′}w ′ is the major premise of the blindsplit rule. But now we observe
that if {t ′}w ′ is of the form {u ′}e z ′ then {t}w would also be of the form {v}e z ′ . Since it is not of
that form, and since {r }ze z ′ ∈ st({t ′}w ′), it has to be the case that e ∈ st(t ′). But that is not possible
since t ′ is a blind pair and in st(X), and e does not occur in such terms. e conclusion thus follows.

. Suppose r is a blind pair. en so is p, and by Lemma (), there is some m ≤ ℓ such that
{cm}d ∈ st(p), and also p is not of the form {q}k for any q and k . From this it follows that there is
a unique p and w such that r = {p}w .

◀

▶ Lemma . Let π be a normal proof of X ⊢ {a}xe . Let δ be a subproof of π with conclusion u and
immediate subproofs δ ′ and δ ′′ with conclusions u ′ and u ′′, respectively. en:
. if the last rule of δ is an application of encrypt, there are p ∈ X , w ∈ Γ∗, and k ∈ Γ∪ {e} such that

u ′ = {p}w , u ′′ = k , and u = {p}wk .
. if the last rule of δ is an application of blindpair, there are b ∈M , p, p ′ ∈ st(X), and w, w ′′, w ′′ ∈ Γ∗

such that u ′ = {p ′}w ′e , u ′′ = {b}w ′′e , and u = {p}we .
. if the last rule of δ is an application of blindsplit, there are p, p ′, p ′′ ∈ st(X), and w, w ′′, w ′′ ∈ Γ∗ such

that u ′ = {p ′}w ′e , u ′′ = {p ′′}w ′′e , and u = {p}we .

Proof. . Clearly u = {p}wk , where p ∈ st(X) and wk ∈ Γ∗ ∪ Γ∗e . It follows that w ∈ Γ∗ and
k ∈ Γ∪ {e}. To see that p ∈ X , we just need to observe that π (and hence δ) is a normal proof,
and our normalization rules do not allow an encrypt rule whose major premise is the conclusion of
a blindpair or a blindsplit rule. us δ ′ ends in an application of encrypt and by induction, p ∈ X .
Or δ ′ ends in an application of Ax, and clearly we can take p ∈X and w = ϵ.

. Suppose one of δ ′ and δ ′′ end with an application of either the blindpair rule or the blindsplit rule.
en by induction hypothesis, either u ′ or u ′′ is encrypted by e at the end. It follows that u also
is encrypted by e at the end. But u is a blind pair and e is a subterm of u, so u ̸∈ st(X). us
u = {p}we for some p ∈ st(X) and w ∈ Γ∗. If on the other hand both δ ′ and δ ′′ end with an
application of the encrypt rule, then u ′ = {p ′}w ′ and u ′′ = {p ′′}w ′′ for p ′, p ′′ ∈X . But u is a blind
pair and of the form {p}w for some p ∈ st(X). By inspection of X , {cm}d ∈ st(p) for some m ≤ ℓ,
and so {cm}d ∈ st(p ′)∪ st(p ′′). But the only term of X with {cm}d as a subterm is rm and it, in turn,
is not a subterm of any other term of X . us it is not possible that both δ ′ and δ ′′ end in encrypt.
We have thus established that u = {p}we , u ′ = {p ′}w ′e , and u ′′ = {p ′′}w ′′e , where p, p ′, p ′′ ∈ st(X).
Inspection of X reveals that if p is a blind pair and a subterm of X , then one of its components is not
a blind pair and does not contain {cm}d as a subterm, for any m. us we are justified in claiming
that p ′′ ∈M .

. Suppose one of δ ′ and δ ′′ end with an application of either the blindpair rule or the blindsplit rules.
en by induction hypothesis, either u ′ or u ′′ is encrypted by e at the end. It follows that u also is
encrypted by e at the end. us u = {p}we for some p ∈ st(X) and w ∈ Γ∗. If on the other hand
both δ ′ and δ ′′ end with an application of the encrypt rule, then u ′ = {p ′}w ′ and u ′′ = {p ′′}w ′′ for
p ′, p ′′ ∈X . But one of them, say u ′ is a blind pair and {p ′′}w ′′ is one of the components of {p ′}w ′ .
But this cannot happen when both p ′ and p ′′ are in X , as can be seen easily by inspecting X . us
it is not possible that both δ ′ and δ ′′ end in encrypt. We have thus established that u = {p}we ,
u ′ = {p ′}w ′e , and u ′′ = {p ′′}w ′′e , where p, p ′, p ′′ ∈ st(X).

◀

▶ Lemma . Let π be a normal proof of X ⊢ {a}xe . Let δ be a subproof of π with conclusion {p}we , and
let m ≤ ℓ. en:
. if the last rule of δ is an application of blindpair, and if {cm}d ∈ st(p), then X ⊢ {r }we is the conclusion

of some subproof of δ, for every {r }we ∈ comps({p}we).

 Dolev-Yao theory with distributive encryption

. if the last rule of δ is an application of blindsplit, and if {cm}d ∈ st(p), then X ⊢ {r }we is the conclusion
of some subproof of δ, for every r ∈ residues(p).

Proof. . Let δ ′ and δ ′′ be immediate subproofs of δ, with conclusions {p ′}w ′e and {b}w ′′e , respect-
ively, with b ∈M .
Now {p}we is a blind pair, and by inspection of X , {cm}d ∈ st(p) for some m ≤ ℓ. Now either
{p ′}w ′e ∈ comps({t}we) in which case we are done, or {p ′}w ′e is itself a blind pair. In this case, we
notice that δ ′ cannot end with an application of blindsplit, because one of the premises of that rule
would be {p}we , contradicting the fact that π is normal (and hence minimal). It cannot also end in
an application of encrypt, since it will follow that p ′ = rm , and it cannot be a subterm of p. us δ ′
ends in an application of blindpair, and by induction hypothesis, all components of {p ′}w ′e occur in
δ ′. Combined with {b}w ′′e , we can conclude that all components of {p}we occur in δ.

. Let δ ′ and δ ′′ be immediate subproofs of δ, and {p ′}w ′e and {p ′′}w ′′e , respectively, be their con-
clusions.
Suppose, without loss of generality, that {p ′}w ′e is the major premise and suppose {cm}d ∈ st(p).
en by Lemma (), w = w ′, and it is also seen that residues(p) = residues(p ′)∪ {{b}y}, where
{b}ywe = {p ′′}w ′′e . It is clear that δ ′ does not end in a blindpair rule. If it ends in an application of
encrypt, then (since {cm}d ∈ st(p ′) and p ′ ∈X) p ′ = rm and thus p ′ has no residues. If δ ′ ends in an
application of blindsplit, then by induction hypothesis, for all residues of r ′ of p ′, {r ′}w ′e = {r ′}we
occurs in δ ′. Either way, since {p ′′}w ′′e also occurs in δ, we can conclude that for all residues r of
p, {r }we occurs in δ.

◀

▶ Lemma . If there is a normal proof π of X ⊢ {a}xe , then either (a, x) = (f , x f) or there is a rule
(numbered m, say) of P , (a, y) ,→ {(b1, y1), . . . , (bn , yn)}, and z ∈ Γ∗ such that x = y z , and for each
j ≤ n, a subproof π j of π with conclusion X ⊢ {b j }y j ze .

Proof. Let π be a normal proof of X ⊢ {a}xe and suppose that (a, x) ̸= (f , x f). en it is clear that for
all prefixes y of xe , {a}y ̸∈ X . us π does not end in an application of encrypt. It obviously cannot
end in an application of blindpair. So it is clear that the last rule is an application of blindsplit, with
major premise t and minor premise t ′. Now t is a blind pair, and hence there is a unique p ∈ st(X)
and z ∈ Γ∗ such that t = {p}ze . Clearly, {cm}d ∈ st(p). If t is obtained as the result of an application
of encrypt, then p = rm and thus p has no residues, and hence it is vacuously true that {r }ze occurs in
δ for all r ∈ residues(p). Otherwise, t is the result of a blind split, and hence, by the previous lemma,
{r }ze occurs in δ for all r ∈ residues(p).

Now if p ∈ st(r′m), then among the residues of p will be found {b j }y j
for every (b j , y j) on the right

hand side of the rule numbered m. So by what has been proved above, there is a subproof π j of π whose
conclusion is X ⊢ {b j }y j ze , and we are done.

Suppose p ̸∈ st(r′m). en, it is clear that r′m ∈ st(p ′), where p ′ is the unique term in st(X) such
that t ′ = {p ′}ze , for a unique z . Now clearly p ′ ̸∈ X and hence t ′ is not the result of an application
of encrypt. It cannot also be the result of an application of blindsplit, since then one of the premises has
to be {a}xe , contradicting minimality. us t ′ is the result of an application blindpair, but the previous
lemma tells us that {r }ze for all {r }ze ∈ comps({p ′}ze). But notice that r′m ∈ st(p ′), and hence we can
conclude that among comps(p ′) will be found {b j }y j

for every (b j , y j) on the right hand side of the rule
numbered m. So by induction hypothesis, we can conclude that for each j , there is a subproof π j of π
whose conclusion is X ⊢ {b j }y j ze , and we are done. ◀

A Baskar, R Ramanujam, and S P Suresh 

F Blind pair as an associative operator: upper bound

We introduce a new syntax of terms, where we have a polyadic + operator instead of the blind pairing
operator. We will still continue to call the proof rules blindpair and blindsplit, for the sake of simplicity.

T ::= m | (t1, t2) | {t}k | t1+ t2 · · ·+ tl

where m ∈ N , k ∈ K , and {t , t1, . . . , tl } ⊆ T . We shall once again consider only normal forms,
which are obtained by pushing encryptions inside + terms recursively.

e set of subterms of t , st(t), is the smallest X ⊆ T such that ) t ∈ X , ) if (t , t ′) ∈ X , then
{t , t ′} ⊆ X , ) if t1+ t2+ . . . tl ∈ X and none of ti ’s are headed with + then {ti + ti+1 . . . t j |1 ≤ i ≤
j ≤ l } ⊆ X and st(ti) ⊆ X for every i and ) if {t}k ∈ X then {t , k} ⊆ X . st(X) is defined to be∪

t∈X st(t).

analz-rules
{t}k↓ inv(k)

decrypt
t

(t0, t1)
spliti

ti

t0+ t1 ti
blindspliti

t1−i

synth-rules Ax (t ∈X)
t

t k
encrypt{t}k↓

t1 t2
pair

(t1, t2)

t1 t2
blindpair

t1+ t2

Figure  Proof system for normal terms (with assumptions from X ⊆T).

We next consider the weak locality lemma for this system. Here we need to add some normalization
rules to ensure that an application of the blindpair rule does not occur above the major premise of an
application of the blindsplit rule. For example, the system allows the following derivation.

t1+ t2 t3 blindpair
t1+ t2+ t3 t2+ t3 blindsplit1t1

But we can replace it with the derivation given below, which is well-behaved.

t1+ t2

t2+ t3 t3 blindsplit1t2 blindsplit1t1

We need to extend the normalization rules in Figure  to make this work. We will also ensure that
there is no occurrence of blindpair above the minor premise of blindsplit.

e proofs of the following two lemmas is pretty much on the lines of the corresponding statements
for the binary operator case, so we skip the proofs.

▶ Lemma . If X ⊢ t then there is a normal proof of t from X .

▶ Lemma . Let π be a normal proof of t from X , and let δ be a subproof of π with root labeled r . en
the following hold:
. If δ is not a purely synthetic proof, for every u occurring in δ there is p ∈ st(X) and keyword x such that

u = {p}x↓.

 Dolev-Yao theory with distributive encryption

··· π′
t1+ t2

··· π′′
t3
blindpair

t1+ t2+ t3

··· δ
t2+ t3

blindsplit
t1

··· π′
t1+ t2

··· δ
t2+ t3

··· π′′
t3
blindsplit

t2
blindsplit

t1

··· π′
t1

··· π′′
t2+ t3

blindpair
t1+ t2+ t3

··· δ
t1+ t2

blindsplit
t3

··· π′′
t2+ t3

··· δ
t1+ t2

··· π′
t1
blindsplit

t2
blindsplit

t3

··· δ
t1+ t2+ t3

··· π′
t1

··· π′′
t2
blindpair

t1+ t2
blindsplit

t3

··· δ
t1+ t2+ t3

··· π′
t1
blindsplit

t2+ t3

··· π′′
t2

blindsplit
t3

··· δ
t1+ t2+ t3

··· π′
t2

··· π′′
t3
blindpair

t2+ t3
blindsplit

t1

··· δ
t1+ t2+ t3

··· π′′
t3
blindsplit

t1+ t2

··· π′
t2

blindsplit
t1

Figure e normalization rules for the associative case

. If δ is a purely synthetic proof, for every u occurring in δ, either u ∈ st(r) or there is p ∈ st(X) and
keyword x such that u = {p}x↓.

. If the last rule of δ is decrypt or split with major premise r1, then r1 ∈ st(X).
Once we have the weak locality property, the automaton construction proceeds exactly as before. e

only change is that the definition of st(X) is potentially O(n2) where n is the size of X .

▶ Theorem . For the system with an associative blind pair, the problem of checking whether X ⊢ t is
solvable in time O(2n2), where n is the sum of the sizes of terms in X and t .

G Blind pair as an associative operator: lower bound

Assume that we are given an APDS P = (P,Γ, ,→), and two configurations (s , xs) and (f , x f). Let us
assume that the rules in ,→ are numbered 1 to ℓ.

We will take M = P ∪ {cm | 1≤ m ≤ n} to be a set of atomic terms, and K =Γ∪{d , e} to be a set
of non-symmetric keys (such that none of them is the inverse of another, and such that d , e ̸∈ Γ).

We translate each rule to a term as follows. Suppose the mth rule is:

(a, x) ,→{(b1, x1), . . . , (bn , xn)}.

A Baskar, R Ramanujam, and S P Suresh 

is gets translated to the following term rm :

{b1}x1
+ · · ·+ {bn}xn

+ {cm}d + {a}x + {cm}d + {bn}xn
+ · · ·+ {b1}x1

We take X to be the set {rm | 1≤ m ≤ ℓ}∪ {{ f }x f e}∪ {{cm}d | 1≤ m ≤ ℓ}∪Γ∪{e}.
We again claim that (s , xs)⇒P (f , x f) iff X ⊢ {s}xs e . In this section, we just present an outline of

the proof, highlighting the significant differences from the earlier lower bound proof.
e most important point to note is that our normalization rules prohibit the conclusion of a

blindpair rule appearing as a major premise or a minor premise of a blindsplit rule. So in any normal
proof π of X ⊢ {a}xe for a configuration (a, x), all branches consist of a sequence of blindsplit rules (near
the root) followed by a sequence of encrypt rules (near the leaves).

For any term t whose normal form is t1+ . . .+ tn], we define comps(t) to be the set {t1, . . . , tn}. If
t ∈ st(X) such that {cm}d ∈ st(t), then residues(t) is defined by the following:

residues(rm) = ;
if t ̸= rm , then residues(t) = residues(t + t ′) ∪ {t ′}, where t ′ is the unique term not headed by +
such that t + t ′ ∈ st(rm).

▶ Lemma . Let π be a normal proof of X ⊢ {a}xe . Let δ be a subproof of π with conclusion {p}we for
p ∈ st(X), and let m ≤ ℓ. en:
. if {p}we is headed with a + and {cm}d ̸∈ st(p), then X ⊢ {r }we is the conclusion of some subproof of
δ, for every {r }we ∈ comps({p}we).

. if {p}we is headed with a + and {cm}d ∈ st(p), then X ⊢ {r }we is the conclusion of some subproof of
δ, for every r ∈ residues(p).

Proof. . Suppose {p}we is headed with a + and {cm}d ̸∈ st(p). en δ has to end with a blindsplit
rule. Let {p ′}w ′e and {p ′′}w ′′e be the major and minor premises, respectively. If {cm}d ̸∈ st({p ′}w ′e)
then by induction hypothesis, all the components of {p ′}w ′e , and hence all components of {p}we
occur earlier in the proof.
If on the other hand {cm}d ∈ st({p ′}w ′e), then {cm}d ∈ st({p ′′}w ′′e as well, and by induction hypo-
thesis {r }w ′′e occurs earlier in the proof for every residue r of p ′′. But it can be argued that w = w ′′
and that comps(p)⊆ residues(p ′′). us all components of {p}we occur earlier in the proof.

. Suppose {p}we is headed with a + and {cm}d ∈ st({p}we). If δ ends with an encrypt rule, then it
can be seen that p ∈X and that residues(p) = ;. So the statement of the lemma is vacuously true.
Otherwise δ ends with a blindsplit rule. Let {p ′}w ′e and {p ′′}w ′′e be the major and minor premises,
respectively. en {cm}d ∈ st({p ′}w ′e) and so by induction hypothesis, {r }w ′e occurs earlier in the
proof for every r ∈ residues(p ′). It can be seen that w = w ′, so the statement of the lemma holds for
some of the residues of p.
Now if {cm}d ∈ st({p ′′}w ′′e , then by inspecting the structure of X , one can prove that all residues
of p are also residues of p ′′ and that w ′′ = w. So the desired conclusion follows by induction
hypothesis. Otherwise {cm}d is not in st({p ′′}w ′′e) and thus by induction hypothesis, all components
of {p ′′}w ′′e occur earlier in the proof. It can again be shown that w ′′ = w. Now observe that
residues(p)⊆ residues(p ′)∪ comps(p ′′) and the desired conclusion follows.

◀
▶ Lemma . If there is a normal proof π of X ⊢ {a}xe , then either (a, x) = (f , x f) or there is a rule of
P , (a, y) ,→{(b1, y1), . . . , (bn , yn)}, and z ∈ Γ∗ such that x = y z , and for each j ≤ n, a subproof π j of
π with conclusion X ⊢ {b j }y j ze .

Proof. Letπ be a normal proof of X ⊢ {a}xe and suppose that (a, x) ̸= (f , x f). en it is clear that for all
prefixes y of xe , {a}y ̸∈X . It is clear that the last rule is an application of blindsplit, with major premise

 Dolev-Yao theory with distributive encryption

t and minor premise t ′. Now t is a headed with a+, and t = {p}ze for p ∈ st(X). If {cm}d ̸∈ st(t), then
by the previous lemma, all components of t , including {a}xe occur earlier in the proof, contradicting
minimality of π. Hence {cm}d ∈ st(t) and it can also be seen that x = z . Hence {r }xe occurs earlier in
the proof for all residues r of t .

Now it can be seen that it is not the case that t ′ is headed with a +. For in that case, either {cm}d ∈
st(t ′) and we can see that t ′ = {p ′}xe for some p ′ ∈ st(X), and that the a ∈ residues(p ′). By the previous
lemma, {a}xe occurs earlier in the proof, contradicting minimality. Or {cm}d ̸∈ st(t ′) and we can see
that {a}xe ∈ comps(t ′), and from the previous lemma it would follow that {a}xe occurs earlier in the
proof, again contradicting minimality.

It follows that t is either of the form {a}xe + {cm}d ze or of the form {cm}d ze + {a}xe , and that t ′ =
{cm}d ze , for some z . But now notice that an appropriate encryption of every term in the RHS of the mth

rule is a residue of t and hence occurs earlier in the proof. So it follows that to see that (a, y) is the LHS
of the mth rule, where x = y z . And the previous lemma ensures that for each j ≤ n, there is a subproof
π j of π with conclusion X ⊢ {b j }y j ze , where the mth rule is (a, y) ,→{(b1, y1), . . . , (bn , yn)}. ◀

H Extension to constructed keys

We now consider an extension where we consider constructed keys. We allow terms of the form {t}u
now, where u is any term. We also define inv(t) to be t itself for t ̸∈K .

e strategy for the upper bound is as before. We apply the same normalization rules as before. We
then prove the weak locality property for normal proofs. With this achieved, the only change in the
automaton construction is to treat all of st(X0∪{t0}) as the possible set of keys K0. e rest of the proofs
go through almost verbatim. But the most nontrivial work is in proving weak locality. e proof is
elaborated in the rest of this section.

e set of keys of a term t , keys(t), is defined recursively as follows:
keys(m) = ; if m ∈N

keys((t , t ′)) = keys(t)∪ keys(t ′)
keys([t , t ′]) = keys(t)∪ keys(t ′), if [t , t ′] is not of the form {r }u↓
keys({r }u) = keys(r)∪ keys(u)∪{u}.

kst(t) = st(keys(t)).
Let us make the following observations about keys and kst.

▶ Lemma . . If t ∈ st(t ′), then kst(t)⊆ kst(t ′).
. If [r, s] is of the form {p}x for some p ∈ st(X) and some sequence of terms x, then kst([r, s]) ⊆
(kst(r)∩ kst(s))∪ st(X).

▶ Lemma. Let π be a normal proof of t from X , and let δ be a subproof of π with root labelled r . en
the following hold:
. If δ is not a purely synthetic proof, for every u occurring in δ, either u ∈ kst(r) or there is p ∈ st(X) and

x ∈ (st(X)∪ kst(r))∗ such that u = {p}x↓.
. If δ is a purely synthetic proof, for every u occurring in δ, either u ∈ st(r) or there is p ∈ st(X) and

x ∈ (st(X)∪ kst(r))∗ such that u = {p}x↓.
. If the last rule of δ is decrypt or split with major premise r1, then r1 ∈ st(X).
Proof. We do an induction on the structure of proofs. We assume the claim for every proper subproof
δ ′ of δ, and prove it for δ itself.

Suppose δ is of the following form:

Ax
r

en r ∈X ⊆ st(X), and we are done.

A Baskar, R Ramanujam, and S P Suresh 

Suppose δ is the following form (and r = (r ′, r ′′)):

··· δ ′
r ′

··· δ ′′
r ′′

pair
r

In this case, δ is a purely synthetic proof, and we aim to prove that for every u occurring in δ, either
u ∈ st(r) or there is p ∈ st(X) and x ∈ (st(X)∪kst(r))∗ such that u = {p}x↓. But any such u either
occurs in δ ′ or δ ′′ or is the same as r . In the first case, by induction hypothesis, u ∈ st(r ′) or there
exists p ∈ st(X) and x ∈ (st(X)∪ kst(r ′))∗ such that u = {p}x↓. But since r ′ ∈ st(r), the desired
conclusion follows. We argue similarly in the second case. Finally r ∈ st(r), and so we are done in
the third case as well.
Suppose δ is of the following form:

··· δ ′
(r, r ′)

split
r

We have to consider the following cases:
. Suppose δ ′ is not a purely synthetic proof and for every u occurring in δ ′, either u ∈ kst((r, r ′))

or there is a p ′ ∈ st(X) and x ′ ∈ (st(X)∪ kst((r, r ′)))∗ such that u = {p ′}x ′↓. In particular, there
is a p ∈ st(X) and x ∈ (st(X))∗ such that (r, r ′) = {p}x↓ (since (r, r ′) ̸∈ kst((r, r ′))). But this
means that x = ϵ and (r, r ′) = p ∈ st(X). So r ∈ st(X) as well. us we have proved that for
every u occurring in δ, there is a p ∈ st(X) and x ∈ (st(X))∗ such that u = {p}x↓. We have also
proved that the major premise of the last rule is in st(X).

. Suppose δ ′ is a purely synthetic proof. But then δ ′ has to end in an application of the pair rule,
and therefore one of the premises of the last rule of δ ′ has to be r , and this contradicts minimality
of δ. So this case is not possible.

Suppose δ is the following form (and r = [r ′, r ′′]):

··· δ ′
r ′

··· δ ′′
r ′′

blindpair
r

In this case, δ is a purely synthetic proof, and we aim to prove that for every u occurring in δ, either
u ∈ st(r) or there is p ∈ st(X) and x ∈ (st(X)∪kst(r))∗ such that u = {p}x↓. But any such u either
occurs in δ ′ or δ ′′ or is the same as r . In the first case, by induction hypothesis, u ∈ st(r ′) or there
exists p ∈ st(X) and x ∈ (st(X)∪ kst(r ′))∗ such that u = {p}x↓. But since r ′ ∈ st(r), the desired
conclusion follows. We argue similarly in the second case. Finally r ∈ st(r), and so we are done in
the third case as well.
Suppose δ is of the following form:

··· δ ′
[r, s]

··· δ ′′s
blindsplit1r

We have to consider the following cases:
. Suppose δ ′ is not a purely synthetic proof and for every u occurring in δ ′, either u ∈ kst([r, s])

or there is a p ′ ∈ st(X) and x ′ ∈ (st(X)∪ kst([r, s]))∗ such that u = {p ′}x ′↓. Since kst([r, s])⊆
kst(r) ∪ st(X), the desired conclusion follows for u occurring in δ ′. In particular, there is a

 Dolev-Yao theory with distributive encryption

p ∈ st(X) and x ∈ (st(X)∪ kst(r))∗ such that [r, s] = {p}x↓ (∵ [r, s] ̸∈ st(kst([r, s]))). e
same holds for r and s as well.
Turning our attention to u occurring in δ ′′, either u ∈ st(s) or there is v ∈ st(X) and y ∈
(st(X)∪ kst(s))∗ ⊆ (st(X)∪ kst([t , s]))∗ ⊆ (st(X)∪ kst(r))∗ such that u = {v}y↓. But observe
that kst(s)⊆ kst([r, s])st(X)∪kst(r). erefore for all u occurring in δ ′′, there is v ′ ∈ st(X) and
z ∈ (st(X)∪ kst(r))∗ such that u = {v ′}z .
us we have proved that for every u occurring in δ, there is a p ∈ st(X) and x such that
u = {p}x↓.

. Suppose δ ′ is a purely synthetic proof. But then δ ′ does not end with an instance of the encrypt
rule, and hence ends with an instance of the blindpair rule. But that contradicts the minimality
of δ, as we can see by reasoning similar to the case when δ ends with a split. So this case is not
possible.

Suppose δ is of the following form (and r = {r ′}h↓):
··· δ ′
r ′

··· δ ′′
h

encrypt
r

We have to consider the following cases:
. Suppose r is not a blind pair, and hence δ is a purely synthetic proof. en we aim to prove that

for every u occurring in δ, either u ∈ st(r) or there is p ∈ st(X) and x ∈ (st(X)∪ kst(r))∗ such
that u = {p}x↓. But any such u either occurs in δ ′ or occurs in δ ′′ or is the same as r . In the first
case, by induction hypothesis, either u ∈ st(r ′) or there exists p ∈ st(X) and x ∈ (st(X)∪kst(r ′))∗
such that u = {p}x↓. But since r ′ ∈ st(r), the desired conclusion follows. We argue similarly in
the second case, when u occurs in δ ′′ (using the fact that h ∈ st(r)). Finally r ∈ st(r), and so we
are done in the third case as well.

. Suppose r is a blind pair, and hence δ is not a purely synthetic proof. We aim to prove that for
every u occurring in δ, either u ∈ kst(r) or there is p ∈ st(X) and x ∈ (st(X)∪kst(r))∗ such that
u = {p}x↓. We consider the following subcases:
a. Suppose δ ′ is not a purely synthetic proof and for every u occurring in δ ′ either u ∈ kst(r ′)⊆

kst(r) or there is a p ′ ∈ st(X) and x ′ ∈ (st(X)∪ kst(r ′))∗ ⊆ (st(X)∪ kst(r))∗ such that u =
{p ′}x ′↓. In particular, there is a p ∈ st(X) and x ∈ (st(X)∪ kst(r))∗ such that r ′ = {p}x ↓
(since r ′ ̸∈ kst(r ′)). But this means that r = {p}x h ↓, and hence of the desired form. If u
occurs in δ ′′, then either u ∈ st(h)⊆ kst(r) or there is a q ∈ st(X) and y ∈ (st(X)∪kst(h))∗ ⊆
(st(X)∪ kst(r))∗ such that u = {q}y↓us we have proved that for every u occurring in δ,
either u ∈ kst(r) or there is a p ∈ st(X) and x ∈ (st(X)∪ kst(r))∗ such that u = {p}x↓.

b. Suppose δ ′ is a purely synthetic proof. We note that r ′ is a blind pair, and hence the last rule
of δ ′ is not encrypt (since δ ′ is purely synthetic). e only other possibility is that the last rule
of δ ′ is blindpair, but that would violate the normality of δ, as one of the transformations
specified by the first row of Figure  would apply to δ. So this case is not possible.

Suppose δ is of the following form:

··· δ ′{r }h
··· δ ′′

inv(h)
decrypt

r

We first note that either inv(h) is an atomic key and hence δ ′′ ends with the analz rule. In this case,
for every u occurring in δ ′′, there exists p ∈ st(X) and x ∈ (st(X))∗ such that u = {p}x ↓ (since
kst(h) = ;). On the other hand, inv(h) = h is a constructed key, and for every u occurring in δ ′′,

A Baskar, R Ramanujam, and S P Suresh 

either u ∈ st(h)⊆ kst({r }h) or there exists p ∈ st(X) and x ∈ (st(X)∪kst(h))∗ ⊆ (st(X)∪kst({r }h))∗
such that u = {p}x↓.
We now consider δ ′. It cannot end in a blindpair rule, since one of the rules specified by the second
row of Figure  would apply to δ, thereby contradicting normality of δ. Nor can δ ′ end in an
encrypt rule, since then the major premise of the last rule of δ ′ would be r , and this contradicts the
minimality of δ. e only possibilities therefore are that δ ′ ends in an application of split or decrypt
or blindsplit. In the first two cases, we know by induction hypothesis that the major premise r1 of
the last rule of δ ′ is in st(X). Hence {r }h , as well as r , are in st(X) as well. In the third case, for
every u occurring in δ ′, either u ∈ kst({r }h) or there exists p ∈ st(X) and x ∈ (st(X)∪ kst({r }h))∗
such that u = {p}x↓.
We now consider the third case again, when the last rule of δ ′ is blindsplit1. Let r1 be the major
premise of this rule, and r2 the minor premise. Now it cannot be the case that r1 is of the form
[{r }h ,{r ′}h]. For, in that case r2 would have been {r ′}h , and one of the normalization rules specified
by the second row of Figure  would have applied to δ, and this contradicts its normality.
We also know from the induction hypothesis (applied to δ ′) that there is a p ∈ st(X) and x ∈
(st(X)∪kst({r }h)∗ such that r1 = {p}x (since r1 ̸∈ kst({r }h)). But since r1 is of the form [{r }h , r2],
where r2 is not of the form {r ′}h for any r ′, we conclude that x = ϵ and r1 = p ∈ st(X). It follows
that r ∈ st(X) as well.

◀
▶ Theorem . For the system with constructed keys, the problem of checking whether X ⊢ t is solvable in
time O(2n), where n is the sum of the sizes of terms in X and t .

	Introduction
	Extension of the Dolev-Yao model with blind pairs
	Normal proofs
	The automaton construction
	A DEXPTIME lower bound for the derivability problem
	Discussion
	Lower bound example
	Normalization proofs
	Examples of the automaton construction
	Proofs for the automaton construction
	The lower bound proofs
	Blind pair as an associative operator: upper bound
	Blind pair as an associative operator: lower bound
	Extension to constructed keys

