
Tagging Makes Secrecy Decidable With

Unbounded Nonces As Well ⋆

R. Ramanujam and S. P. Suresh

The Institute of Mathematical Sciences
C.I.T. Campus, Chennai 600 113, India.
E-mail: {jam,spsuresh}@imsc.res.in

Abstract. Tagging schemes have been used in security protocols to
ensure that the analysis of such protocols can work with messages of
bounded length. When the set of nonces is bounded, this leads to decid-
ability of secrecy. In this paper, we show that tagging schemes can be
used to obtain decidability of secrecy even in the presence of unbound-
edly many nonces.

1 Background

Security protocols are specifications of communication patterns which are in-
tended to let agents share secrets over a public network. They are required
to perform correctly even in the presence of malicious intruders who listen to
the message exchanges that happen over the network and also manipulate the
system (by blocking or forging messages, for instance). An obvious correctness
requirement is that of secrecy: an intruder cannot read the contents of a message
intended for others.

The presence of intruders necessitates the use of encrypted communication.
It has been widely acknowledged that even if perfect cryptographic tools are
used, desired security goals may not be met, due to logical flaws in the design of
protocols. Thus automatic verification of security protocols is an important and
worthwhile enterprise. This is complicated by the fact that security protocols
are in general infinite state systems. As such, it is to be expected that it is
not possible to verify even simple properties like secrecy of such systems. It
has been formally proved in ([7], [9], [1]) that in fact, the secrecy problem is
undecidable. The prominent sources of undecidability are unbounded message

length and unbounded number of nonces.
The undecidability results seem to be at variance with the high degree of

success achieved in verifying not just secrecy but also other more complicated
properties of security protocols in practice. Hence there have been many attempts
to prove decidability by imposing reasonable restrictions on the model. [7] shows
that when both message length and the number of nonces is bounded, the secrecy
problem is DEXPTIME-complete. [11] and [16] essentially place bounds on the

⋆ We thank the anonymous referees for detailed comments, which have helped to
improve the presentation greatly, both in terms of the modelling and the proofs.

number of sessions that can occur in any run of the protocol, thereby obtaining
decidability. [10] proves decidability for a syntactic subclass and our work is
closest in spirit to this work.

In earlier work, we separately studied the secrecy problem in the setting of
bounded-length messages ([13]) and in the setting of boundedly many nonces
([14]), showing decidability fo subclasses of protocols in both cases. In this pa-
per, we prove decidability for the subclass of tagged protocols without assuming
any external bounds. The tagging scheme ensures primarily that no two en-
crypted subterms of distinct communications in the protocol specification are
unifiable. Similar schemes have been used in [2] to prove the termination of their
verification algorithm, and in [8] to prevent type-flaw attacks.

Our decidability proof works by first tackling the problem of unbounded
message length and then the problem of unboundedly many nonces. Message
length can get unbounded when the intruder substitutes nonatomic terms for
atomic terms. We show that our tagging scheme ensures that the honest agents
do not make a criticial use of such terms for learning new information, and thus
it suffices for verification of secrecy to consider only well-typed runs where nonces
are instantiated only with atomic data. We next show that whenever a run of
a tagged protocol has a send action a such that none of the succeeding receive
actions has encrypted terms in common with a, then we can eliminate a from
the run and perform a systematic renaming of the nonces to arrive at a run of
shorter length which is leaky iff the original run is. We also prove that repeating
this process yields us a run of bounded length, and show that it suffices for
decidability. A proof outline is provided in Section 3, the details of which can be
found in [15].

The technique used here should be contrasted with approaches which impose
restrictions on the use of the tupling operator ([1], [6]), or use more stringent
admissibility criteria like [4] which uses techniques from tree automata theory to
show decidability for the class of protocols in which every agent copies at most
one piece of any message it receives into any message it sends, or approaches
like [3], where an abstraction of nonces is used to prove the termination of a
verification algorithm for a large class of protocols. Apart from decidability, the
model presented here has other interesting features like send-admissibility, which
formalises a notion of reasonableness for protocols, and synth and analz proofs,
which formalise how messages are generated and received terms are analyzed.

2 Security Protocol Modelling

In this section we briefly present our model of security protocols. Our modelling
is close to the inductive approach of [12] in many respects. A more detailed
presentation can be found in [15].

Actions

We assume a finite set of agents Ag with a special intruder I ∈ Ag. The set of
honest agents, denoted Ho, is defined to be Ag \ {I}. We assume an infinite set

of nonces N . The set of keys K is given by K0 ∪ K1 where K0 is an infinite set
and K1 = {kAB , privkA, pubkA | A, B ∈ Ag, A 6= B}. pubkA is A’s public key
and privkA is its private key. kAB is the (long-term) shared key of A and B.

For each A ∈ Ag, KA
def
= {kAB , kBA, pubkA, privkA, pubkB | B ∈ Ag, B 6= A}.

For k ∈ K, k, the inverse key of k, is defined as follows: pubkA = privkA and
privkA = pubkA for all A ∈ Ag, and k = k for all the other keys. The set of basic
terms T0 is defined to be K ∪ N ∪ Ag.

The set of information terms is defined to be

T ::= m | (t1, t2) | {t}k

where m ranges over T0 and k ranges over K.
The notion of subterm of a term is the standard one — ST (m) = {m} for

m ∈ T0; ST ((t1, t2)) = (t1, t2) ∪ ST (t1) ∪ ST (t2); and ST ({t}k) = {{t}k} ∪
ST (t) ∪ ST (k). t′ is an encrypted subterm of t if t′ ∈ ST (t) and t′ is of the form
{t′′}k. EST (t) denotes the set of encrypted subterms of t.

An action is either a send action of the form A!B: (M)t or a receive action of
the form A?B:t where: A ∈ Ho, B ∈ Ag and A 6= B; t ∈ T ; and M ⊆ ST (t)∩N .
In a send action of the form A!B: (M)t, M is the set of nonces freshly generated
by A just before sending t. For simplicity of notation, we write A!B:t instead of
A!B: (∅) t. The set of all actions is denoted by Ac.

Note that we do not have explicit intruder actions in the model. As will be
clear from the definition of updates caused by actions, every send action is im-
plicitly considered to be an instantaneous receive by the intruder, and similarly,
every receive action is considered to be an instantaneous send by the intruder.
Thus the agent B is (merely) the intended receiver in A!B: (M)t and the purported

sender in A?B:t.
For a of the form A!B: (M)t, term(a)

def
= t and NT (a)

def
= M . For a of

the form A?B:t, term(a)
def
= t and NT (a)

def
= ∅. NT (a) stands for new terms

generated during action a. The notation is appropriately extended so that we can
talk of terms(η) and NT (η) for η ∈ Ac∗. ST (a) and EST (a) have the obvious
meanings, ST (term(a)) and EST (term(a)) respectively. η↾A, A’s view of η, is
the subsequence of η obtained by projecting it down to the set of A-actions.

Protocols

Definition 2.1 An information state s is a tuple (sA)A∈Ag where sA ⊆ T for
each agent A. S denotes the set of all information states. For a state s, we define

ST (s) to be
⋃

A∈Ag

ST (sA).

Definition 2.2 A protocol is a pair Pr = (C, η) where C, the set of constants
of Pr, denoted CT(Pr), is a subset of T0, and η ∈ Ac+ is the body of Pr.

Given a protocol Pr = (C, η), Roles(Pr), the set of roles of Pr, is defined to
be the set {η↾A | A ∈ Ag and η↾A 6= ε}.

In the literature, protocols are informally specified as a sequence of commu-
nications of the form A→B :t. Such protocols can be presented in the above

formalism by splitting each communication into a send action and a matching
receive action. Protocols which are presented as a finite set of roles can also be
presented in the above formalism.

Definition 2.3 Given a protocol Pr, we define the initial state of Pr, denoted
s0(Pr), to be (TA)A∈Ag where for all A ∈ Ho, TA = CT(Pr) ∪ KA and TI =
CT(Pr) ∪KI ∪ {z}, where z is a fixed nonce which is assumed to be different from

all the nonces in CT(Pr).

As we have mentioned earlier, we do not explicitly model intruder actions.
Thus we do not explicitly model the phenomenon of the intruder generating new
nonces in the course of a run, as is done in some other models (for instance,
[7]). An alternative would be to provide an arbitrary set of nonces and keys to
the intruder in the initial state. We follow the approach of just providing the
intruder with the fixed nonce z in the initial state. It is a symbolic name for the
set of new data the intruder might generate in the course of a run. This suffices
for the analysis we perform in our proofs later. We will ensure as we develop the
model that z is not generated as a fresh nonce by any honest agent in the course
of a run of Pr.

A substitution σ is a map which maps nonces to arbitrary terms, keys to
keys and agent names to agent names. Substitutions are extended to terms,
actions, and sequences of actions in a straightforward manner. A substitution σ

is said to be well-typed iff for n ∈ N , σ(n) ∈ N . A substitution σ is said to be
suitable for an action a iff it maps each distinct nonce (or key) in NT (a) to a
distinct nonce (or key, as the case may be), and has disjoint ranges for NT (a)
and ST (a) \NT (a). σ is suitable for a1 · · · aℓ iff for all i ≤ ℓ, σ is suitable for ai.
σ is said to be suitable for a protocol Pr if σ(t) = t for all constants t ∈ CT(Pr).

Given a protocol Pr, a triple (η, σ, lp) is an event of Pr iff η ∈ Roles(Pr), σ is
a substitution suitable for Pr and η, and 1 ≤ lp ≤ |η|. Events(Pr) is the set of all
events of Pr. An event (η, σ, lp) of Pr is said to be well-typed iff σ is well-typed.

For an event e = (η, σ, lp) of Pr with η = a1 · · · aℓ, act(e)
def
= σ(alp). If lp < |η|

then (η, σ, lp) →ℓ (η, σ, lp + 1). For two events e and e′ of Pr, e′ ∈ LP(e), the

local past of e, iff e′
+
→ℓe. For any event e of Pr, NT (e) will be used to denote

NT (act(e)) and similarly for term(e), ST (e), EST (e), etc.

Runs Of Protocols

Definition 2.4 A sequent is of the form T ⊢ t where T ⊆ T and t ∈ T .
An analz-proof (synth-proof) π of T ⊢ t is an inverted tree whose nodes

are labelled by sequents and connected by one of the analz-rules (synth-rules) in
Figure 1, whose root is labelled T ⊢ t, and whose leaves are labelled by instances
of the Axa rule (Axs rule). For a set of terms T , analz(T) (synth(T)) is the set
of terms t such that there is an analz-proof (synth-proof) of T ⊢ t.

For ease of notation, synth(analz(T)) is denoted by T .

Definition 2.5 The notions of an action enabled at a state and update of a
state on an action are defined as follows:

Axa

T ∪ {t} ⊢ t

T ⊢ (t1, t2)
split

i

T ⊢ ti

T ⊢ {t}k T ⊢ k
decrypt

T ⊢ t

T ⊢ {{t}k}k

reduce
T ⊢ t

analz-rules

Axs

T ∪ {t} ⊢ t

T ⊢ t1 T ⊢ t2
pair

T ⊢ (t1, t2)

T ⊢ t T ⊢ k encrypt
T ⊢ {t}k

synth-rules

Fig. 1. analz and synth rules.

– A!B: (M)t is enabled at s iff t ∈ sA ∪ M , and M ∩ ST (s) = ∅.
– A?B:t is enabled at s iff t ∈ sI .

– update(s, A!B: (M)t)
def
= s′ where s′A = sA ∪M ∪{t}, s′I = sI ∪{t}, and for

all C ∈ Ag \ {A, I}, s′C = sC .

– update(s, A?B:t)
def
= s′ where s′A = sA ∪ {t} and for all C ∈ Ag \ {A},

s′C = sC.

update(s, ε) = s, update(s, η · a) = update(update(s, η), a).

Given a protocol Pr, and a sequence ξ = e1 · · · ek of events of Pr, infstate(ξ) is
defined to be update(s0(Pr), act(e1) · · · act(ek)). We say that an event e of Pr is
enabled at ξ iff LP(e) ⊆ {e1, · · · , ek} and e is enabled at infstate(ξ).

Definition 2.6 Given a protocol Pr, the set of runs of Pr, denoted by R(Pr),
is defined to be the set of all sequences e1 · · · ek of events of Pr such that for all
i : 1 ≤ i ≤ k, ei is enabled at e1 · · · ei−1. A run is said to be well-typed iff every
event occurring in it is well-typed.

Well-formed Protocols

(A!B: (M)t, C?D:t′) is said to be a matching send-receive pair iff A = D, B = C,
and t = t′. Note that we require syntactic equality of the terms t and t′ rather
than just unifiability.

Given a protocol Pr, a sequence of actions η = a1 · · ·aℓ is said to be send-
admissible with respect to Pr iff for all i ≤ ℓ, if ai is a send action then ai is
enabled at update(s0(Pr), a1 · · · ai−1).

Definition 2.7 A well-formed protocol is a protocol Pr = (C, a1b1 · · · aℓbℓ) where
(ai, bi) is a matching send-receive pair for all i : 1 ≤ i ≤ ℓ and η is send-
admissible with respect to Pr.

Well-formed protocols formalise a notion of “reasonableness” of protocol
specifications. Almost all the standard protocols studied in the literature are
well-formed. The following useful fact follows easily from the definition of well-
formed protocols and from some basic properties of the synth and analz operators.

Proposition 2.8 Suppose that Pr = (C, η) is a well-formed protocol. Then for
all roles ζ of Pr and σ suitable for ζ and Pr, ζ and σ(ζ) are send-admissible with
respect to Pr.

Tagged Protocols

While well-formed protocols enforce a reasonableness condition at the level of
protocol specifications, we must note that they still allow for quite unreasonable
behaviours. Substituting encrypted terms for nonces can give the intruder the
ability to circumvent the protocol. For instance, a communication of the form
A→B :{(A, {x}B)}B in the protocol allows the intruder to capture it and send
it on to B as: I→B :{(I, {{(A, {x}B)}B}B)}B. This goes against the reasonable
requirement that B expects only terms of encryption depth 2 whereas here B gets
a term of depth 3. We thus look for mechanisms that enforce only “reasonable
runs”. Tagging is one such mechanism that seeks to distinguish between terms
of different encryption depth as above. More specifically, tags are just constants
which act as message identifiers and are attached to some of the encrypted
subterms of messages which are communicated during a run. The use of tags has
the effect of preventing the intruder from passing off a term σ({t}k) as σ′({t′}k′)
in some run of a protocol while {t}k and {t′}k′ are intended to be distinct terms
in the protocol specification. We also use tagging to associate every receive action
occurring in a run with its corresponding send (if there exists one).

Definition 2.9 A well-formed protocol Pr = (C, η) with η = a1b1 · · · aℓbℓ is
called a tagged protocol iff: for all t ∈ EST (η) there exists ct ∈ C, and for all
i ≤ ℓ there exists ni ∈ NT (ai) such that:

– for all i, j ≤ ℓ, t ∈ EST (ai), and t′ ∈ EST (aj) : if ct = ct′ then t = t′ and
i = j, and

– for all i ≤ ℓ and all t ∈ EST (ai), t = {(ct, (ni, u))}k for some u and k.

Most of the standard protocols occurring in the literature (see [5] for example)
can be easily tagged to obtain “equivalent protocols”, such that for any run ξ

of the original protocol which involves only honest agents, the tagged version
of ξ is a run of the transformed protocol, and for all runs ξ of the transformed
protocol, the untagged version of ξ is a run of the original protocol. (Thus the
transformation does not limit the honest agents’ capabilities while at the same
time not introducing more attacks). The protocols for which this transformation
cannot be effected are those which contain “blind copies” like the Woo-Lam
protocol Π (as presented in [5]). It is to be noted that the schemes presented
in [8] and [2] — with reference to Definition 2.9, these are equivalent to using
just the ct tags to distinguish between distinct terms in EST (η) — work even
for protocols with “blind copies”, in fact those schemes work for all well-formed

protocols. An important point worth noting here is that including the tags in
the protocol specification stage rather than later, in the run generation stage,
means that the reasonableness of runs is enforced by checks performed by the
honest participants of the protocol.

Tagging each send action with a new nonce might seem a costly operation,
since it is nontrivial to keep generating many distinct, unguessable random num-
bers. But the proofs (in particular, the proof of item 2 of Proposition 2.10, which
is the only place where this property of tagged protocols is used) only require the
fact that the ni’s are instantiated with distinct values for distinct substitutions,
and not the fact that they are unguessable values. Thus the ni’s are playing the
role of sequence numbers, and are as such easy to implement.

The following property, useful for proofs later, can be easily seen to be a
direct consequence of the definition of tagged protocols.

Proposition 2.10 Suppose Pr = (C, a1b1 · · · aℓbℓ) is a tagged protocol. Then the
following statements hold:

– For all σ, σ′ suitable for Pr and for all i, j ≤ ℓ, t ∈ EST (ai), t′ ∈ EST (aj),
if σ(t) = σ′(t′) then t = t′ and i = j.

– Suppose e1 · · · ek is a well-typed run of Pr. For all receive events ej(j ≤ k),
there is at most one send event ei such that EST (ei) ∩ EST (ej) 6= ∅.

The Secrecy Problem

Definition 2.11 A basic term m ∈ T0 is said to be secret at state s iff there
exists A ∈ Ho such that m ∈ analz(sA) \ analz(sI). Given a protocol Pr and
ξ ∈ R(Pr), m is said to be secret at ξ if it is secret at infstate(ξ). ξ is leaky iff
there exists a basic term m and a prefix ξ′ of ξ such that m is secret at ξ′ and
not secret at ξ. The secrecy problem is the problem of determining for a given
protocol Pr whether some run of Pr is leaky.

Thus we say that a run is leaky if some atomic term is secret at some inter-
mediate state of the run but is revealed to the intruder at the end of the run.
It is possible that there are protocols for which leaks of the above form do not
constitute a breach of security. A more general notion would be to allow the
user to specify certain secrets which should not be leaked and check for such
leaks. We believe that the techniques we use here can be adapted to prove the
decidability of the more general problem as well.

While the general secrecy problem has been proved to be undecidable in
various settings ([7], [9]), the main result of this paper is the following decidability
result.

Theorem 2.12 The secrecy problem for tagged protocols is decidable.

The theorem follows from a series of observations, which will be proved in the
next section.

1. If a tagged protocol has a leaky run, then it has a well-typed leaky run.

2. If a tagged protocol has a well-typed leaky run, then it has a good well-typed
leaky run.

3. All good well-typed runs are of bounded length.

Properties Of synth And analz

We now state some basic properties of the synth and analz operators. The proofs
are by a routine induction on proof trees.

Proposition 2.13 Let T, T ′ ⊆ T and σ be a substitution. Then the following
properties hold:

T ⊆ analz(T) and T ⊆ synth(T).
if T ⊆ T ′ then analz(T) ⊆ analz(T ′) and synth(T) ⊆ synth(T ′).
analz(analz(T)) = analz(T) and synth(synth(T)) = synth(T).

T = analz(T) = T .
σ(analz(T)) ⊆ analz(σ(T)) and σ(synth(T)) ⊆ synth(σ(T)).

Definition 2.14 t is a minimal term of T if t ∈ T and t 6∈ synth(T \ {t}).
min(T) denotes the set of minimal terms of T .

Suppose t is not a minimal term of T . Then from the definition it follows that
synth(T) = synth(T \ {t}). Since T is generally used as a representative for
synth(T), if T contains a nonminimal term then there is a smaller representa-
tive for synth(T). Thus nonminimal terms can be viewed as redundant in such
situations.

Proposition 2.15 For any set of terms T , T ⊆ synth(min(T)), synth(T) =
synth(min(T)) and T = synth(min(analz(T))).

3 Decidability

Reduction to well-typed runs: We outline the proof of Theorem 2.12. The
first step is to prove that for all runs of a tagged protocol there is an equivalent
well-typed run which preserves leakiness. Towards this, we define, for any sub-
stitution σ, σz as follows: for all x ∈ T0, (if x ∈ N and σ(x) 6∈ N then σz(x) = z,
otherwise σz(x) = σ(x)). Suppose Pr is a tagged protocol and e1 · · · ek is a run
of Pr where each ei = (ηi, σi, lpi). For every i ≤ k, define e′i = (ηi, (σi)z, lpi).
Note that e′i is well-typed by definition. We prove the reduction to well-typed
runs by showing that e′1 · · · e

′

k is a run of Pr which is leaky iff e1 · · · ek is. It
is easy to see that the above transformation (of replacing the σi’s by (σi)z ’s)
does not affect send-admissibility, and hence all send events e′i are enabled at
e′1 · · · e

′

i−1. For a receive event e′i, we know that ti ∈ Ti−1 (where ti = term(ei)

and Ti−1 = (infstate(e1 · · · ei−1))I). If we show that t′i ∈ T ′

i−1, it would follow
that e′1 · · · e

′

k is a run of Pr, and also that it is leaky iff e1 · · · ek is (since replacing
the σi’s with (σi)z ’s doesn’t affect new terms generated during the actions, and

since the set of basic terms known to the intruder at the corresponding states in
both the runs is the same).

To prove that t′i ∈ T ′

i−1 we show how to transform the proof that ti ∈ Ti−1 =
synth(min(analz(T))). This consists of a synth-proof π of min(analz(Ti−1)) ⊢ ti,
and an analz-proof ̟t of Ti−1 ⊢ t for each t labelling a leaf of π. Note that
every term t occurring in a leaf of π is either a nonce or an encrypted term
(since tuples can be synthesiized from their components and hence are not in
min(analz(Ti−1))). Every u labelling a node of π or one of the ̟t’s is a subterm
of tj for some j ≤ i. Letting ri = ηi(lpi) for each i, we see that ti corresponds to
σi(ri). Suppose we type the root of π with (σi, ri). This will induce a partial typ-
ing of π with types of the form (σi, w) where w ∈ ST (ri). Suppose for all leaves
of π typed (σi, w) where w ∈ EST (ri) it is shown that (σi)z(w) ∈ analz(T ′

i−1).

Then it can be easily shown that t′i = (σi)z(ri) ∈ T ′

i−1. (Some of the non-leaf
nodes of π might be typed (σi, m) for some nonce m. In such cases it should be
noted that (σi)z(m) = z ∈ T0 = T ′

0.)
We now consider encrypted terms t occurring in the leaves of π which have

a type (σi, w) with w ∈ EST (ri). If t = σj(w
′) for some j < i and w′ ∈ EST (rj)

then the tagging scheme (specifically, item 1 of Proposition 2.10) ensures that
w = w′. So if we prove that (σj)z(w

′) ∈ analz(T ′

i−1) for some j ≤ i and some
w′ ∈ ST (rj) such that w′ is an encrypted term when t is, then it would follow

that t′i ∈ T ′

i−1.
Now consider an analz-proof among the ̟t’s. We can define the set of types

for any node of such a proof by letting each leaf labelled by a term u be typed by
{(σj , rj) | j ≤ i and σj(rj) = u}. This induces a set of types for each node. We
say that a type (σ, r) matches a term t iff σ(r) = t and r preserves the outermost
structure of t, in particular r is an encrypted term when t is. ̟t is well-typed
if the above induced typing on ̟t types its root with a type which matches t.
We can prove that for any t ∈ analz(Ti−1) there is a well-typed analz-proof of
Ti−1 ⊢ t. This is proved by induction on i. The main technical issue here is to
handle the case when a non-atomic term u occurs in a node and is typed only
by nonces. By considering various cases we show that u ∈ Ti−2, thus allowing
us to handle this by the induction hypothesis. Once we have proved this, it is
a straightforward induction on proofs to show that (σj)z(r) ∈ analz(T ′

i−1). This
concludes the reduction to well-typed runs.

Reduction to good runs: We now show that for detecting leaks it suffices to
consider runs that satisfy a specific ‘goodness’ condition.

Definition 3.1 Suppose Pr = (C, η) is a tagged protocol and ξ = e1 · · · ek is
a run of Pr. For i, j ≤ k, ej is called a good successor of ei (and ei a good
predecessor of ej) in ξ iff: i < j and either ei →ℓ ej, or EST (ei)∩EST (ej) 6= ∅.

For i ≤ k, ei is called a good event in ξ iff either i = k or there is some
j > i such that ej is a good successor of ei. ei is called a bad event in ξ iff it is
not a good event in ξ. A run ξ is called a good run iff all its events are good. A
subsequence e1 · · · er of ξ is called a good path in ξ iff for all j < r, ej+1 is a
good successor of ej in ξ.

If ej is a good successor of ei then it is possible that ej strongly depends on ei

in the sense that elimination of ei from ξ disables ej . If ei is a bad predecessor
of ej then ei can be eliminated while still enabling some “renamed variant” of
ej .

We now prove that whenever a tagged protocol Pr has a well-typed leaky run,
it has a good well-typed leaky run. Fix a tagged protocol Pr = (C, a1b1 · · ·aℓbℓ)
and a leaky run ξ = e1 · · · ek of Pr such no proper prefix ξ1 of ξ is leaky. If ξ is
a good run, we are done; otherwise, there is a bad event occurring in ξ. Let r

be the index of the latest bad event in ξ. Let T = T0 ∩ (analz(Tr) \ analz(Tr−1))
(where Ti = (infstate(e1 · · · ei))I). Since e1 · · · er is not leaky, there cannot be an
m ∈ T and r′ < r such that m is secret at e1 · · · er′ . Thus T ⊆ NT (er). Let τ be
a substitution which maps every m ∈ T to z and is identity otherwise. For all
ei = (ηi, σi, lpi) let e′i = (ηi, τ ◦ σi, lpi) where (τ ◦ σi)(t) = τ(σi(t)) for all t. We
now show that ξ′ = e′1 · · · e

′

r−1e
′

r+1 · · · e
′

k is a run of Pr, and that it is leaky; but
the index of the latest bad event in it is less than r, and hence we can repeat
the process, eventually obtaining a good run.

We first take up the task of proving that ξ′ is a run of Pr. We first note
that the bad event er is not in the local past of any other event and also the
substitution τ does not affect the new terms generated by events other than
er and hence does not affect send-admissibilty. Thus all the send events of ξ′

are still enabled by the events occurring earlier. It is only the receive events we
have to worry about. Here again if er is a receive event, then it is easy to see
that T = ∅, i.e., nothing new is learnt by the intruder because of er, and hence
enabledness of the other events is not affected even if er is eliminated from ξ.
Thus again ξ′ is a run of Pr. The nontrivial case is when er is a send event and
eq is a receive event for some q > r. In this case we know that tq ∈ Tq−1 (ti
denotes term(ei)). If we show that tq ∈ (Tq−1 ∪ T) \ {tr} we are through, since

τ(T) = {z} ⊆ T0 and hence τ(tq) ∈ τ(Tq−1 \ {tr}).

We first show that for all q : r < q ≤ k and all analz-proofs π whose root
is labelled Tq ⊢ u and such that for all Tq ⊢ t labelling the non-root nodes of
π, t is not secret at e1 · · · eq−1, u ∈ (analz(Tr) ∩ ST (tr)) ∪ analz(T−r

q ∪ T). The
intuition behind the proof is that if the proof has a decrypt node involving the
terms {t}k and k then k itself is not secret at the point when {t}k is revealed
to the intruder, and hence t is known to the intruder at the point when {t}k is
known. Thus depending on whether tr occurs in the leftmost leaf of π or not,
u ∈ analz(Tr) ∩ ST (tr) or u ∈ analz((Tq ∪ T) \ {tr}).

Now suppose q > r and eq is a receive event. We know that tq ∈ Tq−1. In fact
tq ∈ synth(analz(Tq−1)∩ST (tq)). Consider any u ∈ analz(Tq−1)∩ST (tq). For all
analz-proofs π of Tq−1 ⊢ u and for all Tq−1 ⊢ t labelling the non-root nodes of π,
(since ξq−1 is not leaky) t is not secret at ξq−2. Hence we can apply the result of
the previous paragraph to this case and conclude that u ∈ (analz(Tr)∩ST(tr))∪
analz((Tq−1 ∪ T) \ {tr}). If u ∈ analz((Tq−1 ∪ T) \ {tr}) we are done. Otherwise
u ∈ analz(Tr) ∩ ST (tr). If now EST (u) 6= ∅ then since u ∈ ST (tr) ∩ ST (tq) it
would follow that EST (tq) ∩EST (tr) 6= ∅ in contradiction to the fact that eq is
not a good successor of er. Thus EST (u) = ∅ and u is a tuple of atomic terms. In

this case u ∈ synth(analz({u})∩T0). But then analz({u})∩T0 ⊆ analz(Tr)∩T0 ⊆
analz(Tr−1 ∪ T). This implies that u ∈ (Tq−1 ∪ T) \ {tr}. Thus we have proved

that analz(Tq−1) ∩ ST (tq) ⊆ (Tq−1 ∪ T) \ {tr} and hence tq ∈ (Tq−1 ∪ T) \ {tr}.
We are left with proving that ξ′ is leaky. Since ξ is leaky (and e1 · · · ek−1 is

not), we can choose an analz-proof π whose root is labelled Tk ⊢ m for some m

which is secret at e1 · · · ek−1 and such that for all Tk ⊢ t labelling the non-root
nodes of π, t is not secret at e1 · · · ek−1. As observed earlier we can conclude that
m ∈ analz((Tk ∪ T) \ {tr}) ∪ analz(Tr). Now we note that since m is secret at
e1 · · · ek−1, m 6∈ analz(Tr) (and thus m 6∈ T as well). Therefore m ∈ analz((Tk ∪
T)\{tr}). Since m 6∈ T , it follows that τ(m) = m. It can also be shown that m 6∈
NT (er). Thus m is secret at e1 · · · er−1er+1 · · · ek−1 as well. Therefore τ(m) = m

is secret at e′1 · · · e
′

r−1e
′

r+1 · · · e
′

k−1. Since m ∈ analz((Tk ∪ T) \ {tr}) and since
τ(T) = {z} ⊆ T0, it follows that m = τ(m) ∈ analz(τ(Tk \ {tr})). Thus ξ′ is
leaky. This proves the reduction to good runs.

Bounding the length of good runs: We are left with proving that good runs
are of bounded length, and further that it suffices to check a finite set of runs of
Pr for leakiness. Suppose Pr = (C, a1b1 · · · aℓbℓ). Suppose ξ is some run of Pr and
suppose that e1 · · · er is a good path in ξ. The tagging scheme (specifically item
1 of Proposition 2.10) ensures that there exists a sequence i1 < · · · < ir ≤ 2 · ℓ
such that for all j ≤ r, act(ej) is an instance of act ij

(Pr), where the notation
act i(Pr) denotes a(i+1)/2 if i is odd, and denotes bi/2 if i is even. Thus all good
paths in ξ are of length at most 2 · ℓ. From item 2 of Proposition 2.10 (which is

an immediate consequence of our tagging scheme), we see that there are at most
two good predecessors in ξ. Putting these two facts together we can see that
any good run is of length at most 22·ℓ+1 − 1. Now in any run of Pr of length
bounded by B, only a bounded number of new nonces and keys are mentioned
(the bound depending on the specification of Pr and B), apart from CT(Pr),
the different KA’s and z, of course. They can all be uniformly renamed using
terms in a fixed finite set T and thus it suffices to consider runs of Pr which are
of bounded length and which refer to basic terms from T . Since the runs are
well-typed the width of the terms occurring in the runs are also determined by
the specification of Pr. Thus to check if a protocol has a good well-typed leaky
run it suffices to check in a finite set of runs and thus this problem is decidable.

4 Discussion

We have followed a long chain of argument to show that detecting leaks in tagged
protocols amounts to detecting leaks in a bounded set of runs, each of whose
length is bounded. Here we have used a fixed tagging scheme. It is conceiv-
able that many other tagging schemes would serve equally well. This raises the
question of deciding whether a given well-formed protocol is ‘taggable’ or not
(preserving leaks). If the only attacks on the protocol were type flaw attacks,
tagging may be used to eliminate them and hence this question amounts to de-
ciding whether the given protocol has non-type-flaw attacks, assuming that it

has some attacks. This is an interesting issue not answered here. In ongoing work,
we are also looking to extend the techniques used here to prove the decidability
of security properties statable in a simple modal logic formalism.

References

1. Amadio, R.M., Lugiez, D. and Vanackère, V., “On the symbolic reduction of pro-
cesses with cryptographic functions”, INRIA Research Report 4147, March 2001.

2. Blanchet, B. and Podelski, P., “Verification of Cryptographic Protocols: Tagging
Enforces Termination”, In Goedon, A.D. ed. Proc. FoSSaCS’03, LNCS 2620, 2003,
136–152.

3. Comon-Lundh, H. and Cortier, V., “New decidability results for fragments of first-
order logic and applications to cryptographic protocols”, In Nieuwenhuis, R. ed.
Proc. RTA’2003, LNCS 2706, 2003, 148–164.

4. Comon-Lundh, H., Cortier, V. and Mitchell, J.C., “Tree automata with One Mem-
ory, Set Constraints, and Ping-Pong Protocols”, In Proc. ICALP 2001, LNCS 2076,
2001.

5. Clark, J. and Jacob, J., “A survey of authentication protocol literature”, Electronic
version available at http://www.cs.york.ac.uk./∼jac, 1997.

6. Dolev, D., Even, S. and Karp, R.M., “On the Security of Ping-Pong Protocols”,
In Information and Control, 55, 1982, 57–68.

7. Durgin, N.A., Lincoln, P.D., Mitchell, J.C. and Scedrov, A., “The undecidability
of bounded security protocols”, In Proc. FMSP’99, 1999.

8. Heather, J., Lowe, G. and Schneider, S. “How to Prevent Type Flaw Attacks on
Security Protocols”, In Proc. 13th IEEE CSFW, 2000, 255-268.

9. Heintze, N. and Tygar, D., “A model for secure protocols and their composition”,
In IEEE Transactions on Software Engineering, 22, 1996, 16–30.

10. Lowe, G., “Towards a completeness result for model checking of security protocols”,
In Journal of computer security, 7, 1999, 89–146.

11. Millen, J.K. and Shmatikov, V., “Constraint solving for bounded-process crypto-
graphic protocol analysis”, In Proc. ACM Conf. on Computer and Communications

Security, 2001, 166–175.
12. Paulson, L.C., “The inductive approach to verifying cryptographic protocols”, In

Journal of computer security, 6, 1998, 85–128.
13. Ramanujam, R. and Suresh, S.P., “A decidable subclass of unbounded security

protocols”, In Gorrieri, R. ed. Proc. WITS’03, April 2003, 11–20.
14. Ramanujam, R. and Suresh, S.P., “An equivalence on terms for security protocols”,

In Bharadwaj, R. ed. Proc. AVIS’03, April 2003, 45–56.
15. Ramanujam, R. and Suresh, S.P., “Decidability of secrecy for tagged protocols”,

http://www.imsc.res.in/∼jam, September 2003.
16. Rusinowitch, M. and Turuani, M., “Protocol insecurity with finite number of ses-

sions is NP-complete”, In Proc. CSFW 14, 2001, 174–190.

