
Dolev-Yao theories with distributive encryption

A Baskar, R Ramanujam, and S P Suresh

 Chennai Mathematical Institute
Chennai, India
{abaskar,spsuresh}@cmi.ac.in

 The Institute of Mathematical Sciences
Chennai, India
jam@imsc.res.in

Abstract

In the context of modelling cryptographic tools like blind signatures and homomorphic encryption, the
Dolev-Yao model is typically extended with an operator over which encryption is distributive. We con-
sider one such theory which lacks any obvious locality property and show that its derivability problem
is hard: in fact, it is dexptime-complete, and there is an exponential lower bound on the size of deriv-
ations. The lower bound contrasts with ptime decidability for restricted theories of blind signatures,
and the upper bound with non-elementary decidability for abelian group operators with distributive
encryption.

 Introduction

In the use of logic as a tool for analysing security of communication protocols, cryptography is ab-
stracted using a term algebra. In these Dolev-Yao stylemodels [] for cryptographic protocols (the
so-called “symbolic models”) we use a term algebra containing operations like pairing, encryption,
signatures, hash functions, and nonces to build terms that are sent as messages in the protocol.
The adversary against a protocol is modelled as a powerful intruder who can control the entire net-
work, and can encrypt and decrypt at will; however, the cryptographic means used are assumed to
be perfect. Therefore, while the intruder may not have access to actual private keys possessed by
agents, he has access to the structural patterns of terms that may be derived from the ones sent
by the “honest” principals. Since these models are used for algorithmic analysis, the following term
derivability problem is of basic interest: given a finite set of terms X and a term t , is there a way for
the adversary to derive t from X ?

In the basic Dolev-Yao model, the main operators are pairing and encryption, but these two do
not interact with each other, in the sense that the encryption of a paired term is no different from
that of any other term. The critical use of encrypting a pair such as {(t , t ′)}k is to ensure that when
we see a term t later, we can infer that t ′ is also “free”.

TheDolev-Yaomodel abstracts away from the details of the encryption schemes used. However,
the scheme used by principals would be known to the intruder, who can well make use of this
information. In Dolev-Yao theory, the terms {t}k and {t ′}k ′ are assumed to be distinct, unless
t = t ′ and k = k ′. However, this is in general not true of cryptographic schemes such as the RSA.
The algebraic properties of the encryption operator may well dictate the use of an equational theory
to which the intruder has access. In such a context, interaction between encryption and other
operators may be important. The reader is referred to the excellent survey [] for studies of this
kind.

One way of studying such interaction is by considering an extension of the Dolev-Yao term al-
gebra with additional operators that interact in some specific way with encryption. For instance,
[] study an abelian group operator+ such that {t1+ · · ·+ tn}k = {t1}k+ · · ·+{tn}k , i.e. encryption
is homomorphic over+.

 Dolev-Yao theories with distributive encryption

In this paper, we study a tensor operator ⊗ such that {⊗t t ′}k = ⊗{t}k{t ′}k . In other words,
encryption is distributive over ⊗. (For reasons that will become clearer later, we do not assume
commutativity or associativity of ⊗.) Tensor is a constructor, whereby we form ⊗t t ′ from t and
t ′. In the spirit of the operator being seen as a form of multiplication, its inverse is not given by
projection (as in the case of pairing) but by a form of division: we can extract t ′ or t from ⊗t t ′,
provided we have the other of the pair.

For such a theory, we show that the existence of a passive attack (that is, by an attacker who
cannot forge messages) is decidable in exponential time. We also study the proof complexity of
the term derivability problem and use it to show that the decision procedure is indeed optimal.

Is such an extension of the Dolev-Yao model only a mathematical curiosity? In fact, the tensor
operator can be seen to be analogous to the blind pairing constructor finds natural use in the Dolev-
Yao modelling of electronic voting protocols []. However more restricted uses of blind pairing
may well suffice in many applications. What then can be interesting about such a result, in a frame-
work with a fixed set of primitives, a weak attacker model and offering an algorithmwith such high
complexity? Perhaps the fact that the algorithm is presented as an automaton construction; but
then it should be noted that the original Dolev-Yao paper used an automaton construction (indeed,
a deterministic one) to solve the secrecy problem for a class of protocols called ping-pong proto-
cols [].

Indeed the result is of a technical nature and relates to the theoretician’s toolkit in the study of
Dolev-Yao models. The standard strategy to prove the decidability of term derivability is to prove
a so-called locality property [, ], that if t is derivable from X , then there is a special kind of
derivation (a normal derivation) π such that every term occurring in π comes from S(X ∪ {t}),
where S is a function mapping a finite set of terms to another finite set of terms. Typically S is the
subterm function st, but inmany cases it is aminor variant. The locality property is used to provide
a decision procedure for the derivability problem (which is typically a ptime algorithm).

As we will show later, our system does not have an obvious locality property, and so we cannot
follow the standard route to decidability. In fact, we can construct a set of terms X and a term
t such that the set of terms occurring in any derivation of t from X is exponential in the size of
X ∪{t}. This suggests that it would be difficult to define a function S of the kind mentioned above
such that any term occurring in a normal derivation of t from X comes from S(X ∪{t}).

The first technical contribution of this paper is to show a way of working around this difficulty.
We prove a weak locality property: we define a function S which maps every finite set of terms X
to an infinite set of terms S(X). We then prove that all terms occurring in a normal derivation of
t from X are from S(X ∪ {t}), and that the set of terms in S(X ∪ {t}) that are derivable from X
is regular. This facilitates an automaton construction and yields a decision procedure for checking
whether t is derivable from X .

The second technical contribution is to settle the complexity of the derivability problemby prov-
ing dexptime-hardness by reduction from the reachability problem for alternating pushdown sys-
tems. We also prove an exponential lower bound on the size of derivations. While many lower
bound results for the active intruder deduction problem exist in the literature, under various set-
tings, this is one of the few lower bound results for the passive intruder deduction problem. And
the proof-size lower bound is one of the first in the study of Dolev-Yao models and its extensions,
to our knowledge.

The third technical contribution of the paper is the use (in our decision procedure) of the altern-
ating automaton saturation technique in itself (similar to the one in []). In fact, the lower bound
reduction shows the close connections to alternating pushdown systems, and so it is no surprise
that automaton saturation, one of the standard tools for analysis of pushdown systems, is used
for our upper bound proofs. This should also be viewed in the context of the use of tree automata

A Baskar, R Ramanujam, and S P Suresh 

for protocol verification, specifically the idea of representing (an over-approximation of) the set of
deducible terms using tree automata. This has been explored in a number of papers [, , ].
Applications of two-way alternating tree automata to security protocol verification have been stud-
ied in []. The saturation technique that we use offers yet another tool that may be of use in other
contexts.

Where does the high complexity of this problem originate from? It arises from the fact that
the tensor is distributive over encryption. This can be seen in the light of results on closely related
constructors.

There is a more restricted way of modelling blind signatures: as seen in [, , ]. This is to
consider two operators, blind and unblind with the following rules:

unblind(blind(m, r), r) = m
unblind(sign(blind(m, r), k), r) = sign(m, k)

The restriction here is that the r in the above equations is an atomic term, typically a random
number, and whenever a blind pair is signed, the signature gets pushed only to the first component
and not the second. Because of this, the system enjoys a locality property, and the basic derivability
problem is decidable in ptime.

In earlier work in [], we proposed essentially the same system described in this paper, but we
imposed a restriction that one of the components in the tensor product is always of the form n or
{n}k where n is an atomic term. And the only rule that involves distributing an encryption over a
tensor is the derivation of ⊗{t}k n from ⊗t{n}inv(k) and k . This restricted system also satisfies a
locality property. We prove this in Section ., and also outline a ptime algorithm.

At the other end of the spectrum lies the much more powerful system considered in [] in
which encryption is homomorphic over +. They employ a very involved argument and prove the
derivability problem in the general case to be decidable with a non-elementary upper bound. They
also give a dexptime algorithm in the case when the operator is xor, and a ptime algorithm in the
so-called binary case. The tensor operator we consider has very different characteristics than xor,
and the arguments in [] do not apply here. We postpone a discussion of some technical aspects
of [] and how they relate to our own work to the end.

Organization of the paper

Wepresent the basic definitions related to the Dolev-Yao framework and the term derivability prob-
lem in Section . In the same section, we present extensions to model distributive encryption, il-
lustrate the difficulties involved, and present a restricted system for which the term derivability
is solvable in ptime. In Section , we prove a normalization result and a weak subterm property,
which drives all the results that follow later. Section  contains details of an automaton-based
dexptime decision procedure for the term derivability problem.

The next three sections contain the lower bound proofs. In Section , we present some results
on sets of terms that we call rewrite systems, and normal proofs from these sets. These form
the basis for many of the theorems in the next two sections. Section  contains the dexptime
complexity lower bound, while in Section  we present the lower bound on size of derivations. We
end with a discussion in the last section.

Many of the results in this paper were already present in the conference version []. But the
lower bound proof for the size of derivations is completely new in this version. It was only men-
tioned as a brief example in []. We have also significantly simplified the coding for the dexptime
lower bound proof in that paper.

 Dolev-Yao theories with distributive encryption

 The Dolev-Yao framework and the term derivability problem

We present some basic definitions and notation. Let Σ be a signature that contains function sym-
bols with appropriate arity≥ 0.

The set of terms over the signature, TΣ, is defined as the smallest set such that:
if t1, t2, . . . , tn ∈TΣ, and f ∈Σ with arity n ≥ 0, then f (t1, t2, . . . , tn) ∈TΣ.

We define the set of subterms of term t , denoted by st(t), inductively as follows:

st(c) def= {c}, where c ∈Σ with arity 0.

st(f (t1, . . . , tn))
def=
∪

1≤i≤n st(ti)∪{ f (t1, . . . , tn)}
For a given set of terms, X , st(X) =

∪
t∈X st(t).

For a given a term t , the size of the term, denoted by |t |, is defined inductively as follows:

|c | def= 1, where c ∈Σ with arity 0.

| f (t1, . . . , tn)| def= |t1|+ · · ·+ |tn |+ 1
For a given a set of terms X , |X |=∑t∈X |t |.

A proof system PS is a finite set of rules of the following form.

X ⊢ t1 . . . X ⊢ tn r
X ⊢ t

In this rule, the sequents X ⊢ ti are the premises, and X ⊢ t is the conclusion.

▶ Definition . A derivation or a proof π of X ⊢ t in the proof system PS is a tree whose nodes are
labelled by sequents, whose root is labelled X ⊢ t , whose leaves are instances of the Ax rule and
labelled by sequents of the form X ⊢ r (with r ∈X , and whose internal nodes are instances of one
of the rules from PS. We use X ⊢PS t to denote that there is a proof of X ⊢ t . If PS is clear from the
context, we drop the subscript. We say that a sequent occurs in π if it labels the root of one of the
subproofs of π. We sometimes say that r occurs in π to mean that X ⊢ r occurs in π. We say that
r occurs as a subterm in π if there is some t such that X ⊢ t occurs in π and r ∈ st(t).

Aminimal proof π is one in which no sequent X ⊢ r occurs twice on the same branch of π.

▶ Definition . The derivability problem (or the passive intruder deduction problem) is the fol-
lowing: given a finite set X ⊆T and t ∈T , determine whether X ⊢PS t .

. The basic model

Assume a set of basic terms N , which also includes the set of keys K . Let inv(k) be a function
on K such that inv(inv(k)) = k . The signature for this term algebra contains N a set of nullary
operators, a binary pairing operator, and a binary encryption operator.

▶ Definition . The set of terms T is defined to be:

T ::= m | (t1, t2) | {t}k
where m ∈N , k ∈K , and t , t1, and t2 range over T . A keyword is a sequence of keys x ∈K ∗.
For a keyword x = k0 · · ·kn−1 and term t , {t}x is defined to be {{t}k0

· · · }kn−1
.

The Dolev-Yao proof system is given in figure , and we use DY to denote the proof system.
The decidability of the derivability problem for DY is based on the subterm property for min-

imal proofs. An important property of minimal proofs is the following, which is proved easily by
induction on the structure of proofs.

A Baskar, R Ramanujam, and S P Suresh 

analz-rules
X ⊢ {t}k X ⊢ inv(k)

decrypt
X ⊢ t

X ⊢ (t0, t1)
spliti

X ⊢ ti

synth-rules Ax (t ∈X)
X ⊢ t

X ⊢ t X ⊢ k
encrypt

X ⊢ {t}k
X ⊢ t1 X ⊢ t2

pair
X ⊢ (t1, t2)

Figure Dolev-Yao theory

▶ Lemma  (Subterm property or locality). Let π be a minimal proof of t from X . Then every r occurring
inπ belongs to st(X ∪{t}).
▶ Theorem . Given a finite set of terms X and a term t , checking whether X ⊢DY t is decidable in time
polynomial in size of X ∪{t}.
Proof. Suppose there is a proof of X ⊢ t . Then there is a minimal proof of X ⊢ t . Also, all the terms
occurring in this proof are subterms of X ∪ {t}. Further, along every branch of a minimal proof,
the same sequent cannot occur twice. Thus the height of a normal proof of X ⊢ t is bounded by the
size of st(T ∪{t}), say D . Therefore it suffices to check if there exists a proof of X ⊢ t of height D .

Here is a procedure to do this, which runs in time polynomial in D :

X ′ :=X ∪{t}
repeat D times:

X ′′ := {r ′′ | ∃r, r ′ ∈X ′ such that r ′′ is derived from r and r ′
by the application of one synth- or analz-rule};
X ′ :=X ′′ ∩ st(X ∪{t};

Thus the problem of checking whether X ⊢DY t is decidable in polynomial time. ◀

. Distributive encryption in the Dolev-Yao framework

We extend the basic Dolev-Yao system to include a tensor term: that is, a binary tensor operator is
added to the signature. We choose to present it as a blind pair operator, because it was originally
studied in the context of modelling blind signatures in voting protocols [], among other applica-
tions.

The set of terms T is defined to be:

T ::= m | (t1, t2) | [t1, t2] | {t}k
where m ∈N , k ∈K , and t , t1, and t2 range over T .

As we have said in the introduction, the new feature of the blind pair operator is the interaction
with the encryption operator. We can push the encryption operator inside the blind pair operator,
and this is modelled by the equational theory in Figure .

The proof system is now a deduction systemmodulo the equational theory, and is presented in
Figure .

But for most of our analysis of deducibility, it is easier to work with a pure proof system that
does not involve equations. The standard way to achieve this is to define a notion of normal terms
(induced by the equational theory), and present a proof system involving only normal terms. We
present the definition of normal terms next and define a proof system based on it in Figure . We
refer to it as the extended Dolev-Yao system, and we let EDY denote it.

 Dolev-Yao theories with distributive encryption

{[t , t ′]}k ≡ [{t}k ,{t ′}k]

t ≡ t
t ≡ t ′

t ′ ≡ t

t ≡ t ′ t ′ ≡ t ′′

t ′ ≡ t ′′

t1 ≡ t ′1 t2 ≡ t ′2
(t1, t2)≡ (t ′1, t ′2)

t1 ≡ t ′1 t2 ≡ t ′2
[t1, t2]≡ [t ′1, t ′2]

t ≡ t ′

{t}k ≡ {t ′}k

Figure  Equational theory for the distributive encryption

Ax (t ∈X)
X ⊢ t

X ⊢ t
(t ≡ t ′)

X ⊢ t ′

X ⊢ {t}k X ⊢ inv(k)
decrypt

X ⊢ t

X ⊢ t X ⊢ k
encrypt

X ⊢ {t}k
X ⊢ (t0, t1)

spliti
X ⊢ ti

X ⊢ t1 X ⊢ t2
pair

X ⊢ (t1, t2)

X ⊢ [t0, t1] X ⊢ ti
blindspliti

X ⊢ t1−i

X ⊢ t1 X ⊢ t2
blindpair

X ⊢ [t1, t2]

Figure Dolev-Yao theory modulo equations

▶Definition. Normal terms are termswhich do not contain a subterm of the form {[t1, t2]}k . For
a term t , we get its normal form t ↓ by “pushing encryptions over blind pairs, all the way inside.”
Formally, it is defined as follows:

m↓= m for m ∈N

(t1, t2)↓= (t1↓, t2↓)
[t1, t2]↓= [t1↓, t2↓]
{t}k↓=
(
[{t1}k↓,{t2}k↓] if t = [t1, t2]
{t↓}k otherwise

Observe that if X is a set of normal terms and there is a proof of X ⊢ t , then t is also a normal
term. So we can assume for the rest of the paper that we are working only with normal terms.

As we have remarked above, the standard route to decision procedure for term derivability is
via the locality property: we define a set S(X) and ensure that any minimal proof only uses terms
from this set. Unfortunately, our system does not have any obvious locality property. We illustrate
this by giving examples which violate the locality property for some simple choices of S(X).

▶ Example . Suppose we choose S(X) to be st(X). If we take X to be the set {[a, b],{b}k , k}, and
t to be {a}k , then the following derivation shows that X ⊢ t , but it is intuitively clear (and can in
fact be rigorously proved using the methods in Section ) that the term [{a}k ,{b}k], which does
not belong to st(X ∪{t}), has to occur in all derivations of X ⊢ t .

A Baskar, R Ramanujam, and S P Suresh 

Ax (t ∈X)
X ⊢ t

X ⊢ {t}k↓ X ⊢ inv(k)
decrypt

X ⊢ t

X ⊢ t X ⊢ k
encrypt

X ⊢ {t}k↓
X ⊢ (t0, t1)

spliti
X ⊢ ti

X ⊢ t1 X ⊢ t2
pair

X ⊢ (t1, t2)

X ⊢ [t0, t1] X ⊢ ti
blindspliti

X ⊢ t1−i

X ⊢ t1 X ⊢ t2
blindpair

X ⊢ [t1, t2]

analz-rules synth-rules

Figure  Extended Dolev-Yao theory. In the rule decrypt, {t}k↓ is the major premise and inv(()k) the minor
premise. In the rule encrypt, t is hte major premise and k is the minor premise. In the blindspliti rule, [t0, t1]
is the major premise and ti is the minor premise.

X ⊢ [a, b] X ⊢ k
encrypt

X ⊢ [{a}k ,{b}k] X ⊢ {b}k blindsplit
X ⊢ {a}k

▶ Example . The previous example suggests that we may need to extend the definition of S(X) by
including all terms of the same encryption depth as the ones mentioned in X . More formally,

S(X) = {{t}x | t ∈ st(X), x ∈ (st(X)∩K)∗, |x| ≤ d}
where d is the maximum nested encryption depth of terms in X .

We now give an example X and t such that the maximum encryption depth of terms in X ∪{t}
is one, but the most natural derivation contains a term of encryption depth 3. We take X to be the
set

{k , [a,{b}k], [b ,{c}k], [c ,{d}k], [e ,{d}k], [f ,{e}k],{ f }k}
and t to be the term a. A derivation of X ⊢ t is shown below, but it can be shown that every
derivation of X ⊢ t has to contain the term {d}kkk , which clearly does not belong to S(X ∪{t}).

We give the promised derivation below. To reduce clutter, we display only the terms on the right
hand side of sequents. We also present the proof in two parts. Let π′ be the derivation of {d}kkk
from X , given in Figure . The actual derivation of X ⊢ a is given in Figure , and it uses π′.

Ax
[e ,{d}k]

Ax
k
encrypt

[{e}k ,{d}kk]
Ax

k
encrypt

[{e}kk ,{d}kkk]

[f ,{e}k]
Ax

k
encrypt

[{ f }k ,{e}kk]
Ax

{ f }k
blindsplit

{e}kk
blindsplit

{d}kkk

Figure  Proof π′ of {d}kkk

 Dolev-Yao theories with distributive encryption

Ax
[a,{b}k]

Ax
[b ,{c}k]

Ax
k
encrypt

[{b}k ,{c}kk]

Ax
[c ,{d}k]

Ax
k
encrypt

[{c}k ,{d}kk]
Ax

k
encrypt

[{c}kk ,{d}kkk]

··· π′{d}kkk
blindsplit

{c}kk
blindsplit

{b}k
blindsplit

a

Figure  Proof π of a

The second example might suggest yet another definition of S(X)which takes into account the
number of terms in X , their “width”, and their encryption depth. But it is not clear what a natural
definition would be, and it would be very difficult to prove the locality property with respect to
complicated definitions. In fact, we shall show in Section  that for every n, there exist X and t of
size O(n), such that every derivation of X ⊢ t is of exponential size.

In light of this, there are two directions to proceed in. In the next subsection, we restrict the
interaction between the blind pair operator and encryption to arrive at a more well-behaved sys-
tem which enjoys a locality property. Though the interaction is restricted, it still suffices for some
common applications, and is hence a usable system.

But what about the system EDY? We show that we can settle for a weak locality property, where
S(X) is not necessarily a finite set, but which is still useful in the analysis of proofs. These results
are proved in Section .

. Restricted proof system

In this section, we place a restriction on the interaction between the blind pair and encryption oper-
ators to get a ptime algorithm for the term derivability problem. Consider the following restricted
interaction: if we encrypt the blind pair term with the key k , then we push in the encryption if at
least one part of the blind pair term is of the form {m}inv(k). Here m is an atomic term. In other
words, we will have the following equations in the equational theory instead of the more general
equation which we saw earlier.

{[t ,{m}inv(k)]}k = [{t}k , m]
{[{m}inv(k), t]}k = [m,{t}k]

We again consider a deduction system modulo the equational theory generated by the above equa-
tions, and its simplification using normal terms. The proof system is the same as EDY, except that
we use the following definition of t↓. We use RDY to refer to the new system.

▶ Definition . We define t↓ inductively as follows.

m↓= m for m ∈N

(t1, t2)↓= (t1↓, t2↓)
[t1, t2]↓= [t1↓, t2↓]

{t}k↓=

[{t ′}k↓, m] if t = [t ′,{m}inv(k)]
[m,{t ′}k↓] if t = [{m}inv(k), t ′]
{t↓}k otherwise

A Baskar, R Ramanujam, and S P Suresh 

Despite the restricted interaction, the system can still be used to model cryptographic opera-
tions like blind signatures, which have applications in electronic voting protocols.

▶ Example  (Blind signatures). Suppose Alice wants to get Bob to sign a message t for her, without
revealing t to Bob. This can be done as follows. Alice sends [t ,{r }public(B)] to Bob, where r is a some
random number chosen by Alice . Now Bob signs this message to get {[m,{r }public(B)]}private(B)↓,
which is the same as [{m}private(B), r]. From this, Bob cannot get m as he does not know r . But on
receiving this message, Alice can get {m}private(B) using the blindsplit rule (since she has r).

We now prove that the term derivability problem for this restricted proof system is in ptime.
We follow the standard strategy to prove this claim. First, we define the notion of a normal proof.

▶ Definition . A proof π is a normal proof if the following two conditions hold:
. every subproof of π is minimal, and
. the transformations in Figure  can not be applied to π.

··· π′
X ⊢ t

··· π′′
X ⊢ {m}inv(k)

blindpair
X ⊢ [t ,{m}inv(k)]

··· π′′′
X ⊢ k

encrypt
X ⊢ [{t}k , m]

··· δ
X ⊢ m

blindsplit
X ⊢ {t}k

⇝
··· π′

X ⊢ t

··· π′′′
X ⊢ k

encrypt
X ⊢ {t}k

··· π′
X ⊢ {m}inv(k)

··· π′′
X ⊢ t

blindpair
X ⊢ [{m}inv(k), t]

··· π′′′
X ⊢ k

encrypt
X ⊢ [m,{t}k]

··· δ
X ⊢ m

blindsplit
X ⊢ {t}k

⇝
··· π′′

X ⊢ t

··· π′′′
X ⊢ k

encrypt
X ⊢ {t}k

Figure  Transformation rules for RDY. The rules correspond to the equation
unblind(sign(blind(m, r), k), r) = sign(m, k) from [].

Thus in a normal proof, there cannot be an application of a blindpair rule followed by an applic-
ation of a encrypt rule followed by an application of a blindsplit rule. It can be easily shown that any
proof can be transformed to a normal proof. As in the basic Dolev-Yao theory, normal proofs in the
theory RDY also enjoy a locality property, where we take S(X) to be est(X) (defined below) rather
than st(X).

▶ Definition . The set of extended subterms of t , est(t), for any term t is defined as follows:

est(m) def= {m} for m ∈N ,

est((t1, t2))
def= {(t1, t2)} ∪ est(t1)∪ est(t2),

est({t}k) def= {{t1}k}∪ est(t1)∪{k},
est([t1, t2])

def= {t1, t2}∪ est(t1)∪ est(t2) if [t1, t2] is not one of [t ,{m}k], [{m}k , t],
est([t ,{m}k]) def= {[t ,{m}k], [{t}inv(k), m]}∪ est({m}k)∪ est({t}inv(k)), and
est([{m}k], t) def= {[{m}k , t], [m,{t}inv(k)]}∪ est({m}k)∪ est({t}inv(k)).

 Dolev-Yao theories with distributive encryption

For a set of terms X , est(X) is defined to be
∪

t∈T est(t). It is easy to see that |est(t)| ≤ 7 · |t |, and
that |est(X)| ≤ 7 · |X |.
▶ Proposition . Let π be a normal proof of X ⊢ t . Then r ∈ est(X ∪ {t}) for all terms r occurring in
π. Moreover, ifπ ends in an application of an analz rule, r ∈ est(X).
Proof. We prove this by induction on the structure of proofs. We will use the fact that subproofs of
normal proofs are also normal. So the induction hypothesis is always available to us. We present
only the most important case.

Suppose π is of the following form and r is a term occurring in π:

π1···
X ⊢ [t , t ′]

π2···
X ⊢ t ′

blindsplit
X ⊢ t

We first prove that [t , t ′] ∈ est(X).
Suppose π1 ends in an analz-rule.
By induction hypothesis, for every r occurring in π1, r ∈ est(X). In particular, [t , t ′] ∈ est(X),
and we are done.
Suppose the last rule of π1 is a synth-rule.
Let us look at the last rule ofπ1. It can be either blindpair or encrypt. If it is blindpair, then X ⊢ t
should be one of the premises. But this is not possible since π1 is a normal proof. Hence the
last rule of π1 should be encrypt. Clearly [t , t ′] should be of the form [{u}k , m] or [m,{u}k]
for some k ∈K and m ∈B. We will consider only the first case, and the second case can be
argued similarly. Now π looks as follows.

··· π′1
X ⊢ [u,{m}inv(k)]

··· π′′1
X ⊢ k

encrypt
X ⊢ [{u}k , m]

··· π2

X ⊢ m
blindsplit

X ⊢ {u}k
Now we look at the last rule of π′1. It can be blindpair,encrypt or an analz-rule.

Suppose if it is a blindpair rule, then we can apply the transformation in figure . But this is
a contradiction to π being a normal proof. Hence, π′1 cannot end in blindpair rule.
Suppose π′ ends with an encrypt rule. Then the major premise of π′1 is [{u}k , m]. This term
occurs twice in a branch of π, and this contradicts the fact that π is a normal proof. Hence
the last rule of π′1 can not be encrypt.
Suppose π′1 ends in an analz-rule. By induction hypothesis, [u,{m}inv(k)] belongs to est(X),
and hence so does [{u}k , m] and {u}k (by our definition of est(X)).

We have proved that [t , t ′] ∈ est(X), whence est(X ∪ {[t , t ′]}) = est(X ∪ {t ′}) = est(X). Now
by the induction hypothesis, any r occurring in π1 belongs to est(X ∪ {[t , t ′]}) = est(X), and any
r occuring in π2 belongs to est(X ∪ t ′) = est(X). Hence, any r occurring in π either occurs in π1,
π2 or is the same as t . In all cases, r ∈ est(X). ◀

Now we can prove that the derivability problem for RDY is decidable in polynomial time. The
proof is similar to the proof of Theorem , except that we use est(X) instead of st(X).

▶ Theorem . Given a finite set of terms X and a term t , checking whether X ⊢RDY t is decidable in
time polynomial in size of X .

A Baskar, R Ramanujam, and S P Suresh 

 Normal proofs and weak locality

Even though our proof system lacks an obvious locality property, we can prove a weak locality prop-
erty, which will help us derive a decision procedure for the derivability problem. This section is
devoted to a proof of the weak locality property (or weak subterm property).

We first define the notion of a normal proof. These are proofs got by applying the transforma-
tions of Figure  repeatedly. Any subproof that matches the pattern on the left column is meant to
be replaced by the proof on the right column in the same row. The idea behind normalization is to
perform applications of the encrypt and decrypt rules as early as possible in the proof.

··· π′
t ′

··· π′′
t ′′
blindpair

[t , t ′]

··· δ
k

encrypt
[{t ′}k↓,{t ′′}k↓]

⇝

··· π′
t ′

··· δ
k

encrypt{t ′}k↓

··· π′′
t ′′

··· δ
k

encrypt{t ′′}k↓
blindpair

[{t ′}k↓,{t ′}k↓]

··· π′{t ′}k↓
··· π′′{t ′′}k↓

blindpair
[{t ′}k↓,{t ′′}k↓]

··· δ
inv(k)

decrypt
[t ′, t ′′]

⇝

··· π′{t ′}k↓
··· δ

inv(k)
decrypt

t ′

··· π′′{t ′′}k↓
··· δ

inv(k)
decrypt

t ′′
blindpair

[t ′, t ′′]

··· π′
[{t ′}k↓,{t ′′}k↓]

··· π′′{t ′′}k↓
blindsplit{t ′}k↓

··· δ
inv(k)

decrypt
t ′

⇝

··· π′
[{t ′}k↓,{t ′′}k↓]

··· δ
inv(k)

decrypt
[t ′, t ′′]

··· π′′{t ′′}k↓
··· δ

inv(k)
decrypt

t ′′
blindsplit

t ′

Figure The normalization rules

▶ Definition . A proofπ of X ⊢ t is aminimal proof if X ⊢ t occurs only in the root of the proof.
A proof π is a normal proof if:
. π is minimal, and
. the transformations in Figure  cannot be applied to π.

The following lemma highlights the centrality of normal proofs.

▶ Lemma . Whenever X ⊢ t , there is a normal proof of t from X .

Proof. For every proof π, we define a measure d (π) recursively as follows:
if π ends in an Ax rule, d (π) = 1,
ifπ has immediate subproofsπ′ andπ′′ and ends in an application of a rule other than encrypt
or decrypt, then d (π) = d (π′)+ d (π′′)+ 1, and
ifπ ends in an application of either encrypt or decrypt and has immediate subproofsπ′ andπ′′,
then d (π) = 2d (π′)+d (π′′).

 Dolev-Yao theories with distributive encryption

We can view normal proofs as the result of repeatedly applying the reduction steps in Figure  and
a reduction step which replaces proofs by subproofs which have the same root. And it suffices to
show that for eachof these reduction steps that transformsπ toπ′, d (π′)< d (π). This immediately
proves that the normalization procedure terminates.

The non-trivial cases are the reductions in Figure . For these, we observe that the measure of
the proof on the left is 2d (π′)+d (π′′)+d (δ)+1, while themeasure of the proof on the right is 2d (π′)+d (δ)+
2d (π′′)+d (δ) + 1. Let d (π′) = m, d (π′′) = n, and d (δ) = p , and assume without loss of generality
that m ≥ n. Then—since m, n, p > 0—2m+n+p+1 > 2m+p+1+1≥ 2m+p+2n+p+1. This concludes
the proof. ◀

Also important is the following lemma, which is used vitally to prove lower bounds on the size
of proofs in Section . The lemma is easily seen to be true by inspecting the normalization rules.

▶ Lemma. If a proofπ reduces to another proofπ′, then for any term t that occurs inπ′, a term of the
form {t}x occurs inπ, for some keyword x . Furthermore, if t is not a blind pair, then t itself occurs inπ.

The above lemma (whose truth is easily seen by inspecting the normalization rules) is extremely
important, since it allows us to prove lower bounds on the number of terms occurring in any proof
of X ⊢ t (and hence on the size of any proof of X ⊢ t) by proving a corresponding lower bound
for any normal proof of X ⊢ t . Since normal proofs are likely to have much more structure than
non-normal proofs, it is to be expected that they are more amenable to non-trivial analysis. We
will witness this phenomenon both in the weak locality property (Lemma ) and the upper bound
results that follow from it (Section ), and in the complexity lower bound (Section ) and lower
bound on proof size (Section ).

We now state the weak locality property for normal proofs. The standard locality property can
be viewed as giving a bound on the “width” and encryption depth of terms occurring in a proof of
X ⊢ t . We prove a weaker property, where only the width of terms is bounded. So the set of terms
occurring in anynormal proof ofX ⊢ t is got by encrypting terms (perhaps repeatedly) froma “core”
set, using keys derivable from X . The core, it turns out, is st(X ∪ {t}). For every p ∈ st(X ∪ {t}),
define Lp to be {x ∈ (st(X ∪ {t})∩K)∗ | X ⊢ {p}x↓}. We shall show in the next section that Lp
is regular for each p .

We introduce a bit of notation first that will help us conveniently state the weak locality lemma.
We say that a proof π of X ⊢ t is purely synthetic if:

it ends in an application of the Ax or blindpair or pair rules, or
it ends in an application of the encrypt rule and t is not a blind pair.

▶ Lemma  (Weak locality property). Letπ be a normal proof of X ⊢ t , and letδ be a subproof ofπ with
root labelled r . Let u be a term occurring in δ . Then:
. If δ is a purely synthetic proof, then either u ∈ st(r) or there is a term p ∈ st(X) and a keyword x

such that u = {p}x↓.
. If δ is not a purely synthetic proof, then there is a term p ∈ st(X) and a keyword x such that u =
{p}x↓.

. If the last rule of δ is decrypt or split with major premise r1, then r1 ∈ st(X).
Proof. We do an induction on the structure of proofs. We assume the claim for every proper sub-
proof δ ′ of δ , and prove it for δ itself.

Suppose δ is of the following form:

Ax
X ⊢ r

Then r ∈X ⊆ st(X), and we are done.

A Baskar, R Ramanujam, and S P Suresh 

Suppose δ is the following form (and r = (r ′, r ′′)):

··· δ ′
X ⊢ r ′

··· δ ′′
X ⊢ r ′′

pair
X ⊢ r

In this case, δ is a purely synthetic proof, and we aim to prove that for every u occurring in δ ,
either u ∈ st(r) or there is p ∈ st(X) and keyword x such that u = {p}x↓. But any such u either
occurs in δ ′ or δ ′′ or is the same as r . In the first case, by induction hypothesis, u ∈ st(r ′) or
there exists p ∈ st(X) and keyword x such that u = {p}x↓. But since r ′ ∈ st(r), u ∈ st(r) or
u = {p}x↓, and we are done. We argue similarly in the second case. Finally r ∈ st(r), and so we
are done in the third case as well.
Suppose δ is of the following form:

··· δ ′
X ⊢ (r, r ′)

split
X ⊢ r

We have to consider the following cases:
. Supposeδ ′ is not a purely synthetic proof and for every u occurring inδ ′ there is a p ′ ∈ st(X)

and keyword x ′ such that u = {p ′}x ′↓. In particular, there is a p ∈ st(X) and keyword x such
that (r, r ′) = {p}x↓. But this means that x = ϵ and (r, r ′) = p ∈ st(X). So r ∈ st(X) as well.
Thus we have proved that for every u occurring in δ , there is a p ∈ st(X) and keyword x
such that u = {p}x↓. We have also proved that the major premise of the last rule is in st(X).

. Suppose δ ′ is a purely synthetic proof. But then δ ′ has to end in an application of the pair
rule, and therefore one of the premises of the last rule ofδ ′ has to be r , and this contradicts
minimality of δ . So this case is not possible.

Suppose δ is the following form (and r = [r ′, r ′′]):

··· δ ′
X ⊢ r ′

··· δ ′′
X ⊢ r ′′

blindpair
X ⊢ r

We argue exactly as in the case when the last rule is pair.
Suppose δ is of the following form:

··· δ ′
X ⊢ [r, s]

··· δ ′′
X ⊢ s

blindsplit1X ⊢ r

We have to consider the following cases:
. Supposeδ ′ is not a purely synthetic proof and for every u occurring inδ ′ there is a p ′ ∈ st(X)

and keyword x ′ such that u = {p ′}x ′↓. In particular, there is a p ∈ st(X) and keyword x such
that [r, s] = {p}x↓.
Turning our attention to u occurring inδ ′′, either u ∈ st(s) or there is v ∈ st(X) and keyword
y such that u = {v}y↓. But recall that s ∈ st([r, s]) and there is p ∈ st(X) and keyword x
such that [r, s] = {p}x . Therefore if u ∈ st(s), clearly there is v ′ ∈ st(X) such that u = {v ′}x .
It also immediately follows that r = {q}x↓ for some q ∈ st(X). Thus we have proved that for
every u occurring in δ , there is a p ∈ st(X) and keyword x such that u = {p}x↓.

 Dolev-Yao theories with distributive encryption

. Suppose δ ′ is a purely synthetic proof. But then δ ′ does not end with an instance of the
encrypt rule, and hence ends with an instance of the blindpair rule. But that contradicts the
minimality of δ , as we can see by reasoning similar to the case when δ ends with a split. So
this case is not possible.

Suppose δ is of the following form (and r = {r ′}k↓):
··· δ ′

X ⊢ r ′
··· δ ′′

X ⊢ k
encrypt

X ⊢ r

We have to consider the following cases:
. Suppose r is not a blind pair, and hence δ is a purely synthetic proof. Then we aim to prove

that for every u occurring in δ , either u ∈ st(r) or there is p ∈ st(X) and keyword x such
that u = {p}x↓. But any such u either occurs inδ ′ or occurs inδ ′′ or is the same as r . In the
first case, by induction hypothesis, either u ∈ st(r ′) or there exists p ∈ st(X) and keyword x
such that u = {p}x↓. But since r ′ ∈ st(r), the desired conclusion follows. We argue similarly
in the second case, when u occurs in δ ′′. Finally r ∈ st(r), and so we are done in the third
case as well.

. Suppose r is a blind pair, and hence δ is not a purely synthetic proof. We aim to prove that
for every u occurring in δ , there is p ∈ st(X) and keyword x such that u = {p}x ↓. We
consider the following subcases:
a. Suppose δ ′ is not a purely synthetic proof and for every u occurring in δ ′ there is a p ′ ∈

st(X) and keyword x ′ such that u = {p ′}x ′ ↓. In particular, there is a p ∈ st(X) and
keyword x such that r ′ = {p}x↓. But this means that r = {p}xk↓. If u occurs in δ ′′, then
since k is atomic,δ ′′ ends in an analz rule, and so there is a q ∈ st(X) and keyword y such
that u = {q}y↓. Thus we have proved that for every u occurring in δ , there is a p ∈ st(X)
and keyword x such that u = {p}x↓.

b. Suppose δ ′ is a purely synthetic proof. We note that r ′ is a blind pair, and hence the last
rule of δ ′ is not encrypt (since δ ′ is purely synthetic). The only other possibility is that
the last rule of δ ′ is blindpair, but that would violate the normality of δ , as one of the
transformations specified by the first row of Figure  would apply to δ . So this case is
not possible.

Suppose δ is of the following form:

··· δ ′
X ⊢ {r }k

··· δ ′′
X ⊢ inv(k)

decrypt
X ⊢ r

We first note that inv(k) is an atomic key and hence δ ′′ should end with the analz rule. Hence
for every u occurring in δ ′′, there exists p ∈ st(X) and a keyword x such that u = {p}x↓.
We now consider δ ′. It cannot end in a blindpair rule, since the transformation rule in the
second row of Figure  would apply toδ , thereby contradicting normality ofδ . Nor canδ ′ end
in an encrypt rule, since then the major premise of the last rule of δ ′ would be r , and this con-
tradicts the minimality of δ . The only possibilities therefore are that δ ′ ends in an application
of split or decrypt or blindsplit. In the first two cases, we know by induction hypothesis that the
major premise r1 of the last rule of δ ′ is in st(X). Hence {r }k , as well as r , are in st(X) as well.
We now consider the case when the last rule of δ ′ is blindsplit1. Let r1 be the major premise of
this rule, and r2 theminor premise. Now it cannot be the case that r1 is of the form [{r }k ,{r ′}k].
For, in that case r2 would have been {r ′}k , and the transformation rule in the second row of
Figure  would apply to δ , and this contradicts its normality.

A Baskar, R Ramanujam, and S P Suresh 

We also know from the induction hypothesis (applied to δ ′) that there is a p ∈ st(X) and a
keyword x such that r1 = {p}x . But since r1 is [{r }k , r2], where r2 is not of the form {r ′}k for
any r ′, we conclude that x = ϵ and r1 = p ∈ st(X). It follows that r ∈ st(X) as well.

◀

 The automaton construction

We recall here some definitions relating to alternating pushdown systems (APDSs) and alternating
automata (with ϵ-moves). The former will be needed for the lower bound argument in the next
section, and the latter for the decision procedure to be presented here.

▶ Definition . An alternating pushdown system is a triple P = (P,Γ , ,→) where:
P is a finite set of control locations,
Γ is a finite stack alphabet, and
,→⊆ P × Γ ∗× 2(P×Γ ∗) is a finite set of transition rules.

We write transitions as (a, x) ,→ {(b1, x1), . . . , (bn , xn)}. A configuration is a pair (a, x) where a ∈ P
and x ∈ Γ ∗. Given a set of configurationsC , a configuration (a, x), and i ≥ 0, we say that (a, x)⇒P,i
C iff:
(a, x) ∈C and i = 0, or
there is a transition (a, y) ,→ {(b1, y1), . . . , (bn , yn)} of P , z ∈ Γ ∗, and i1, . . . , in such that i =
i1+ · · ·+ in + 1 and x = y z and (b j , y j z)⇒P,i j

C for all j ∈ {1, . . . , n}.
We say that (a, x)⇒P C iff (a, x)⇒P,i C for some i ≥ 0.

▶ Definition . An alternating automaton is an APDS P = (Q,Σ, ,→) such that:
,→⊆Q × (Σ∪{ϵ})× 2(Q×{ϵ}).

For q ∈ Q , a ∈ Σ ∪ {ϵ}, and C ⊆ Q , we use q
a
,→ C to denote the fact that (q ,a,C × {ϵ}) ∈,→.

For ease of notation, we will also write q
a
,→ q ′ to mean q

a
,→ {q ′}. Given C ⊆ Q , and x ∈ Σ∗, we

use the notation q
x⇒P,i C to mean that (q , x)⇒P,i C ×{ϵ}. For C = {q1, . . . , qm} and C ′ ⊆Q ,

we use the notation C
x⇒P,i C ′ to mean that for all j ≤ m, there exists i j such that q j

x⇒P,i j
C ′,

and i = i1+ · · ·+ im . We also say q
x⇒P C and C

x⇒P C ′ to mean that there is some i such that

q
x⇒P,i C and C

x⇒P,i C ′, respectively.

We typically drop the superscript P if it is clear from the context which APDS is referred to.
Fix a finite set of terms X0 and a term t0. We let Y0 denote st(X0∪{t0}) and K0 = Y0∩K . In this

section, we address the question of whether there exists a normal proof of t0 from X0. Lemma 
provides a key to the solution – every term occurring in such a proof is of the form {p}x for p ∈ Y0
and x ∈ K∗0 . Therefore it is easy to see that the different Lp (for p ∈ Y0) satisfy the following
equations (among others):

k x ∈Lp iff x ∈L{p}k ↓
if x ∈Lp and x ∈Lp ′ then x ∈L[p, p ′]
if x ∈Lp and x ∈L[p, p ′] then x ∈Lp ′
if x ∈Lp ′ and x ∈L[p, p ′] then x ∈Lp

if x ∈Lp and ϵ ∈Lk then xk ∈Lp

if ϵ ∈L{p}k ↓ and ϵ ∈Linv(k) then ϵ ∈Lp

This immediately suggests the construction of an alternating automaton A such that for every
t ∈ Y and keyword x , x ∈Lt if and only if there is an accepting run of A on the word x from the

 Dolev-Yao theories with distributive encryption

state t . Then checking whether X ⊢ t0 (or in other words, ϵ ∈Lt0
) is simply a matter of checking

if there is an accepting run of A on ϵ from the state t0.
The states of the automaton are terms from Y0 and the transitions are a direct transcription of

the above equations. For instance there is an edge labelled k from t to {t}k , and there is an (and-
)edge labelled ϵ from t to the set {[t , t ′], t ′}. We introduce a final state f and introduce an ϵ-labelled
edge from t to f whenever ϵ ∈ Lt . But notice that if k x ∈ Lt then x ∈ L{t}k , and this cannot
be represented directly by a transition in the automaton. Thus we define a revised automaton by
adding an edge labelled ϵ from {t}k to q whenever the original automaton has an edge labelled k
from t to q . In fact, it does not suffice to stop after revising the automaton once. The procedure
has to be repeated till no more new edges can be added.

Thus we define a sequence of alternating automata A0,A1, . . . ,Ai , . . ., each of which adds trans-
itions to the previous one, as given by the definition in Figure . Some examples that illustrate the
saturation procedure are presented in Appendix A.

For each i ≥ 0, Ai is given by (Q,Σ, ,→i , F) where Q = Y0 ∪ { f } (f ̸∈ Y0), Σ = K0, and F = { f }. We
define ,→i by induction.
,→0 is the smallest subset of Q × (Σ∪{ϵ})× 2Q such that:

. if t ∈ Y0, k ∈K0 such that {t}k↓∈ Y0, then t
k
,→0 {{t}k↓}.

. if t , t ′, t ′′ ∈ Y0 such that t is the conclusion of an instance of the blindpair or blindspliti rules with
premises t ′ and t ′′, then t

ϵ
,→0 {t ′, t ′′}.

,→i+1 is the smallest subset of Q × (Σ∪{ϵ})× 2Q such that:

. if q
a⇒i C , then q

a
,→i+1 C .

. if {t}k↓∈ Y0 and t
k⇒i C , then {t}k↓ ϵ,→i+1 C .

. if k ∈K0 and k
ϵ⇒i { f }, then f

k
,→i+1 { f }.

. if Γ ⊆ Y0, t ∈ Y0, and if there is an instance r of one of the rules of Figure  (nullary, unary or
binary) whose set of premises is (exactly) Γ and conclusion is t—note that Ax is a nullary rule,
and hence this clause covers all t ∈X0—the following holds:

if u
ϵ⇒i { f } for every u ∈ Γ , then t

ϵ
,→i+1 { f }.

Figure The sequence of automata for analysing X0 ⊢ t0, with Y0 = st(X0 ∪{t0}) and K0 = Y0 ∩K . We use
,→i for ,→Ai

and⇒i for⇒Ai
.

Wewould like to emphasize that saturating an alternating automaton fits in very naturally with
our problem. For example, X ⊢ m where X = {[{t}k , m], t , k}. To detect this, we need to test if
m

ϵ
,→i { f } for some i . This test turns out to be true for i = 4, as witnessed by the following

sequence of edges and paths.

m
ϵ
,→0 {[{t}k , m],{t}k}.

t
ϵ
,→1 { f }, k

ϵ
,→1 { f }, [{t}k , m]

ϵ
,→1 { f }.

f
k
,→2 { f }, t

k⇒2 { f }.
{t}k ϵ

,→3 { f }. (This is the crucial use of saturation.) m
ϵ⇒3 { f }.

m
ϵ
,→4 { f }.

The sequence of automata for this example is given in the appendix.
The following lemma essentially shows that the saturation procedure terminates in exponential

time.

A Baskar, R Ramanujam, and S P Suresh 

▶ Lemma . . For all i ≥ 0 and all a ∈ Σ ∪ {ϵ}, the relation a⇒i is constructible from ,→i in time
2O(d), where d = |Q|.

. For all i ≥ 0 and all a ∈Σ, the relation a
,→i+1 is constructible from⇒i in time 2O(d).

. There exists d ′ ≤ d 2 · 2d such that for all i ≥ d ′, q ∈ Q , a ∈ Σ∪ {ϵ}, and C ⊆ Q , q
a
,→i C if and

only if q
a
,→d ′ C .

Proof. . We first compute
ϵ⇒i inductively as follows:

q
ϵ⇒i ,0 C if and only if C = {q},

q
ϵ⇒i , j+1 C if and only if either q

ϵ⇒i , j C or there is C ′ ⊆Q such that q
ϵ
,→i C ′ and C ′

ϵ⇒i , j
C .

It is clear that
ϵ⇒i is computable in d · 2d iterations of the above induction, each step taking at

most d · 2d time. Once q
ϵ⇒i is computed, q

a⇒i is computed inductively as follows (for a ∈Σ):
q

a⇒i ,1 C if and only if q
a
,→i C ,

q
a⇒i , j+1 C if and only if q

a⇒i , j C or there exist C ′,C ′′ ⊆ Q and k ,ℓ such that k + ℓ = j

and q
ϵ
,→i C ′ and C ′

a⇒i ,k C ′′
ϵ⇒i ,ℓ C .

Again it is clear that
a⇒i is computed in time 2O(d), once

ϵ⇒i has been computed. Thus the overall
time needed is 2O(d).

. This is easily seen from the construction.

. Observe that whenever q
a⇒i C , it is also the case that q

a⇒i+1 C , and the number of possible
triples in any⇒ j is d 2 · 2d . Thus the desired statement follows.

◀

Wenow present theorems that assert the correctness of the above construction. It is sound, i.e.
none of the automata accept an x starting from r where {r }x is not derivable from X0; and that
it is complete, i.e. whenever {r }x is derived from X0, one of the Ai ’s has an accepting run over x
starting from r . To simplify the statement and proof in the rest of this section, we first introduce
the following notation:

for X ⊆T and keyword x , we use X ⊢ x to mean that X ⊢ k for every k occurring in x .
for C ⊆ Y0 and keyword y , {C }y = {{t}y↓| t ∈C }.
for q ∈Q,C ⊆Q , q

x⇒i ,d C iff q
x⇒Ai ,d

C .

for C ,C ′ ⊆Q , C
x⇒i ,d C ′ iff C

x⇒Ai ,d
C ′.

▶ Theorem  (Soundness). For any i , any t ∈ Y0, and any keyword x , if t
x⇒i { f }, then X0 ⊢ {t}x↓.

Soundness is an immediate consequence of the following lemma, taking C = { f } and y = ϵ.

▶ Lemma. Suppose i , d ≥ 0, t ∈ Y0, x, y ∈K∗0 , andC ⊆Q (withD =C∩Y0). Suppose the following

also hold: ) t
x⇒i ,d C , and ) C ⊆ Y0 or X0 ⊢ y . Then X0 ∪{D}y ⊢ {t}xy .

As one may expect, the proof is by induction on the size of the path from x to C , but the difficulty
with the proof is that in a run over x from t to C , each path may hit f after reading a different
prefix of x . Hence the inductive statement is subtle and this is why the statement of the Lemma
is complex. In fact, formulating Lemma  precisely turned out to be the trickiest part of the upper
bound proof.

 Dolev-Yao theories with distributive encryption

Proof. Case i = 0: Suppose t
x⇒0,d C , and either C ⊆ Y0 or X0 ⊢ y . Now if t

x⇒0,0 C , it has to be
the case that x = ϵ and C =D = {t}. Then it is immediate that X0 ∪{D}y ⊢ {t}xy .
So suppose x = ax ′ for some a ∈Σ∪ {ϵ}, and there is a C ′ ⊆Q (with D ′ = C ′ ∩Y0) such that

t
a
,→0 C ′

x ′⇒0,d ′ C for some d ′ < d . Then by induction hypothesis (on d), X0∪{D}y ⊢ {u}x ′y for
every u ∈ D ′. So it suffices to prove that X0 ∪ {D ′}x ′y ⊢ {t}ax ′y . Now there are two main cases
to consider:

Suppose a = k and C ′ =D ′ = {{t}k}. Then it is clear that {D ′}x ′y ⊢ {{t}k}x ′y .
Suppose a = ϵ and C ′ = D ′ = {[t , t ′], t ′}. Again it is immediate that {D ′}x ′y ⊢ {t}x ′y . The
blindsplit0 and blindpair cases are similar.

Case i = j + 1: Suppose t
x⇒ j+1,d C and either C ⊆ Y0 or X ⊢ y . Either t

x⇒ j C in which case we
are done (by the induction hypothesis on i), or d > 1. In the second case, suppose x = ax ′ for
some a ∈Σ∪{ϵ} and there is a C ′ ⊆Q (with D ′ =C ′ ∩Q) such that t

a
,→ j+1 C ′

x ′⇒ j+1,d ′ C for
some d ′ < d . Then by induction hypothesis (on d), X0 ∪ {D}y ⊢ {u}x ′y for every u ∈ D ′. So it
suffices to prove that X0 ∪{D ′}x ′y ⊢ {t}ax ′y .

We note that if f is in C ′, f is also in C , and that f
x ′⇒ j+1 { f } (since C ′

x ′⇒ j+1,d ′ C), and X ⊢ y

(since C ̸⊆ Y0). But if f
x ′⇒ j+1 { f }, by definition of ,→ j+1, it means that k

ϵ
,→ j { f } for every k

occurring in x ′. By induction hypothesis (on i), X0 ⊢ k for each such k , and hence X0 ⊢ x ′. Thus
either C ′ ⊆ Y0 or X0 ⊢ x ′y . Now there are three cases to consider:

Suppose t
a⇒ j C ′. By induction hypothesis (on i), X0 ∪{D ′}x ′y ⊢ {t}ax ′y .

Suppose t = {t ′}k and a = ϵ and t ′
k⇒ j C ′. It follows that X0 ∪ {D ′}x ′y ⊢ {t ′}k x ′y , by

induction hypothesis (on i). Thus X0 ∪{D ′}x ′y ⊢ {t}x ′y .
Suppose a = ϵ, C ′ = { f }, t ∈ Y0 is the conclusion of some rule with premises Γ ⊆ Y0, and

p
ϵ⇒ j { f } for every p ∈ Γ . Since p

ϵ⇒ j { f }, we can apply the induction hypothesis (on i)
taking x = y = ϵ and conclude that X0 ⊢ p , for all p ∈ Γ . It follows that X0 ⊢ t . But since
C ′ ̸⊆ Y0, X0 ⊢ x ′y . So X0 ⊢ {t}x ′y .

◀
▶ Lemma . For all t , t ′ ∈ Y0, C ⊆ Y0, and keywords x, x ′ such that {t}x↓= {t ′}x ′↓, if t

x⇒i C for

some i , then there is a j ≥ i such that t ′
x ′⇒ j C .

Proof. There are two cases to consider.
Suppose x ′ = k1 · · ·kn x , and thus t = {t ′}k1···kn

. Then it is easy to see that:

t ′
k1
,→i {t ′}k1

k2
,→i · · ·

kn
,→i {t ′}k1···kn

x⇒i C .

Suppose x = k1 · · ·kn x ′, and thus t ′ = {t}k1···kn
. Suppose that

t
k1⇒i D1

k2⇒i D2 · · ·Dn−1

kn⇒i Dn
x ′⇒i C .

Then, it is also the case that

{t}k1

ϵ
,→i+1 D1

k2⇒i D2 · · ·Dn−1

kn⇒i Dn
x ′⇒i C .

But then {t}k1

k2⇒i+1 D2 and so

{t}k1k2

ϵ
,→i+2 D2 · · ·Dn−1

kn⇒i Dn
x ′⇒i C .

A Baskar, R Ramanujam, and S P Suresh 

Arguing likewise, we have

{t}k1···kn

ϵ
,→i+n Dn

x ′⇒i C .

Hence t ′
x ′⇒i+n C , and we are done.

◀
▶ Theorem  (Completeness). For any t ∈ Y0 and any keyword x , if X0 ⊢ {t}x↓, then there exists i ≥ 0
such that t

x⇒i { f }.
Proof. The proof is by induction on the structure of (normal) proofs. Let π be a normal proof of
{t}x↓ from X . The following cases need to be considered:

Suppose the last rule r of π has premises Γ ⊆ Y0 and conclusion {t}x ↓∈ Y0. By induction

hypothesis, there is an i such that for all u ∈ Γ , u
ϵ⇒i { f }. But our construction guarantees

that {t}x↓ ϵ,→i+1 { f }. By Lemma , this means that t
x⇒ j { f } for some j > i .

It follows by weak locality of normal proofs that this subsumes the cases where π ends in an
application of the Ax, pair, split, and decrypt rules.
Suppose π is the following proof:

··· π′
X ⊢ {t}x ′↓

··· π′′
X ⊢ k

encrypt
X ⊢ {t}x ′k↓

By induction hypothesis, there is an i such that t
x ′⇒i { f } and k

ϵ
,→i { f }. Hence f

k
,→i+1 { f },

and thus t
x ′k⇒i+1 { f }.

Supposeπ ends in a blindspliti rule or a blindpair rule. The reasoning in all three cases is similar.
We consider the case when π has the following form:

··· π′
X ⊢ [{t}x↓, t ′]

··· π′′
X ⊢ t ′

blindsplit1X ⊢ {t}x↓
By Lemma , we know that [{t}x↓, t ′] is of the form {r }y↓ for some r ∈ Y0. But this r has
to be of the form [u, u ′]. And therefore t ′ = {u ′}y ↓. Now by induction hypothesis, there is

i such that [u, u ′]
y⇒i { f } and u ′

y⇒i { f }. But by construction, u
ϵ
,→0 {[u, u ′], u ′}, and thus

u
ϵ
,→i {[u, u ′], u ′}. Therefore u

y⇒i { f }. But now {t}x ↓= {u}y ↓, and hence by Lemma ,

t
x⇒ j { f } for some j .

◀
▶ Theorem . Given X0 ⊆T and t0 ∈T , it is decidable in dexptimewhether X0 ⊢ t0.

Proof. Let X0 and t0 be given, and let Y0 = st(X0 ∪{t0}).
By Lemma , there is d ′ such that for all q ∈Q , a ∈Σ∪{ϵ}, and C ⊆Q , and any i ≥ 0,

if q
a
,→i C then q

a
,→d ′ C .

Further ,→d ′ is computable in time 2O(d), where d = |Y0|.
By the soundness theorem (Theorem ), for all i , any t ∈ Y0 and any keyword x , if t

x⇒i { f },
then X0 ⊢ {t}x ↓. In particular, this holds for i = d ′. On the other hand, by the completeness

 Dolev-Yao theories with distributive encryption

theorem (Theorem ), whenever X0 ⊢ {t}x ↓ for t ∈ Y0 and keyword x , there is an i such that

t
x⇒i { f }, and hence t

x⇒d ′ { f }. Thus to check whether X0 ⊢ t0, it suffices to check if t0
ϵ⇒d ′ { f }.

But by construction, if t0
ϵ⇒d ′ { f }, then t0

ϵ
,→d ′+1 { f }, but this means that t0

ϵ
,→d ′ { f }.

Thus one only needs to check—in constant time—whether t0
ϵ
,→d ′ { f }. Thus the derivability

problem is solvable in dexptime. ◀

 Normal proofs and lower bounds

In the last section, we saw that normal proofs play a crucial role in proving an upper bound for the
term derivability problem. They turn out to play a crucial role in the proofs of both the complexity
lower bound and proof size lower bound for the problem. In this section, we bring together a few
notions and facts that prove useful in both lower bound proofs.

▶ Definition . Let b1, . . . , bn , b be nonces and let y1, . . . , yn , y be keywords. We define

{b1}y1
∧ · · · ∧ {bn}yn

=⇒{b}y
to be the following term:

[[· · · [[{b}y ,{b1}y1
],{b1}y1

], · · · ,{bn}yn
],{bn}yn

].

We call such terms rewrite terms.

We define a very useful bit of notation that will be used in many places later:
For any rewrite term t = {b1}y1

∧· · ·∧{bn}yn
=⇒{b}y , we define ti for i ∈ {0, . . . , n} and t ′i for

i ∈ {1, . . . , n} as follows:
ti = [[· · · [[{b}y ,{b1}y1

],{b1}y1
], · · · ,{bi}yi

],{bi}yi
].

t ′i = [[· · · [[{b}y ,{b1}y1
],{b1}y1

], · · · ,{bi−1}yi−1
],{bi}yi

].
In particular, tn = t and t0 = {b}y .
▶ Definition . A rewrite system is a tuple (N ,K , e ,X1,X2) where:

N is a finite set of nonces,
K ∪{e} is a finite set of keys,
N ∩K =∅, e ̸∈N ∪K ,
for k , k ′ ∈N ∪K , it is not the case that inv(k) = k ′,
X1 is a finite set of terms, all of the form {a}xe with a ∈N and x ∈K∗, and
X2 is a finite set of terms, all of the form {b1}y1

∧ · · · ∧ {bn}yn
=⇒{b}y where b , b1, . . . , bn ∈N

and y, y1, . . . , yn ∈K∗.

▶ Lemma . Suppose (N ,K , e ,X1,X2) is a rewrite system, with X =X1 ∪X2 ∪K ∪ {e}. Suppose also
that {b1}y1

∧ · · · ∧ {bn}yn
=⇒{b}y is a rewrite term in X2 and z ∈K∗ such that

for all i ≤ n : X ⊢ {bi}yi ze .

Then X ⊢ {b}y ze .

Proof. Suppose πi is a derivation of X ⊢ {bi}yi ze , for i ≤ n. The required derivation is given in
Figure . ◀

We next seek to prove the converse of Lemma  – that is, whenever {a}xe is provable from X ,
it is either in X1 or there is a rewrite term {b1}y1

∧· · ·∧{bn}yn
=⇒{a}y in X2, and z ∈K∗ such that:

. x = y z

A Baskar, R Ramanujam, and S P Suresh 

Ax
tn

==== Ax
ze

========== encrypt{tn}ze

··· πn

{bn}yn ze
blindsplit{t ′n}ze

··· πn

{bn}yn ze
blindsplit{tn−1}ze·········{t1}ze

··· π1

{b1}y1 ze
blindsplit{t ′1}ze

··· π1

{b1}y1 ze
blindsplit{b}y ze

Figure Derivation of X ⊢ {b}y ze

. for all i ≤ n, {bi}yi ze occurs in π.
Towards that, we first prove a strengthening of the weak locality theorem for rewrite systems.

▶ Lemma . Suppose (N ,K , e ,X1,X2) is a rewrite system, and let X =X1 ∪X2 ∪K ∪ {e}. Letπ be a
normal proof of X ⊢ {a}xe , for a ∈ N and x ∈ K∗. Then any term u occurring in π is of the form {p}w ,
for p ∈ st(X) and w ∈K∗ ∪K∗e .
Proof. Call a term t short if it is of the form {p}w , where p ∈ st(X) and w ∈K∗ ∪K∗e , and long if
it is of the form {p}we w ′ where w ′ ̸= ϵ. The weak locality property (and the fact that {a}xe is short)
guarantees that every term occurring inπ is either long or short. We wish to prove that every such
u is short.

Since all terms are either long or short and since there is no pair term in st(X ∪ {t}), the pair
and split cannot occur in π. Nor can the decrypt occur, since none of the keys in K is an inverse of
another key in K .

Now suppose there is a long term u occurring in π. Then, since the root of π is short, there is
some subproof δ of π of the following form, where r is short, and at least one of r ′ and r ′′ is long.

··· δ ′
X ⊢ r ′

··· δ ′′
X ⊢ r ′′

X ⊢ r
There are three cases to consider.
Suppose δ is of the following form:

··· δ ′
X ⊢ r ′

··· δ ′′
X ⊢ r ′′

blindpair
X ⊢ [r ′, r ′′]

But it can be easily seen that if one of r ′ and r ′′ is long, then so is r = [r ′, r ′′], which contradicts
our assumption that r is short.
Suppose δ is of the following form:

··· δ1

X ⊢ r ′
··· δ2

X ⊢ k
encrypt

X ⊢ {r ′}k↓

 Dolev-Yao theories with distributive encryption

Since r ′′ = k is short, it has to be the case that r ′ is long, but in that case it is easily seen that
r = {r ′}k is also long, which is a contradiction.
Suppose δ is of the following form:

··· δ ′
X ⊢ [r, r ′′]

··· δ ′′
X ⊢ r ′′

blindsplit
X ⊢ r

Suppose r ′′ is short, then r ′ = [r, r ′′] is long. Suppose on the other hand that r ′′ is long. Then
also it is easily seen that [r, r ′′] is long, since no short term contains a long term as a subterm.
Hence [r, r ′′] is of the form [{p}we w ′ ,{p ′′}we w ′], for [p, p ′′] ∈ st(X) and w ′ ̸= ϵ. But then it
follows r = {p}we w ′ is itself long, which is again a contradiction.

◀
The following lemma constrains the structure of rules that occur in any normal proof of X ⊢

{a}xe .

▶ Lemma . Suppose (N ,K , e ,X1,X2) is a rewrite system, and let X = X1 ∪X2 ∪K ∪ {e}. Letπ be a
normal proof of X ⊢ {a}xe , for a ∈N and x ∈K∗. Let δ be a subproof ofπ with root labelled r .
. If δ ends with the encrypt rule, then r = {p}w for some p ∈X and keyword w ∈K∗ ∪K∗e .
. If δ ends with the blindsplit rule, then

a. its minor premise is not a blind pair term, and
b. r = {p}we , where p ∈ st(X) and w ∈K∗.

Proof. Let π be a normal proof of X ⊢ {a}xe , and let δ be a subproof of π with root labelled r . We
assume both parts of the lemma for all proper subproofs δ ′ of δ , and prove it for δ .
. Suppose δ ends with the encrypt rule, and has the following structure:

··· δ ′
X ⊢ r ′

··· δ ′′
X ⊢ ℓ

encrypt
X ⊢ r

If δ ′ ends with the encrypt rule, then r ′ = {p}w for some p ∈ X . In that case we are done,
since r = {p}wℓ. δ ′ cannot end with the blindpair rule, since that violates normality of π. The
other option is that δ ′ ends with the blindsplit rule, in which case r ′ is of the form {p}we (by
part  of this lemma applied to δ ′). But then r = {p}weℓ, and that violates Lemma , so this
case cannot arise.

. Suppose δ ends with the blindsplit rule and has the following form:

··· δ ′
X ⊢ r ′

··· δ ′′
X ⊢ r ′′

blindsplit
r

a. Suppose, towards a contradiction, that r ′′ is a blind pair term. Clearly r ′ is a blind pair term
too, and is a subterm of {t}w , for t = {b1}y1

∧ · · · {bn}yn
=⇒ {b}y from X2. Now there are

two cases to consider based on the form of r ′.
Case  Suppose r ′ = tm for some m ∈ {1, . . . , n}. Then δ is of the following form:

··· δ ′
X ⊢ {tm}w

··· δ ′′
X ⊢ {t ′m}wblindsplit

X ⊢ {bm}ym w

A Baskar, R Ramanujam, and S P Suresh 

Clearly t ′m ̸∈ X and hence δ ′′ does not end in an encrypt rule (by part  of this lemma
applied toδ ′′). So it ends in a blindpair rule or a blindsplit rule. If it ends in a blindpair, the
minor premise of the rule is {bm}ym w , and this violates the normality of π. If it ends in a
blindsplit rule, then by induction hypothesis, the minor premise is not a blind pair term,
and so has to be {bm}ym w again, which violates the normality of π.

Case  Suppose r ′ = {t ′m}w for some m ∈ {1, . . . , n}. Then δ is of the following form:

··· δ ′
X ⊢ {t ′m}w

··· δ ′′
X ⊢ {tm−1}wblindsplit{bm}ym w

Clearly t ′m ̸∈X and henceδ ′ does not end in an encrypt rule (again by part  of this lemma,
applied to δ ′ this time). It cannot end in a blindpair rule, since that violates normality,
and hence ends in a blindsplit rule. But then the minor premise of that rule is not a blind
pair term (by induction hypothesis), and hence has to be {bm}ym w , violating the normality
of π again.

Thus the minor premise of δ cannot be a blind pair term.
b. Wenow seek to show that r = {p}we for some p ∈ st(X) and w ∈K∗. Observe thatδ ′ has to

end with the blindsplit or the encrypt rule, and also thatδ ′′ has to either end with the encrypt
or blindsplit rule, since it cannot end with the blindpair rule (by what we just proved above).
If δ ′′ ends with the blindsplit rule, then by induction hypothesis, r ′′ = {p}w ′′e for p ∈ st(X)
and w ′′ ∈ K∗. If, on the other hand, δ ′′ ends with the encrypt rule, then r ′′ = {p ′′}z for
p ′′ ∈ X . But p ′′ is not a blind pair term, so p ′′ ∈ X1. But then p = {a}w ′′e for a ∈ N and
w ′′ ∈ K∗, and hence z = ϵ, since otherwise Lemma  is violated. So in either case r ′′ is of
the form {p ′′}w ′′e .
But now e is a subterm of the blind pair term r ′, and since e is not a subterm of any blind
pair term in X , r ′ has to be of the form {p ′}w ′e . Thus r , the result of the blindsplit rule, is of
the form {p}we .

◀
In particular, it follows fromthe above that suchproofs never have an applicationof the blindpair

rule. Since the conclusion is not a blind pair term, the last rule of π is either blindsplit or encrypt.
Then there has to be a blindpair rule whose conclusion is either the major premise of a blindsplit or
encrypt rule, or a minor premise of a blindsplit rule. But the first case violates normality of π, and
the second has just been proved above to be impossible. So we can assume that the only rules in
such proofs are Ax, blindsplit, and encrypt.

We now prove an important property of normal proofs from rewrite systems – namely that
whenever the “conclusion” of a rewrite term is provable, all the “premises” are provable too.

▶ Lemma . Suppose (N ,K , e ,X1,X2) is a rewrite system, and let X = X1 ∪X2 ∪K ∪ {e}. Let π be
a normal proof of X ⊢ {a}xe , for a ∈ N and x ∈ K∗. Then either {a}xe ∈ X1 or there is a rewrite term{b1}y1

∧ · · · ∧ {bn}yn
=⇒{a}y in X2, and z ∈K∗ such that:

. x = y z
. for all i ≤ n, {bi}yi ze occurs inπ.

Proof. Let π be a normal proof of X ⊢ {a}xe and suppose that {a}xe ̸∈X1.
For any term t = {b1}y1

∧ · · · ,{bn}yn
=⇒ {a}y from X2 and r ∈ st(t), define residues(t , r) as

follows:
If r = tm for m ∈ {0, . . . , n}, residues(t , r) = {{bm+1}ym+1

, . . . ,{bn}yn
}. It is easy to see that

residues(t , t) =∅ and residues(t ,{a}y) = {{b1}y1
, . . . ,{bn}yn

}.

 Dolev-Yao theories with distributive encryption

If r = t ′m for m ∈ {1, . . . , n}, residues(t , r) = {{bm}ym
, . . . ,{bn}yn

}.
We prove that whenever {r }ze occurs as the root of a subproof δ ofπ, for any r ∈ st(X2), there

is t ∈ X2 such that {c}y ze occurs in a proper subproof of δ for every {c}y ∈ residues(t , r). The
statement of the lemma follows immediately. We distinguish the following three cases:

Suppose δ ends in an Ax rule. Then {r }ze ∈X , which is a contradiction.
Suppose δ ends in an encrypt rule. Then {r }ze = {p}we for some p ∈ X . But then it has to be
the case that r ∈X2. Notice that residues(r, r) =∅, and our statement is vacuously true.
Supposeδ ends in an blindsplit rule. Let {u}ze be themajor premise and {bm}ym ze be theminor
premise (by the previous lemma, the minor premise is not a blind pair and therefore has to be
a term of this form). By induction hypothesis, there is t ∈ X2 such that {c}y ze occurs in δ for
every {c}y ∈ residues(t , u). We distinguish two cases now.

residues(t , r) = residues(t , u). In this case we are done.
residues(t , r) = residues(t , u)∪{{bm}ym

}. In this case also we are done, since {bm}ym ze occurs
as a minor premise.

◀

 A dexptime lower bound for the derivability problem

We recall the following fact about alternating pushdown systems.

▶ Theorem ([]). The reachability problem for alternatingpushdown systems, which asks, given
an APDSP and configurations (s , xs) and (f , x f), whether (s , xs)⇒P (f , x f), is dexptime-complete.

We reduce this problem to the problem of checking whether X ⊢ t in our proof system, given
X ⊆T and t ∈T .

▶ Definition . Suppose P = (P,Γ , ,→) is an APDS, and (s , xs) and (f , x f) are two configuration
of P . Then the corresponding rewrite system is given by (P,Γ , e ,X1,X2) where:

P is taken to be a set of nonces, which are not keys,
Γ ∪ {e} is taken to be a set of non-symmetric keys, such that e ̸∈ Γ , and none of the keys in
Γ ∪{e} is an inverse of another,
X1 = {{ f }x f e}, and
X2 = {{b1}x1

∧ · · · ∧ {bn}xn
=⇒{p}x | (a, x) ,→P {(b1, x1), . . . , (bn , xn)}}.

X =X1 ∪X2 ∪ Γ ∪{e}.
We claim that (s , xs)⇒P (f , x f) iff X ⊢ {s}xs e . This follows from the following two lemmas.

▶ Lemma . For all configurations (a, x) and all i ≥ 0, if (a, x)⇒i {(f , x f)} then X ⊢ {a}xe .

Proof. We prove this by induction on i . If i = 0 then (a, x) = (f , x f) and thus X ⊢ {a}xe , since{ f }x f e ∈ X . If i > 0, there is a rule of P , (a, y) ,→ {(b1, y1), . . . , (bn , yn)}, z ∈ Γ ∗, and i1, . . . , in ≥ 0
such that x = y z and (c j , y j z)⇒i j

{(f , x f)} for all j ∈ {1, . . . , n}, and such that i = i1+ · · ·+ in + 1.
By induction we know that X ⊢ {b j }y j ze for all j . It immediately follows from the definition of X2

and Lemma  that X ⊢ {a}y ze . Since x = y z , X ⊢ {a}xe . ◀
▶ Lemma . For any configuration (a, x), if there is a normal proof of X ⊢ {a}xe , then

(a, x)⇒P (f , x f)

Proof. By Lemma , X ⊢ {a}xe means that either {a}xe ∈ X1 or there is a z ∈ K∗ and a rewrite
term {b1}y1

∧ · · · ∧ {bn}yn
=⇒{a}y in X2 such that:

A Baskar, R Ramanujam, and S P Suresh 

. x = y z
. for all i ≤ n, {bi}yi ze occurs in π.

In the first case, a = f and x = x f , and it follows that (a, x)⇒P (f , x f).
In the second case, by induction hypothesis, (bi , yi z)⇒P (f , x f), for all i ≤ n. Combined with

(a, y) ,→{(b1, y1), . . . , (bn , yn)}, it follows that (a, x) = (a, y z)⇒P (f , x f). ◀
And the following theorem is the end result.

▶ Theorem . The passive intruder deduction problem is dexptime-hard.

 Exponential lower bounds for proof size

▶ Theorem . For every n, there exist Xn , tn such that:
. |Xn ∪{tn}| is O(n)
. Xn ⊢ tn
. Any proof of Xn ⊢ tn is of size at least 2n .

The idea is to show that every normal proof of Xn ⊢ tn has to contain a termwith an encryption
chain of length at least 2n . Since one requires an exponential number of applications of the encrypt
rule to generate this term, the proof itself is of exponential size. Further, since any proof can be
converted to a normal proof all of whose terms occur in the original proof, all proofs of Xn ⊢ tn are
of exponential size. In what follows, we fix n and refer to Xn as just X , to reduce clutter. X consists
of three parts: X0 consists of the counters, which seek to “count” by building a list containing all n-
bit numbers, and X2 consists of the validators, which check that the count is correct by verifying
whether each pair of adjacent numbers differ by one. To help in this process, X2 needs the help of
terms in X1, which are the bit-verifiers. The list is built as a sequence of encryptions using the keys
K . There are exactly four keys, of which k0 and k1 stand for the bits 0 and 1, k acts as a marker
between adjacent numbers, and k ′ acts as an endmarker. The coding here is similar in spirit to the
simulation of an aspace(n) Turing machine by an alternating pushdown automaton [].

For m ∈ {0, . . . , 2n − 1}, we use m to denote the reverse of the n-bit representation of m. For
example, 5 is 1010n−3 and 23 is 111010n−5.

▶ Definition . The exponential counter is given by the set of terms X =X0∪X1∪X2∪K where:
K = {k0, k1, k , k ′}. (We use L to denote K \ {k ′}.)
X0, the set of counters, consists of the following terms (here and in what follows, we use {t}0
as shorthand for {t}k0

and {t}1 as shorthand for {t}k1
):

{a}k ′
a =⇒{b1}0, b1 =⇒{b2}0, . . . , bn−1 =⇒{bn}0
a =⇒{b1}1, b1 =⇒{b2}1, . . . , bn−1 =⇒{bn}1
bn =⇒{a}k ,a =⇒{c}2n−1

X1, the set of bit-verifiers, consists of the following terms (where ℓ ∈ L):
{e}k ′ , e =⇒{e}ℓ
e =⇒{ f0}0, f0 =⇒{ f1}ℓ, . . . , fn−1 =⇒{ fn}ℓ
e =⇒{g0}1, g0 =⇒{g1}ℓ, . . . , gn−1 =⇒{gn}ℓ

X2, the set of validators, consists of the following terms:
{d}k =⇒ c
{c}0 ∧ gn =⇒ c ,{c}1 ∧ fn =⇒ d
{d}0 ∧ fn =⇒ d ,{d}1 ∧ gn =⇒ d

▶ Remark. Note that ExpCount= (N , L, k ′,Y1,Y2) is a rewrite system, where:

 Dolev-Yao theories with distributive encryption

N = {a, b1, . . . , bn , c , d , e , f0, . . . , fn , g0, . . . , gn}
L= {k0, k1, k}
Y1 = {{a}k ′ ,{e}k ′}
Y2 = (X0 ∪X1 ∪X2) \Y1.

▶ Lemma . X ⊢ {c}0k ′ .

Proof. Thederivation is huge, and involves repeated use of Lemma . We give the overall structure
of the derivation below.
Step  We first show that for any m ∈ {0, . . . , 2n − 1} and any x ∈ L∗,

if X ⊢ {a}xk ′ then X ⊢ {a}k mxk ′ .

Suppose m = α0 · · ·αn−1. Here is the required derivation. The fist line is what is assumed, and
all the other lines follow from the previous ones by Lemma .

X ⊢ {a}xk ′
X ⊢ {b1}αn−1 xk ′

X ⊢ {b2}αn−2αn−1 xk ′

· · ·
X ⊢ {bn}α0···αn−1 xk ′ (= {bn}mxk ′)
X ⊢ {a}k mk ′

Step  We now show that X ⊢ {c}2n−1k2n−2k···k1k0k ′ . Here is a derivation. The first line is by the Ax
rule, and the rest follow by from the preceding lines by Step .

X ⊢ {a}k ′
X ⊢ {a}k0k ′
X ⊢ {a}k1k0k ′
· · ·
X ⊢ {a}k2n−2k···k1k0k ′

X ⊢ {c}2n−1k2n−2k···k1k0k ′

Step  We next show that for all i ∈ {0, . . . , n−1}, x = ℓ0 · · ·ℓm−1 ∈ L∗, and y, z ∈ {0,1}∗ such that
|y|= n− 1− i and |z |= i ,

X ⊢ { fn}yk z0xk ′ and X ⊢ {gn}yk z1xk ′ .

Here is a derivation of { fn}yk z0xk ′ . The other derivation is similar.
X ⊢ {e}k ′
X ⊢ {e}ℓm−1k ′

X ⊢ {e}ℓm−2ℓm−1k ′

· · ·
X ⊢ {e}xk ′
X ⊢ { f0}0xk ′· · ·
X ⊢ { fi}z0xk ′
X ⊢ { fi+1}k z0xk ′
X ⊢ { fn}yk z0xk ′

Step  We next show that for r ∈ {0, . . . , n − 1} and any y ∈ {0,1}∗ with |y| = n − r − 1, and any
x ∈ L∗,

if X ⊢ {c}0r 1yk1r 0yk xk ′ , then X ⊢ {c}1r 0yk xk ′ .

We illustrate the derivation with an example. Suppose n = 6, r = 2, and y = 010. Suppose also
that X ⊢ {c}001010k110010k xk ′ . Here is a derivation of {c}110010k xk ′ .

A Baskar, R Ramanujam, and S P Suresh 

Line . X ⊢ {c}001010k110010k xk ′ (by assumption)
Line . X ⊢ {g6}01010k110010k xk ′ (from Step )
Line . X ⊢ {c}01010k110010k xk ′ (by Lemma  and lines  and )
Line . X ⊢ {g6}1010k110010k xk ′ (from Step )
Line . X ⊢ {c}1010k110010k xk ′ (by Lemma  and lines  and )
Line . X ⊢ { f6}010k110010k xk ′ (from Step )
Line . X ⊢ {d}010k110010k xk ′ (by Lemma  and lines  and )
Line . X ⊢ { f6}10k110010k xk ′ (from Step )
Line . X ⊢ {d}10k110010k xk ′ (by Lemma  and lines  and )
Line . X ⊢ {g6}0k110010k xk ′ (from Step )
Line . X ⊢ {d}0k110010k xk ′ (by Lemma  and lines  and )
Line . X ⊢ { f6}k110010k xk ′ (from Step )
Line . X ⊢ {d}k110010k xk ′ (by Lemma  and lines  and )
Line . X ⊢ {c}110010k xk ′ (by Lemma  and line )

Step  We derive {c}2n−1k2n−2k···k1k0k ′ and repeat Step  2n − 1 times to derive {c}0k ′ .
◀

We now prove the lower bound on the size of any normal proof of X ⊢ {c}0k ′ . This is a long
proof, which we break down into a sequence of lemmas. The key lemmas involve showing that if a
term t occurs in such a proof, then a different term t ′ of some desired kind also occurs in the same
proof. Eventually we prove that a term with an exponentially long encryption sequence occurs in
the proof, and that will do the job.

The next lemma summarizes the important structural constraint imposed by the counters in X
– there are exactly n bits between any two occurrences of the marker k in any keyword occurring
in a normal proof.

▶ Lemma . Letπ be a normal proof of X ⊢ {c}0k ′ .
. If {a}xk ′ occurs in π then either x = ϵ or x is of the form ky0k · · ·kyr , where ) r ≥ 0, ) each

yi ∈ {0,1}∗, and ) |yi |= n for each i ≥ 0.
. For j ∈ {1, . . . , n}, if {b j }xk ′ occurs in π then x is of the form y0ky1 · · ·kyr , where ) r ≥ 0, ) each

yi ∈ {0,1}∗, ) |yi |= n for each i ≥ 1, and ) |y0|= j .
. For p ∈ {c , d}, if {p}xk ′ occurs in π then x is of the form y0ky1 · · ·kyr , where ) r ≥ 0, ) each

yi ∈ {0,1}∗, ) |yi |= n for each i ≥ 1, and ) |y0| ≤ n.

Proof. Let δ be a subproof of π. We assume the statement of the lemma for all terms occurring in
all proper subproofs of δ and prove it for δ itself. Clearly we only need to consider the last rule of
δ .
. Suppose the root of δ is labelled {a}xk ′ . It follows from Lemma  (specialized to the rewrite

system ExpCount) that either x = ϵ or x = ky and {bn}yk ′ occurs in a proper subproof of δ .
Hence the statement of the lemma applies to {bn}yk ′ . Therefore y = y0ky1 · · ·kyr , where )
r ≥ 0, ) each yi ∈ {0,1}∗, ) |yi | = n for each i ≥ 1, and ) |y0| = n. The corresponding
statement for x follows immediately.

. Suppose the root of δ is labelled {b1}xk ′ . It follows from Lemma  that x = αy and {a}yk ′
occurs in a proper subproof of δ . Hence the statement of the lemma applies to {a}yk ′ . There-
fore y = ky0ky1 · · ·kyr , where ) r ≥ 0, ) each yi ∈ {0,1}∗, ) |yi | = n for each i ≥ 0. The
corresponding for x follows immediately.
We make a similar argument for j > 1.

. Suppose the root of δ is labelled {c}xk ′ . It follows from Lemma  that the following cases can
arise:

 Dolev-Yao theories with distributive encryption

Case : x = 2n − 1y and {a}yk ′ occurs in a proper subproof of δ . Hence the statement of the
lemma applies to it. Therefore y = ky0ky1 · · ·kyr , where ) r ≥ 0, ) each yi ∈ {0,1}∗, )
|yi |= n for each i ≥ 0. The corresponding statement for x follows immediately.

Case : {d}k xk ′ occurs in a proper subproof of δ . Now k x has the structure as stated in the
lemma, and the corresponding statement for x follows.

Case : {c}0x occurs in a proper subproof ofδ . Now 0x has the structure as stated in the lemma,
and the corresponding statement for x follows.

The corresponding statement for {d}x is proved similarly.
◀

The next two lemmas summarize the exact conditions on x such that X ⊢ {p}xk ′ occurs in π,
for p ∈ {c , d , f0, . . . , fn , g0, . . . , gn}.
▶ Lemma . Letπ be a normal proof of X ⊢ {c}0k ′ .
. For j ∈ {0, . . . , n}, if { f j }xk ′ occurs inπ, then x = y0z , where y ∈ L∗ such that |y|= j .
. For j ∈ {0, . . . , n}, if {g j }xk ′ occurs inπ, then x = y1z , where y ∈ L∗ such that |y|= j .

Proof. Let δ be a subproof of π with root labelled r . We assume the statement of the lemma for
all terms occurring in all proper subproofs of δ and prove it for δ itself. Clearly we only need to
consider the last rule of δ . We prove the claim for terms of the form { f j }xk ′ . The proof for {g j }xk ′
are identical.

Suppose r = { f0}xk ′ . Then by Lemma  (specialized to the rewrite system ExpCount), x = 0z
for z ∈K∗, as desired.

Suppose r = { f j+1}xk ′ for j ∈ {0, . . . , n−2}. Then by Lemma , x = ℓx ′ (for ℓ ∈ L), and { f j }x ′k ′
occurs in a proper subproof of δ . Hence the statement of this lemma tells us that x ′ = y0z with
y ∈ L∗ and |y|= j . . Thus x = ℓy0z is also of the desired form. ◀

▶ Lemma . Letπ be a normal proof of X ⊢ {c}0k ′ . Suppose x = yk zw where y, z ∈ {0,1}∗ such that
|z |= i and |y|= n− i for some i ∈ {0, . . . , n− 1}, and w ∈ L∗. Then:
. if {c}xk ′ occurs inπ, then z = 1i .
. if {d}xk ′ occurs inπ, then z ̸= 1i .

Proof. As usual, we prove by induction on the size of the subproof of π in which the term occurs.
So suppose δ is a subproof of π with root labelled r . We will consider the case when r = {c}xk ′ .
The case when r = {d}xk ′ is handled along the same lines.

By Lemma  (specialized to the rewrite system ExpCount), there are three cases.
Case : y = 2n − 1. In this case, z = ϵ and the statement is vacuously true.
Case : {d}k xk ′ occurs in a proper subproof of δ . In this case too, it follows that |y|= n and z = ϵ,

and the statement holds vacuously.
Case : {c}0xk ′ and {gn}xk ′ occur in proper subproofs of δ . Since {gn}xk ′ occurs in δ , it has to be

the case that x = w ′1w with |w ′| = n. Thus, it follows that z = z ′1 (since |yk z | = |w ′1| and
they are both prefixes of x). But we also know that {c}0x occurs in a proper subproof of δ . So
the lemma applies to 0x = 0yk z ′1w , and hence z ′ = 1i−1. Thus z = 1i .

◀

Till now, we just constrained the structure of terms occurring in a normal proof of X ⊢ {c}0k ′ .
Now, we come to the crucial statement, which says that if a term with a certain keyword occurs in
π, then another term with a longer keyword occurs in π.

▶ Lemma . Letπ be a normal proof of X ⊢ {c}0k ′ . Then

A Baskar, R Ramanujam, and S P Suresh 

. If {c}xk ′ occurs inπ for x = α0 · · ·αn−1ky and αi = 0 for some i ∈ {0, . . . , n−1}, then {d}k x occurs
inπ.

. Suppose x = αi+1 · · ·αn−1kβ0 · · ·βn−1ky for i ∈ {0, . . . , n−1}, andβ j = 0 for some j ∈ {0, . . . , n−
1}. Then:
a. if {c}xk ′ occurs inπ, then {c}0xk ′ also occurs inπ.
b. if {d}xk ′ occurs inπ andβ j = 1 for all j < i , then {c}1xk ′ also occurs inπ.
c. if {d}xk ′ occurs inπ andβ j = 0 for some j < i , then {d}βi xk ′ also occurs inπ.

Proof. . It is given that α0 · · ·αn−1 ̸= 2n − 1. So the only cases that can arise are that {d}k xk ′ oc-
curs earlier in the proof, or that {c}0xk ′ occurs earlier. But {c}0x cannot occur, since 0α0 · · ·αn−1
is of length n+ 1, and that is a contradiction. Therefore {d}k x occurs in π.

. a. Suppose {c}xk ′ occurs in π, for i ∈ {0, . . . , n − 1} and x = αi+1 · · ·αn−1kβ0 · · ·βn−1kyk ′,
such that β j = 0 for some j ∈ {0, . . . , n − 1}. Since αi+1 · · ·αn−1 is of length smaller than
n, neither {d}k xk ′ nor {a}kyk ′ can occur in δ . It then follows that {c}0xk ′ occurs in a proper
subproof of π.

b. Suppose {d}xk ′occurs in π, for x as above, and supposeβ j = 1 for all j < i . Then it cannot
be the case that {d}αi xk ′ occurs in π, as that would violate the previous lemma. Therefore it
has to be the case that {c}1xk ′ and { fn}xk ′ occur in proper subproofs of π.

c. Suppose {d}xk ′ is the conclusion of a blindsplit in π, for x as above, and suppose β j = 0
for some j < i . Then it cannot be the case that {c}αi xk ′ occurs in π, as that would violate
the previous lemma. Therefore it has to be the case that either {d}0xk ′ and { fn}xk ′ occur in
proper subproofs of π, or that {d}1xk ′ and {gn}xk ′ occur in proper subproofs of π. If { fn}xk ′
occurs, then βi = 0, but then αi = 0 as well. If {gn}x occurs, then βi = 1, but then αi = 1
as well. Thus {d}βi xk ′ occurs in π.

◀
▶ Lemma. Letπ be a normal proof ofX ⊢ {c}0k ′ . Suppose {c}mxk ′ occurs inπ, and m ̸= 2n−1. Then
{c}m+1k mxk ′ also occurs inπ.

Proof. Let m = 1r 0βr+1 · · ·βn−1, so that m+ 1= 0r 1βr+1 · · ·βn−1.
Firstly, by item () of the previous lemma, {d}k mxk ′ occurs in π. Now by applying item (c) of

the previous lemma repeatedly, we can conclude that

{d}βr+1···βn−1k1r 0βr+1···βn−1 xk ′

occurs in π. Applying item (b) of the previous lemma now gives us that

{c}1βr+1···βn−1k1r 0βr+1···βn−1 xk ′

occurs in π. We now apply item (a) of the previous lemma repeatedly to get that

{c}0r 1βr+1···βn−1k1r 0βr+1···βn−1 xk ′

occurs in π.
But 0r 1βr+1 · · ·βn−1 is precisely m+ 1. Hence the lemma is proved. ◀
The following lemma, which is our main goal, is an immediate consequence of the above.

▶ Lemma . Letπ be a normal proof of X ⊢ {c}0k ′ . Then {c}2n−1k2n−2k···k1k0k ′ occurs inπ.

Since {c}2n−1k2n−2k···k1k0k ′ it occurs in any proof whose normalization is π. Thus any proof of X ⊢
{c}und e r l i ne0k ′ contains a termwhich has an exponentially long chain of encryption. Since building
such a term involves exponentiallymany applications of the encryption rule, anyproof ofX ⊢ {c}0k ′
contains exponentially many terms.

 Dolev-Yao theories with distributive encryption

 Discussion

We can think of a number of extensions of our system by considering more algebraic properties of
the blind pair operator, like associativity, commutativity, unitariness, etc. It then becomes more
convenient to treat an extension of the Dolev-Yao model with a polyadic + operator, over which
encryption distributes. In this framework, a very powerful system is studied in [], where + is
treated as an abelian group operator.

The decidability results in [] are driven by a set of normalization rules whose effect is drastic-
ally different from ours. Our rules ensure that the “width” of terms occurring in a normal proof of
X ⊢ t is bounded by X ∪ {t}. But their normalization rules ensure that the encryption depth of
terms occurring in a normal proof of X ⊢ t is bounded by X ∪ {t}. On the other hand, the width
of terms, represented by coefficients in the +-terms, can grow unboundedly. The rest of their de-
cidability proof is an involved argument using algebraic methods.

The techniques of our paper do not seem to extend to the system with an abelian group oper-
ator, nor for slightly weaker systems where+ is associative and commutative, or when+ is a (not
necessarily commutative) group operator and the term syntax allows terms of the form −t . But
the techniques for our upper bound proofs extend to the case when + is just an associative oper-
ator (not necessarily commutative, or has inverses). Another extension that is usually considered
is encryption with constructed keys rather than atomic keys. The upper bound results go through
for this system as well, with much of the hard work lying in extending the weak locality theorem.

To illustrate the difference between our system and the system in [], consider the derivation
in Example . In the notation of their paper, the set X of that example is:

{k ,a+ {b}k , b + {c}k , c + {d}k , e + {d}k , f + {e}k ,{ f }k}
The following is a derivation of a from X .

a+ {b}k

b + {c}k

c + {d}k e + {d}k
c − e k

{c}k −{e}k f + {e}k
{c}k + f

b − f k

{b}k −{ f }k { f }k
{b}k

a

The key ingredient in the above proof is the ability to form linear combinations of arbitrary
terms. This allows one to make a clever use of linear combinations to avoid the blow-up in the en-
cryption depth. In fact, every term occurring in this derivation is a linear combination of subterms
ofX∪{a}. One can devise normalization ruleswhich always ensure this property for normal proofs,
as done in []. But even though in the above simple example, the coefficients of the terms were all
from {−1,0,1}, one can conceive of examples where the coefficients cannot be bounded simply. In
fact, one has to use algebraic methods to impose some structure on the derivations despite there
being no obvious bounds on the coefficients.

Our methods do not extend to a system as above, which allows arbitrary linear combinations,
since the automaton construction seems to depend on the existence of a finite “core”, as we ob-
served earlier. But the relationships between the two techniques need to be studied in more depth.
We leave this for future work.

A Baskar, R Ramanujam, and S P Suresh 

We have concentrated on the passive intruder derivability problem in this paper. It is interest-
ing to consider the active intruder deduction problem for these systems, in the spirit of []. It would
also be interesting to investigate techniques for decidability of the secrecy problemwhenwe do not
necessarily have a locality property for passive intruder deductions but only an automaton-based
decision procedure. This would be in the spirit of the work [], which studies conditions under
which a locality-based decidability for passive intruder deducibility can be lifted to a decision pro-
cedure for the active intruder deducibility. We leave that too for future work.

References

 A. Baskar, R. Ramanujam, and S.P. Suresh. Knowledge-basedmodelling of voting protocols. InDov
Samet, editor, Proceedings of the th Conference onTheoretical Aspects of Rationality and Knowledge,
pages –, .

 A. Baskar, R. Ramanujam, and S.P. Suresh. A dexptime-complete Dolev-Yao theory with dis-
tributive encryption. In Proceedings of MFCS , volume  of Lecture Notes in Computer
Science, pages –, August .

 Vincent Bernat and Hubert Comon-Lundh. Normal proofs in intruder theories. In ASIAN, pages
–, .

 A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata: Application
to model-checking. In Proc. of CONCUR’, pages –, .

 Sergiu Bursuc, Stéphanie Delaune, and Hubert Comon-Lundh. Deducibility constraints. In
Anupam Datta, editor, Proceedings of ASIAN , volume  of Lecture Notes in Computer Sci-
ence, pages –. Springer, December .

 Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. Alternation. Journal of the ACM,
:–, January .

 Yannick Chevalier, Ralf Küsters, Michaël Rusinowitch, andMathieu Turuani. An NP decision pro-
cedure for protocol insecurity with XOR. Theoretical Computer Science, (–):–, .

 H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison, and M. Tom-
masi. Tree Automata Techniques and Applications. . Available on: http://www.grappa.univ-

lille3.fr/tata.
 Hubert Comon-Lundh and Vitaly Shmatikov. Intruder Deductions, Constraint Solving and Insec-

urity Decisions in Presence of Exclusive or. In Proceedings of the th IEEE Synposium on Logic in
Computer Science (LICS), pages –, June .

 Véronique Cortier, Stéphanie Delaune, and Pascal Lafourcade. A survey of algebraic properties
used in cryptographic protocols. Journal of Computer Security, ():–, .

 Véronique Cortier, Michaël Rusinowitch, and Eugen Zalinescu. A resolution strategy for verifying
cryptographic protocols with cbc encryption and blind signatures. In PPDP, pages –, .

 Stéphanie Delaune, Steve Kremer, and Mark D. Ryan. Verifying privacy-type properties of elec-
tronic voting protocols. Journal of Computer Security, ():–, July .

 Danny Dolev, Shimon Even, and Richard M. Karp. On the Security of Ping-Pong Protocols. In-
formation and Control, :–, .

 Danny Dolev and Andrew Yao. On the Security of public-key protocols. IEEE Transactions on
InformationTheory, :–, .

 Atsushi Fujioka, Tatsuaki Okamoto, and Kaazuo Ohta. A practical secret voting scheme for large
scale elections. In ASIACRYPT, pages –, .

 Thomas Genet and Francis Klay. Rewriting for cryptographic protocol verification. Technical
report, CNET-France Telecom, .

 JeanGoubault Larrecq. Amethod for automatic cryptographic protocol verification. InProceedings
of the th IPDPS Workshops , volume  of Lecture Notes in Computer Science, pages –
, .

 Dolev-Yao theories with distributive encryption

 Pascal Lafourcade, Denis Lugiez, and Ralf Treinen. Intruder deduction for the equational theory
of abelian groups with distributive encryption. Information and Computation, ():–,
April .

 David Monniaux. Abstracting cryptographic protocols with tree automata. In Static analysis sym-
posium, volume  of Lecture Notes in Computer Science, pages –, .

 Michaël Rusinowitch and Mathieu Turuani. Protocol Insecurity with Finite Number of Sessions
and Composed Keys is NP-complete. Theoretical Computer Science, :–, .

 Dejvuth Suwimonteerabuth, Stefan Schwoon, and Javier Esparza. Efficient algorithms for altern-
ating pushdown systems with an application to the computation of certificate chains. In Susanne
Graf andWenhui Zhang, editors, th International Symposium on Automated Technology for Verifica-
tion andAnalysis (ATVA), volumeofLectureNotes inComputer Science, pages –, Beijing,
China, October . Springer.

A Baskar, R Ramanujam, and S P Suresh 

A Examples of the automaton construction

The first example we look at is a derivation of {t}k from X = {[t , t ′],{t ′}k , k}. We will show parts
of the successive stages of the automaton construction corresponding to this derivation. In this
example and the next, we have only displayed enough states and edges that help us verify the ex-
istence of the appropriate derivation.

t

t ′

[t , t ′]

{t ′}k

f

k

k

Stage . Notice
and-edge from t .

t

t ′

[t , t ′]

{t ′}k

f

k

k

Stage . At this
stage we add edges
to f from all terms
derivable using the
Ax rule.

t

t ′

[t , t ′]

{t ′}k

f

k

k

k

k

Stage . The k-
labelled edge from
f to f is added be-
cause of the edge
from k to f . The k-
labelled edge from
t ′ to f is added
because there was
a k-labelled path
from t ′ to f in the
previous stage.

 Dolev-Yao theories with distributive encryption

t

t ′

[t , t ′]

{t ′}k

f

k

k

k

k

k

Stage . The k-
labelled edge from t
to f is added be-
cause there are
k-labelled paths
both from [t , t ′]
and t ′ in the pre-
vious stage. This
edge verifies that
X ⊢ {t}k .

The second example is a derivation of m from the set X = {[{t}k , m], t , k}.

m

{t}k

[{t}k , m] f

t

k
Stage . Notice the
and-edge from m.

m

{t}k

[{t}k , m] f

t

k

Stage . At this
stage we add edges
to f from all terms
derivable using the
Ax rule.

A Baskar, R Ramanujam, and S P Suresh 

m

{t}k

[{t}k , m] f

t

k

k

Stage . The k-
labelled edge from
f to f is added be-
cause of the edge
from k to f .

m

{t}k

[{t}k , m] f

t

k

k

Stage . The edge
from {t}k to f is
added because there
is a path labelled k
from t to f .

m

{t}k

[{t}k , m] f

t

k

k

Stage . The ϵ-
labelled edge from
m to f is added
because there are
ϵ-labelled edges
both from {t}k and
[{t}k , m] to f in
the previous stage.
This edge verifies
that X ⊢ m.

	Introduction
	The Dolev-Yao framework and the term derivability problem
	The basic model
	Distributive encryption in the Dolev-Yao framework
	Restricted proof system

	Normal proofs and weak locality
	The automaton construction
	Normal proofs and lower bounds
	A dexptime lower bound for the derivability problem
	Exponential lower bounds for proof size
	Discussion
	Examples of the automaton construction

