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Distributed systems

N nodes connected by asynchronous network

Nodes may fail and recover infinitely often

Nodes resume from safe state before failure

…
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Replicated datatypes
Each node replicates the data structure

Queries / updates addressed to any replica


Queries are side-effect free


Updates change the state of the data structure

…Replica 1 Replica 2 Replica 3 Replica N



Replicated datatypes …
Typical applications


Amazon shopping carts


Google docs


Facebook “like” counters

…Replica 1 Replica 2 Replica 3 Replica N



Replicated datatypes …

Typical data structure — Sets


Query : is x a member of S?


Updates : add x to S, remove x from S

…Replica 1 Replica 2 Replica 3 Replica N



Clients and replicas

Clients issue query/update requests


Each request is fielded by an individual source 
replica

…Replica 1 Replica 2 Replica 3 Replica N

Client A Client B Client D

x in S? add(x,S) remove(x,S)
Client C

remove(y,S)



Processing query requests

Queries are answered directly by source replica, 
using local state

…Replica 1 Replica 2 Replica 3 Replica N

Client A

x in S? Yes



Processing updates
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Client B

add(x,S)



Processing updates
Source replica first updates its own state
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Processing updates
Source replica first updates its own state

Propagates update message to other replicas


With auxiliary metadata (timestamps etc)

…Replica 1 Replica 2 Replica 3 Replica N

Client B

add(x,S)

add(x,S,Y) add(x,S,Y)



Strong eventual consistency

Replicas may diverge while updates propagate


All messages are reliably delivered


Replicas that receive the same set of updates must 
be query equivalent

After a period of quiescence, all replicas converge


Any stronger consistency requirement would negate 
availability or partition tolerance (Brewer’s CAP 
theorem)



Facebook example (2012)
http://markcathcart.com/2012/03/06/eventually-consistent/

http://markcathcart.com/2012/03/06/eventually-consistent/


Facebook example (2012)
http://markcathcart.com/2012/03/06/eventually-consistent/

http://markcathcart.com/2012/03/06/eventually-consistent/


CRDT: Conflict Free Data Types

Introduced by Shapiro et al 2011


Implementations of counters, sets, graphs, … that 
satisfy strong eventual consistency by design


No independent specifications


Correctness?


Formalisation by Burkhardt et al 2014


Very detailed, difficult to use for verification



Need for specifications
How to resolve conflicts?


What does it mean to concurrently apply add(x,S) and 
remove(x,S) to a set S?


Different replicas see these updates in different orders


Observed-Remove (OR) sets: add wins

…Replica 1 Replica 2 Replica 3 Replica N

Client A Client B Client D

x in S? add(x,S) remove(x,S)
Client C

remove(y,S)



“Operational” specifications
My implementation uses timestamps, … to detect 
causality and concurrency


If my replica received <add(x,S),t> and 
<remove(x,S),t’> and t and t’ are related by …, then 
answer Yes to “x in S?”, otherwise No

…Replica 1 Replica 2 Replica 3 Replica N

Client A Client B Client D

x in S? add(x,S) remove(x,S)
Client C

remove(y,S)



Declarative specification

Represent a concurrent computation canonically


Say a labelled partial order


Describe effect of a query based on partial order


Reordering of concurrent updates does not 
matter


Strong eventual consistency is guaranteed



CRDTs

Conflict-free Replicated Data Type:  D = (V,Q,U)


V — underlying universe of values


Q — query operations


U — update operations


For instance, for OR-sets, 
Q = {member-of}, U = {add, remove}



Runs of CRDTs
Recall that each update is


locally applied at source replica,


followed by N-1 messages to other replicas

…Replica 1 Replica 2 Replica 3 Replica N

Client B

add(x,S)

add(x,S,Y) add(x,S,Y)



Runs of CRDTs …

Sequence of query, update and receive operations

u1 u2 u3Init q1 u1 u1 q2 u2 u2u3 u3 u3u2u1
rec rec rec rec recrec rec rec

q3

r1 r1 r1 r1

rec

r2 r2 r2 r2r3 r3 r3 r3r4 r4 r4



Runs of CRDTs …
Ignore query operations


Associate a unique event with each update and 
receive operation

u1 u2 u3Init u1 u1 u2 u2u3 u3 u3u2u1
rec rec rec rec recrec rec rec

r1 r1 r1

rec

r2 r2 r2r3 r3 r3r4 r4 r4



Runs of CRDTs …

Replica order: total order of each replica’s events
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Runs of CRDTs …

Delivery order: match receives to updates
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Runs of CRDTs …
Happened before order on updates: Replica + Delivery


Need not be transitive

Causal delivery of messages makes it transitive
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Runs of CRDTs …
Local view of a replica


Whatever is visible below its maximal event
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Runs of CRDTs …

Even if updates are received locally in different 
orders, “happened before” on updates is the same
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Runs of CRDTs …

Even if updates are received locally in different 
orders, “happened before” on updates is the same

u1

u2

u3



Declarative specification

Define queries in terms of partial order of updates 
in local view


For example: add wins in an OR-set


Report “x in S” to be true if some maximal 
update is add(x,S)


Concurrent add(x,S), remove(x,S) will both be 
maximal



Bounded past

Typically do not need entire local view to answer a 
query


Membership in OR-sets requires only maximal 
update for each element


N events per element



Verification

Given a CRDT D = (V,Q,U), does every run of D 
agree with the declarative specification?


Strategy


Build a reference implementation from 
declarative specification


Compare the behaviour of D with reference 
implementation



Finite-state implementations

Assume universe is bounded


Can use distributed timestamping to build a 
sophisticated distributed reference implementation 
[VMCAI 2015]


Asynchronous automata theory


Requires bounded concurrency for timestamps 
to be bounded



Global implementation

A simpler global implementation suffices for 
verification


Each update event is labelled by the source replica 
with an integer (will be bounded later)


Maintain sequence of updates applied at each 
replica


either local update from client 

or remote update received from another replica



Later Appearance Record

Each replica’s history is an LAR of updates


(u1,l1) (u2,l2) … (uk,lk)


uj has details about update: source replica, 
arguments

lj is label tagged to uj by source replica


Labels are consistent across LARs — (ui,l) in r1 and 
(uj,l) in r2 denote same update event


Maintain LAR for each replica



Causality and concurrency

Suppose r3 receives (u,l) from r1 and (u’,l’) from r2


If (u,l) is causally before (u’,l’), (u,l) must appear 
in r2’s LAR before (u’,l’)


If (u,l) is not causally before (u’,l’) and (u’,l’) is not 
causally before (u,l), they must have been 
concurrent


Can recover partial order and answer queries 
according to declarative specification



Pruning LARs

Only need to keep latest updates in each local 
view


If (u,l) generated by r is not latest for any other 
replica, remove all copies of (u,l)


To prune LARs, maintain a global table keeping 
track of which updates are pending (not yet 
delivered to all replicas)


Labels of pruned events can be safely reused



Outcome

Simple global reference implementation that 
conforms to declarative specification of CRDT


Reference implementation is bounded if we make 
suitable assumptions about operating environment


Bounded universe


Bounded message delivery delays



Verification strategy
Counter Example Guided Abstraction Refinement 
(CEGAR)


Build a finite-state abstraction of given CRDT

Compute synchronous product with reference 
implementation

If an incompatible state is reached, trace out 
corresponding bad run in CRDT


If we find a bad run, we have found a bug

If not, refine abstraction and repeat



Future work

Build a tool!


Extend formalisation of CRDTs to wider classes


Composite CRDTs : Hash maps, graphs


Multiple CRDTs with internal consistency 
constraints


Partially replicated data — local sync in 
Dropbox, Google Drive


