
EFFICIENT VERIFICATION OF
REPLICATED DATATYPES USING LATER
APPEARANCE RECORDS (LAR)

Madhavan Mukund, Gautham Shenoy R, S P Suresh 
Chennai Mathematical Institute, Chennai, India

ATVA 2015, Shanghai, China, 14 October 2015

Distributed systems

N nodes connected by asynchronous network

…

Distributed systems

N nodes connected by asynchronous network

Nodes may fail and recover infinitely often

…

Distributed systems

N nodes connected by asynchronous network

Nodes may fail and recover infinitely often

Nodes resume from safe state before failure

…

Replicated datatypes
Each node replicates the data structure

…Replica 1 Replica 2 Replica 3 Replica N

Replicated datatypes
Each node replicates the data structure

Queries / updates addressed to any replica

Queries are side-effect free

Updates change the state of the data structure

…Replica 1 Replica 2 Replica 3 Replica N

Replicated datatypes …
Typical applications

Amazon shopping carts

Google docs

Facebook “like” counters

…Replica 1 Replica 2 Replica 3 Replica N

Replicated datatypes …

Typical data structure — Sets

Query : is x a member of S?

Updates : add x to S, remove x from S

…Replica 1 Replica 2 Replica 3 Replica N

Clients and replicas

Clients issue query/update requests

Each request is fielded by an individual source
replica

…Replica 1 Replica 2 Replica 3 Replica N

Client A Client B Client D

x in S? add(x,S) remove(x,S)
Client C

remove(y,S)

Processing query requests

Queries are answered directly by source replica,
using local state

…Replica 1 Replica 2 Replica 3 Replica N

Client A

x in S? Yes

Processing updates

…Replica 1 Replica 2 Replica 3 Replica N

Client B

add(x,S)

Processing updates
Source replica first updates its own state

…Replica 1 Replica 2 Replica 3 Replica N

Client B

add(x,S)

Processing updates
Source replica first updates its own state

Propagates update message to other replicas

With auxiliary metadata (timestamps etc)

…Replica 1 Replica 2 Replica 3 Replica N

Client B

add(x,S)

add(x,S,Y) add(x,S,Y)

Strong eventual consistency

Replicas may diverge while updates propagate

All messages are reliably delivered

Replicas that receive the same set of updates must
be query equivalent

After a period of quiescence, all replicas converge

Any stronger consistency requirement would negate
availability or partition tolerance (Brewer’s CAP
theorem)

Facebook example (2012)
http://markcathcart.com/2012/03/06/eventually-consistent/

http://markcathcart.com/2012/03/06/eventually-consistent/

Facebook example (2012)
http://markcathcart.com/2012/03/06/eventually-consistent/

http://markcathcart.com/2012/03/06/eventually-consistent/

CRDT: Conflict Free Data Types

Introduced by Shapiro et al 2011

Implementations of counters, sets, graphs, … that
satisfy strong eventual consistency by design

No independent specifications

Correctness?

Formalisation by Burkhardt et al 2014

Very detailed, difficult to use for verification

Need for specifications
How to resolve conflicts?

What does it mean to concurrently apply add(x,S) and
remove(x,S) to a set S?

Different replicas see these updates in different orders

Observed-Remove (OR) sets: add wins

…Replica 1 Replica 2 Replica 3 Replica N

Client A Client B Client D

x in S? add(x,S) remove(x,S)
Client C

remove(y,S)

“Operational” specifications
My implementation uses timestamps, … to detect
causality and concurrency

If my replica received <add(x,S),t> and
<remove(x,S),t’> and t and t’ are related by …, then
answer Yes to “x in S?”, otherwise No

…Replica 1 Replica 2 Replica 3 Replica N

Client A Client B Client D

x in S? add(x,S) remove(x,S)
Client C

remove(y,S)

Declarative specification

Represent a concurrent computation canonically

Say a labelled partial order

Describe effect of a query based on partial order

Reordering of concurrent updates does not
matter

Strong eventual consistency is guaranteed

CRDTs

Conflict-free Replicated Data Type: D = (V,Q,U)

V — underlying universe of values

Q — query operations

U — update operations

For instance, for OR-sets, 
Q = {member-of}, U = {add, remove}

Runs of CRDTs
Recall that each update is

locally applied at source replica,

followed by N-1 messages to other replicas

…Replica 1 Replica 2 Replica 3 Replica N

Client B

add(x,S)

add(x,S,Y) add(x,S,Y)

Runs of CRDTs …

Sequence of query, update and receive operations

u1 u2 u3Init q1 u1 u1 q2 u2 u2u3 u3 u3u2u1
rec rec rec rec recrec rec rec

q3

r1 r1 r1 r1

rec

r2 r2 r2 r2r3 r3 r3 r3r4 r4 r4

Runs of CRDTs …
Ignore query operations

Associate a unique event with each update and
receive operation

u1 u2 u3Init u1 u1 u2 u2u3 u3 u3u2u1
rec rec rec rec recrec rec rec

r1 r1 r1

rec

r2 r2 r2r3 r3 r3r4 r4 r4

Runs of CRDTs …

Replica order: total order of each replica’s events

u1

u2

u3

Init

u1

u1

u2

u2

u3

u3

u3

u2

u1

rec

rec

rec rec

rec

rec

rec

rec

r1rec

r2

r3

r4

Runs of CRDTs …

Delivery order: match receives to updates

u1

u2

u3

Init

u1

u1

u2

u2

u3

u3

u3

u2

u1

rec

rec

rec rec

rec

rec

rec

rec

r1rec

r2

r3

r4

Runs of CRDTs …
Happened before order on updates: Replica + Delivery

Need not be transitive

Causal delivery of messages makes it transitive

u1

u2

u3

Init

u1

u1

u2

u2

u3

u3

u3

u2

u1

rec

rec

rec rec

rec

rec

rec

rec

r1rec

r2

r3

r4

Runs of CRDTs …
Local view of a replica

Whatever is visible below its maximal event

u1

u2

u3

Init

u1

u1

u2

u2

u3

u3

u3

u2

u1

rec

rec

rec rec

rec

rec

rec

rec

r1rec

r2

r3

r4

Runs of CRDTs …
Local view of a replica

Whatever is visible below its maximal event

u1

u2

u3

Init

u1

u1

u2

u2

u3

u3

u3

u2

u1

rec

rec

rec rec

rec

rec

rec

rec

r1rec

r2

r3

r4

Runs of CRDTs …
Local view of a replica

Whatever is visible below its maximal event

u1

u2

u3

Init

u1

u1

u2

u2

u3

u3

u3

u2

u1

rec

rec

rec rec

rec

rec

rec

rec

r1rec

r2

r3

r4

Runs of CRDTs …
Local view of a replica

Whatever is visible below its maximal event

u1

u2

u3

Init

u1

u1

u2

u2

u3

u3

u3

u2

u1

rec

rec

rec rec

rec

rec

rec

rec

r1rec

r2

r3

r4

Runs of CRDTs …
Local view of a replica

Whatever is visible below its maximal event

u1

u2

u3

Init

u1

u1

u2

u2

u3

u3

u3

u2

u1

rec

rec

rec rec

rec

rec

rec

rec

r1rec

r2

r3

r4

Runs of CRDTs …

Even if updates are received locally in different
orders, “happened before” on updates is the same

u1

u2

u3

Init

u1

u1

u2

u2

u3

u3

u3

u2

u1

rec

rec

rec rec

rec

rec

rec

rec

r1rec

r2

r3

r4

Runs of CRDTs …

Even if updates are received locally in different
orders, “happened before” on updates is the same

u1

u2

u3

Declarative specification

Define queries in terms of partial order of updates
in local view

For example: add wins in an OR-set

Report “x in S” to be true if some maximal
update is add(x,S)

Concurrent add(x,S), remove(x,S) will both be
maximal

Bounded past

Typically do not need entire local view to answer a
query

Membership in OR-sets requires only maximal
update for each element

N events per element

Verification

Given a CRDT D = (V,Q,U), does every run of D
agree with the declarative specification?

Strategy

Build a reference implementation from
declarative specification

Compare the behaviour of D with reference
implementation

Finite-state implementations

Assume universe is bounded

Can use distributed timestamping to build a
sophisticated distributed reference implementation
[VMCAI 2015]

Asynchronous automata theory

Requires bounded concurrency for timestamps
to be bounded

Global implementation

A simpler global implementation suffices for
verification

Each update event is labelled by the source replica
with an integer (will be bounded later)

Maintain sequence of updates applied at each
replica

either local update from client

or remote update received from another replica

Later Appearance Record

Each replica’s history is an LAR of updates

(u1,l1) (u2,l2) … (uk,lk)

uj has details about update: source replica,
arguments

lj is label tagged to uj by source replica

Labels are consistent across LARs — (ui,l) in r1 and
(uj,l) in r2 denote same update event

Maintain LAR for each replica

Causality and concurrency

Suppose r3 receives (u,l) from r1 and (u’,l’) from r2

If (u,l) is causally before (u’,l’), (u,l) must appear
in r2’s LAR before (u’,l’)

If (u,l) is not causally before (u’,l’) and (u’,l’) is not
causally before (u,l), they must have been
concurrent

Can recover partial order and answer queries
according to declarative specification

Pruning LARs

Only need to keep latest updates in each local
view

If (u,l) generated by r is not latest for any other
replica, remove all copies of (u,l)

To prune LARs, maintain a global table keeping
track of which updates are pending (not yet
delivered to all replicas)

Labels of pruned events can be safely reused

Outcome

Simple global reference implementation that
conforms to declarative specification of CRDT

Reference implementation is bounded if we make
suitable assumptions about operating environment

Bounded universe

Bounded message delivery delays

Verification strategy
Counter Example Guided Abstraction Refinement
(CEGAR)

Build a finite-state abstraction of given CRDT

Compute synchronous product with reference
implementation

If an incompatible state is reached, trace out
corresponding bad run in CRDT

If we find a bad run, we have found a bug

If not, refine abstraction and repeat

Future work

Build a tool!

Extend formalisation of CRDTs to wider classes

Composite CRDTs : Hash maps, graphs

Multiple CRDTs with internal consistency
constraints

Partially replicated data — local sync in
Dropbox, Google Drive

