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Abstract: We investigate the problem of local reconstruction, as defined by Saks and Seshadhri (2008), in the
context of error correcting codes.
The first problem we address is that of message reconstruction, where given oracle access to a corrupted encoding
w ∈ {0, 1}n of some message x ∈ {0, 1}k our goal is to probabilistically recover x (or some portion of it). This
should be done by a procedure (reconstructor) that given an index i as input, probes w at few locations and
outputs the value of xi. The reconstructor can (and indeed must) be randomized, with all its randomness
specified in advance by a single random seed, and the main requirement is that for most random seeds, all values
x1, . . . , xk are reconstructed correctly (notice that swapping the order of “for most random seeds” and “for all
x1, . . . , xk” makes the definition equivalent to standard Local Decoding).
A message reconstructor can serve as a “filter” that allows evaluating certain classes of algorithms on x safely
and efficiently. For instance, to run a parallel algorithm, one can initialize several copies of the reconstructor
with the same random seed, and then they can autonomously handle decoding requests while producing outputs
that are consistent with the original message x. Another motivation for studying message reconstruction arises
from the theory of Locally Decodable Codes.
The second problem that we address is codeword reconstruction, which is similarly defined, but instead of
reconstructing the message the goal is to reconstruct the codeword itself, given an oracle access to its corrupted
version.
Error correcting codes that admit message and codeword reconstruction can be obtained from Locally Decodable
Codes (LDC) and Self Correctible Codes (SCC) respectively. The main contribution of this paper is a proof
that in terms of query complexity, these are close to be the best possible constructions, even when we disregard
the length of the encoding.
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1 Introduction

Consider the following problem: a large data x ∈
{0, 1}k is stored on a storage device in encoded form,
but a small fraction of the encoding may be corrupted.
We want to execute an algorithm M on x, but most
likely M will only need a small fraction of x for its
execution. This can be the case if M is a single pro-
cess in a large parallelized system, or if M is a query-
ing algorithm with limited memory, that can even be
adaptive, not knowing which bits of the input it will
need in advance. Ideally, in all these cases M should
have the ability to efficiently decode any bit of x only
when the need arises (in particular, decoding every bit
should be done by reading only a small fraction of the
corrupted encoding), and to ensure correctness it is
also necessary that M succeeds (with high probabil-
ity) in correctly decoding all bits that are required for

its execution. One way of ensuring this is to decode
the whole message x in advance, but in many cases
this may be very inefficient, or even impossible.

To perform the above task, a message reconstruc-
tor is required, that can simulate query access to x in
a local manner. Concretely, a message reconstructor
is an algorithm that can recover the original message
x ∈ {0, 1}k from a corrupted encoding w ∈ {0, 1}n

under two main conditions: (locality) for every i ∈ [k]
reconstructing xi requires reading w only at very few
locations; (consistency) with high probability, all in-
dices i ∈ [k] should be reconstructed correctly. When
the consistency condition is weakened, so that only
each index in itself is reconstructed correctly with high
probability, the definition becomes equivalent to Local
Decoding, as formally defined in [11]. Informally, a lo-
cally decodable code (LDC) is an error-correcting code
which allows to probabilistically decode any symbol of
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an encoded message by probing only a few symbols of
its corrupted encoding. As in the case of LDCs, the
main challenge in message reconstruction is to find
short codes that allow reconstruction of every xi with
as few queries to w as possible.

Any q-query LDC can be used for O(q log k)-query
message reconstruction, by simply repeating the local
decoding procedure O(log k) times (for every decod-
ing request xi) and outputting the majority vote. The
repetition will reduce the probability of incorrectly re-
constructing xi to 1/(3k), so that with probability 2/3
all k indices are reconstructed correctly. Thus having
O(1)-query LDCs (e.g. the Hadamard code) immedi-
ately implies the existence of codes with an O(log k)-
query message reconstructor. The question that im-
mediately arises is whether one can do better, specifi-
cally in terms of query complexity. The first theorem
of this paper (see Theorem 3.2) states that for any
encoding of any length, a non-adaptive message re-
constructor must make Ω(log k) queries per decoding
request.

Another family of error correcting codes related to
LDCs are self correctable codes (SCC) [3]. In a q-
query self-correctable code the probabilistic decoder
is required to recover an arbitrary symbol of the en-
coding itself. The second problem that we study here
is of codeword reconstruction, which is related to SCCs
in the same manner that message reconstruction is re-
lated to LDCs. Concretely, a codeword reconstructor is
an algorithm that can recover a codeword y ∈ {0, 1}n

from its corrupted version w ∈ {0, 1}n with two con-
ditions: (locality) for every i ∈ [n] reconstructing yi

requires reading w only at very few locations; (consis-
tency) with high probability, all indices i ∈ [n] should
be reconstructed correctly. Here too, if the consistency
condition is weakened, so that only each index in it-
self is reconstructed correctly with high probability,
then the definition becomes equivalent to self correc-
tion; and any q-query SCC can be used for O(q log n)-
query codeword reconstruction. Thus having O(1)-
query SCCs (e.g. the Hadamard code) immediately
implies the existence of an O(log n)-query codeword
reconstructor.

The second theorem of this paper (see Theorem 3.4)
gives lower bounds on the query complexity of code-
word reconstruction for linear codes. Denoting by n̂
the number of distinct rows in the generating matrix
of a linear code, Theorem 3.4 states that codeword re-
construction requires Ω(

√
log n̂) queries per decoding

request. Since essentially all known SCCs are linear
codes with n̂ = n, this bound is tight up to the square

root. Furthermore, a lower bound on the query com-
plexity can neither be stated for general (non-linear)
codes, nor stated in terms of n alone. We elaborate
on this in Remark 3.5 below.

1.1 Related work

Local reconstruction. Initially the model of online
property reconstruction was introduced in [1]. In this
setting a data set f is given (we can think of it as
a function f : [n]d → N) which should have a speci-
fied structural property P , but this property may not
hold due to unavoidable errors. The specific property
studied in [1] was monotonicity, and the goal of the re-
constructor was to construct (online) a new function
g that is monotone, but not very far from the orig-
inal f . The authors developed such a reconstructor,
which given x ∈ [n]d could compute g(x) by querying
f at only few locations. However, the reconstructor
had to “remember” its previous answers in order to
be consistent with some fixed monotone function g,
making it not suitable for parallel or memory-limited
applications.

This issue was addressed in [13], where the authors
presented a purely local reconstructor for monotonic-
ity, that could output g(x) based only on few inspec-
tions of f . Given a random string r, the reconstructor
of [13] could locally reconstruct g at any point x, such
that all answers were consistent with some function g,
which for most random strings r was monotone. Such
a reconstructor affords an obvious distributed imple-
mentation: generate one random seed, and distribute
it to each of the copies of the reconstructor. Since
they are all determined by r, their answers will be
consistent.

Local reconstruction was also studied in the con-
text of graphs [9,10] and geometric problems [4]. In
particular, [10] studied the problem of expander re-
construction. Given an oracle access to a graph that
is close to being an expander, the algorithm of [10] can
simulate an oracle access to a corrected graph, that is
an expander. Reconstruction in the context of parti-
tion problems for dense graphs was implicitly studied
in [9]. Given a dense graph G that is close to satis-
fying some partition property (say k-colorability), the
approximate partitioning algorithm from [9] can be
made into one that efficiently and locally reconstructs
a graph G′ that satisfies the partition property and is
close to G.

LDCs and SCCs. Locally decodable codes were ex-
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plicitly defined in [11], but they were extensively stud-
ied before that in the context of self-correcting com-
putation, worst-case to average-case reductions, ran-
domness extraction, probabilistically checkable proofs
and private information retrieval (see [14] for a sur-
vey). The initial constructions of LDCs (and SCCs)
were based on Reed-Muller codes and allowed to en-
code a k-bit message by a poly(log k)-query LDC of
length poly(k) [2,5].

For a fixed number of queries, the complexity of
LDCs was first studied in [11], and has since been the
subject of a large body of work (see [8,14] for sur-
veys). To this day, there is a nearly exponential gap
between the best known upper bounds on the length
of q-query LDCs [6,17] and the corresponding lower
bounds [12,15,16], for any constant q ≥ 3.

While interesting on its own, studying message re-
construction can help us in understanding the limita-
tions of LDCs. If we view the local decoding algorithm
as a deterministic algorithm that takes as input i ∈ [k]
and a random string r, then we require that for each
i, most choices of r lead to the correct decoding of
the ith bit of the message. For message reconstruc-
tion we swap the for all i and for most r quantifiers,
and require that for most choices of r, the algorithm
correctly decodes all k bits of the encoded message.

Our lower bounds imply that in the case of error-
correcting codes, it is impossible to correlate the suc-
cess probabilities of a local decoder in a way that for
most random strings r, either all bits of the message
are decoded correctly, or only very few of them are.
This is in contrast to the results from local recon-
struction of general properties (described in previous
section), where clever use of the fixed randomness r
allows reconstruction with very few queries.

As we explained earlier, a constant query LDC of
polynomial length would imply the existence of an
O(log k)-query message reconstructor of polynomial
rate. Thus constructing an O(log k)-query message
reconstructible code of polynomial rate can be an in-
termediate step towards constant-query LDCs of poly-
nomial length.

2 Preliminaries

For α ∈ Σn we denote by αi the i’th symbol of α,
and for a subset I ⊆ [n] we denote by α¹I the restric-
tion of α to the indices in I. The Hamming distance,
or simply the distance d(α, β) between two strings

α, β ∈ Σn, is the number of indices i ∈ [n] such that
αi 6= βi. Given a set S ⊆ Σn and α ∈ Σn, the distance
of α from S is defined as d(α, S) = minβ∈S{d(α, β)},
where as expected the minimum over an empty set is
defined to be +∞. For ε > 0 we say that α is ε-close
to S if d(α, S) ≤ ε|α|.

An [n, k, d]Σ code is a mapping C : Σk → Σn such
that for every x 6= x′ ∈ Σk, d(C(x), C(x′)) ≥ d.
The parameter k is called the message length (or the
information length) of the code and n is called the
block length or simply length of the code. Some-
times we refer to C also as a subset of Σn defined
as C = {y : ∃x ∈ Σk s.t. y = C(x)}, and the elements
y ∈ C are called codewords.

Usually we will be interested in some family C of
codes 〈Ck〉k∈N, with functions n = n(k) and d = d(k),
in which every Ck is an [n, k, d]Σ code. Whenever the
alphabet Σ is not specified it means that Σ = {0, 1}.
With a slight abuse of notation, for x ∈ Σk we will
denote by C(x) the mapping Ck(x) given by the “right
size” code Ck from the family C. Similarly, for n =
n(k) and w ∈ Σn we define the distance of w from C
as d(w, C) = d(w,Ck), which is the minimal distance
between w and some codeword of C. If d(w, C) < d/2
then the minimum is achieved by a unique codeword
y ∈ C, and we denote this codeword by DC(w). In this
case the original message is well defined, and it will be
denoted by C−1(DC(w)).

An [n, k, d] code C is linear if (for all k) it has a
generating matrix G ∈ {0, 1}n×k such that1 for all x ∈
{0, 1}k, C(x) = Gx. We denote by R(C) the number
of distinct non-zero rows in C’s generating matrix.

3 Definition of our model and
statement of main results

Here we formally define message and codeword re-
construction, and state our main results. All our def-
initions apply to non-adaptive algorithms, i.e. algo-
rithms that base their query strategy solely on their
random bits, while basing their output on both ran-
dom bits and the answers to the queries. For clarity of
analysis we make the dependence on a random string
r of bits (assumed to be chosen uniformly and inde-
pendently) explicit, and we restrict2 our attention to
families of [n, k, d] codes, where Σ = {0, 1}. We dis-

1Here and in the following we may identify {0, 1} with the
field of two elements in the standard way.

2Nevertheless, the bounds presented in this paper generalize
to larger alphabets as well.
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regard computation time considerations because all
lower bounds presented here hold regardless of com-
putation time.

Definition 3.1(Message Reconstruction) Let C
be a family of [n, k, d] codes with d ≥ 2δn for some
fixed δ > 0, let q, ρ : N → N and let ε be a fixed
constant3 satisfying 0 < ε < δ. A (q, ε, ρ) message re-
constructor for C is a deterministic machine A, taking
as inputs k, n = n(k) ∈ N, i ∈ [k] and a random string
r ∈ {0, 1}ρ(k), that for every w ∈ {0, 1}n satisfies the
following:

• A generates a set Qi,r ⊆ [n] of q = q(k) indices
and a function Ci,r : {0, 1}q → {0, 1}, and out-
puts Aw

r (i) , Ci,r(w¹Qi,r
).

• Let Aw
r ∈ {0, 1}k denote the concatenation

Aw
r (1)Aw

r (2) · · · Aw
r (k).

If d(w, C) ≤ εn then
Prr

[
Aw

r = C−1(DC(w))
]
≥ 2/3.

When it is not important, we will avoid mentioning
explicitly the random string length ρ, and will sim-
ply use the term (q, ε) message reconstructor (or even
q-query message reconstructor) to mean a (q, Ω(1))
message reconstructor. For abbreviation, we may also
use Ar to denote the algorithm A that operates with
the fixed random string r ∈ {0, 1}ρ.

In this terminology, if a code C has a (q, ε) mes-
sage reconstructor then it is locally decodable with q
queries, up to noise rate ε. On the other hand, a code
that is locally decodable with q queries (up to noise
rate ε) has an (O(q log k), ε) message reconstructor,
and so the existence of constant query LDCs implies
that there exist codes that have an (O(log k),Ω(1))
message reconstructor. Our first result shows that in
terms of the number of queries this is essentially opti-
mal, even for arbitrarily long codes.

Theorem 3.2 There are no codes (of any length) with
an o(log k)-query non-adaptive message reconstructor.

Next we formally define codeword reconstruction.
Notice that here the query complexity and the ran-
domness of the algorithm are mentioned in terms of n
– the block length, rather than k as in the definition
of message reconstruction.

Definition 3.3(Codeword Reconstruction) Let C,

3For clarity of presentation ε will be considered to be an ab-
solute constant. Nevertheless, the bounds presented here have
only logarithmic dependence on 1/ε.

δ, q ,ρ and ε be as in Definition 3.1. A (q, ε) codeword
reconstructor for C is a deterministic machine A, tak-
ing as inputs k, n = n(k) ∈ N, i ∈ [n] and a random
string r ∈ {0, 1}ρ(n), that for every w ∈ {0, 1}n satis-
fies the following conditions:

• A generates a set Qi,r ⊆ [n] of q = q(n) in-
dices and a function Ci,r : {0, 1}q → {0, 1}, and
outputs Aw

r (i) , Ci,r(w¹Qi,r
).

• Let Aw
r ∈ {0, 1}n denote the concatenation

Aw
r (1)Aw

r (2) · · · Aw
r (n).

If d(w, C) ≤ ε then Prr

[
Aw

r = DC(w)
]
≥ 2/3.

Here too, we may avoid mentioning ρ explicitly, and
may use Ar to denote the algorithm A that operates
with the fixed random string r.

If a code C has a (q, ε) codeword reconstructor then
it is self-correctable with q queries, and conversely, any
code that is self-correctable with q queries up to noise
rate ε has an (O(q log n), ε) codeword reconstructor.
As stated earlier, constant query SCCs exist, hence
there are codes with an (O(log n),Ω(1)) codeword re-
constructor. Since essentially all known LDCs and
SCCs are linear codes, and furthermore they satisfy
R(C) = n (i.e., all rows in their generating matrix
are distinct), we actually have linear codes with an
(O(log R(C)),Ω(1)) codeword reconstructor. Our sec-
ond result shows that in the case of linear codes one
cannot get significantly better than that.

Theorem 3.4 There are no linear codes (of any
length) with an o(

√
log R(C))-query non-adaptive

codeword reconstructor.

Remark 3.5 For general (non-linear) codes there is
no lower bound on the query complexity which is poly-
logarithmic in n. This follows from a simple observa-
tion that if a code has a q-query message reconstruc-
tor then it also has a qk-query codeword reconstruc-
tor (in qk queries it is possible to decode the whole
message and its encoding). So, for example, Long
Codes admit a codeword reconstructor that makes only
O(k log k) = O(log log n log log log n) queries.

Furthermore, even if we focus on linear codes only,
stating the bound in Theorem 3.4 in terms of n (in-
stead of R(C)) is impossible, since there are linear
[n, k, d] codes that have a q-query codeword reconstruc-
tor, with q arbitrarily smaller than n. For example, let
C′ be a linear [n′, k, d′] code with a (q, ε) codeword re-
constructor, and define a new linear [n = tn′, k, d =
td′] code C as C(x) = C′(x) · · · C′(x), namely, encoding
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x with t copies of C′(x). Now for any t (and hence ar-
bitrarily large n), C(x) has a (q, ε/2) codeword recon-
structor, which picks a random copy of C′(x) from the
encoding, and then simulates on it the original code-
word reconstructor for C′.

In the following corollary we use the fact that any
linear code can be transformed into a systematic code4

and combine Theorem 3.2 with Theorem 3.4.

Corollary 3.6 There is no linear code with an
o(max{log k,

√
log R(C})-query codeword reconstruc-

tor.

It is worth mentioning that, while both local decod-
ing and self correction become trivial in the random-
noise model (via simple repetition codes), this is
not the case for reconstruction. In fact, the query-
complexity lower bounds from Theorems 3.2 and 3.4
apply to the random-noise model as well. See more
details in Section 7.1.

4 Proof of Theorem 3.2

Outline: Usually, lower bound proofs that use
Yao’s Principle involve an input distribution that
fools any deterministic algorithm of a certain type
(bounded query complexity in our case) with prob-
ability larger than 1/3. However, in this proof we will
need to analyse the probabilistic algorithm A itself,
giving special treatment to the indices that it queries
with high probability. We first prove that for most of
the deterministic algorithms Ar that result from fix-
ing the random seed r in A (the “typical” ones), the
number of bits that are reconstructed correctly based
only on the indices that are frequently queried by A is
small. Then we show that there is a distribution that
fools any such typical algorithm with very high prob-
ability. Due to this technique, instead of the usual
application of Yao’s Principle we argue that there is a
distribution D that fools at least half of the determin-
istic algorithms Ar with probability 1 − o(1). Thus,
the distribution D would fool the probabilistic algo-
rithm A with probability at least 1

2 − o(1).

Fix ε > 0. Let C be a family of [n, k, d] codes and
let A be its (q, ε) message reconstructor. Our goal is
to prove that q = Ω(log k). Recall that Qi,r ⊆ [n] de-
notes the set of indices queried by A on input i ∈ [k],
given the random string r. For j ∈ [n] we define
I(j, r) = {i ∈ [k] : j ∈ Qi,r}. Namely, I(j, r) is the set

4A linear code C is systematic if C(x)¹[k] = x for all x ∈
{0, 1}k.

of indices whose reconstructed value may depend on
the j’th bit of the received word, given that the ran-
dom seed is r. Similarly, for a subset S ⊂ [n] we define
I(S, r) =

⋃
j∈S I(j, r) = {i ∈ [k] : S ∩Qi,r 6= ∅}. We

call an index j ∈ [n] influential with respect to r if
|I(j, r)| > 10q, and non-influential otherwise.

The following two lemmas follow by considering the
bipartite graph Gr with message indices on the left
and code indices on the right where edges are defined
by Qi,r and I(j, r).

Lemma 4.1 For any r, there are at most k/10 influ-
ential indices in [n].

Proof. If there are more than k/10 influential in-
dices then

∑n
j=1 |I(j, r)| > ( k

10 )(10q) = kq. On the

other hand
∑n

j=1 |I(j, r)| =
∑k

i=1 |Qi,r| ≤ kq, a con-
tradiction. ¤

Lemma 4.2 Let A0
r ⊆ [n] be the set of influential

indices (with respect to r). There exists a partition
A1

r, A
2
r, . . . , A

T
r of [n] \ A0

r into T ≤ k parts such that
for all i ∈ [T ], |I(Ai

r, r)| ≤ 10q.

Proof. Recall that
∑n

j=1 |I(j, r)| ≤ kq from
the previous proof. Let us construct a partition
A1

r, . . . , A
T
r of the non-influential indices as follows:

A1
r contains the first `1 non-influential indices, where

`1 is the maximal number for which |I(A1
r)| ≤ 10q

(note that in particular `1 ≥ 1); then A2
r contains the

next `2 non-influential indices, where `2 is the largest
number satisfying |I(A2

r)| ≤ 10q and so on. We claim
that in the end of this process T ≤ k.

Assume that T > k. Consider the partition
B1, . . . , BdT/2e of the non-influential indices where
Bi = A2i−1

r ∪ A2i
r . Notice that since T ≥ k + 1, there

are at least k/2 parts in this partition. By the defini-
tion of Ai

r’s, all but at most one (the last) of the Bi’s
satisfy I(Bi) > 10q. So we have

n∑

j=1

|I(j, r)| ≥
dT/2e∑

i=1

|I(Bi, r)| > (k/2)10q > kq

contradicting the fact
∑n

j=1 |I(j, r)| ≤ kq. ¤

Now let us define a distribution D over received
words. We will use the notation x ∼ D to mean that
x is chosen at random according to D, and whenever
D is a set, we also use x ∼ D to mean that x is chosen
uniformly at random from D. Whenever the distri-
bution or the set are clear from context we may omit
their specification.
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Recall that we need a distribution over received
words that are ε-close to C, on which every determinis-
tic message reconstructor fails with probability larger
than 1/3. Instead, we define a distribution D that will
provide a word that is ε-close to C only with probabil-
ity 1−o(1). However, this will be sufficient because we
will show that any algorithm will with probability at
least 1

2 − o(1) fail to reconstruct the correct message.
So also if we condition on the 1 − o(1) event we still
get the same error probability estimate.

A random word w ∼ D is generated by picking a
uniformly random x ∼ {0, 1}k, setting y = C(x) and
then obtaining w by flipping each of the bits of y with
probability ε/2, independently of the other bits. In
fact this will be a distribution over w and x, but with
some abuse of notation we will generally omit x as
with probability 1− o(1) it is just the message corre-
sponding to the codeword closest to w. We need the
following fact about D.

Lemma 4.3 For every q ≤ log n, Q ⊆ [n] of size
|Q| = q and α ∈ {0, 1}q, Prw∼D[w¹Q = α] ≥ (ε/2)q.

We shall prove that if the query complexity of A is
o(log k) then the probability that A fails on w ∼ D is
large, namely,

Pr
w∼D,r

[Aw
r = C−1(DC(w))] ≤ 1/2 + o(1).

For w ∼ {0, 1}n, r ∈ {0, 1}ρ and i ∈ [k] we say
that Aw

r (i) is determined by w¹A0
r

if Aw
r (i) = Ay

r(i)
for every y ∈ {0, 1}n with y¹A0

r
= w¹A0

r
(notice that

in general, Aw
r (i) may be determined by w¹A0

r
even

when Qi,r * A0
r). The next definition and lemma say

that for most random strings r, the expected number
of indices correctly determined only by the influen-
tial indices is not very large, where the expectation is
taken over w ∼ D.

Definition 4.4 For every x ∈ {0, 1}k, w ∈ {0, 1}n

and r ∈ {0, 1}ρ we set βw,x
r = 0 if there is any index

i such that Aw
r (i) is determined by w¹A0

r
but does not

match the value xi. If there is no such index, then we
set βw,x

r is the number of i ∈ [k] such that Aw
r (i) is

determined (correctly) by w¹A0
r
. We call r ∈ {0, 1}ρ

typical with respect to A if Ew,x∼D[βw,x
r ] ≤ 2

3k.

Lemma 4.5 Let A be a message reconstructor for C.
Then Prr[r is typical w.r.t. A] > 1/2.

We moved the proof of Lemma 4.5 to Section 5.

For every random string r ∈ {0, 1}ρ we denote
by N(r), 0 ≤ N(r) ≤ k, the expected number of
correctly reconstructed bits by Ar, where the ex-
pectation is taken over w ∼ D. Formally, N(r) =
Ew∼D

[
k − d(Aw

r , C−1(DC(w)))
]
. Furthermore, given

y ∈ D (by y ∈ D we mean y ∈ {0, 1}n that is in the
support of D) and S ⊆ [n] we denote by N(r, y, S) the
expected number of correctly reconstructed bits by
Ar, where the expectation is taken over w ∼ D condi-
tioned on the event w¹S = y¹S. Formally, N(r, y, S)
is equal to

Ew∼D
[
k − d(Aw

r , C−1(DC(w)))
∣∣∣w¹S = y¹S

]
.

Lemma 4.6 For any typical r we have,
Ey∼D[N(r, y, A0

r)] ≤ k
(
1− (ε/2)q

3

)
.

Proof. By the definition of a typical r, the ex-
pected number of bits whose reconstructed value ei-
ther depends on non-influential indices or is guaran-
teed to be always wrong is at least k/3. Call these
bits free bits. This means that every free bit may be
incorrectly reconstructed by Ar for some assignment
α to the non-influential indices (if it can be correctly
reconstructed at all). So, by Lemma 4.3 the proba-
bility that Ar fails on a specific free bit, taken over
w ∼ D, is at least (ε/2)q (we can assume that the
reconstructed value of each bit depends on at most
q = log k ≤ log n of the non-influential indices, since
otherwise the query complexity is not as advertised
and we are done). Hence by linearity of expectation
the expected number of bits that are reconstructed
correctly by Ar, taken over w ∼ D, is at most

2
3
k +

k

3

(
1−

( ε

2

)q)
= k

(
1− (ε/2)q

3

)
.

¤

We now define a sequence of T +1 random variables
forming a Doob Martingale. For a fixed r ∈ {0, 1}ρ,
y ∈ D and every t, 0 ≤ t ≤ T , we define Hy,r

t ,
N(r, y, A0

r ∪ · · · ∪At
r), that is the expected number of

bits reconstructed correctly by Ar, where the expec-
tation is taken over all w ∼ D that agree with y on all
indices in A0

r ∪A1
r ∪ · · · ∪At

r.

By Lemma 4.6, Hr,y
0 ≤ k

(
1− (ε/2)q

3

)
for all typical

r. On the other hand, if Ar properly reconstructs y
then Hr,y

T = k. Thus, for every typical r we have

Pr
y∼D

[
Ay

r = C−1(DC(y))
]

= Pr
y∼D

[
Hr,y

T = k
]
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which is at most

Pr
y∼D

[
Hr,y

T −Hr,y
0 ≥ k

(ε/2)q

3

]
.

By Lemma 4.2, T ≤ k and the influence I(At
r, r) of

each set At
r, 1 ≤ t ≤ T , is bounded by 10q. Thus for

all 1 ≤ t < T we have |Hr,y
t+1 −Hr,y

t | ≤ 10q. Now we
can apply Azuma’s Inequality, by which we obtain

Pr
y∼D

[
Hr,y

T −Hr,y
0 ≥ k

(ε/2)q

3

]

is at most

exp
(−k2(ε/2)2q

9T (10q)2

)
≤ exp

(−k(ε/2)2q

900q2

)

where in the last inequality we used the fact that
T ≤ k. This means that the probability that A re-
constructs all k bits correctly with a typical r is o(1),
unless q = Ω(log k). Since a random r is typical
with probability at least 1/2, we conclude that unless
q = Ω(log k), A fails on w ∼ D with overall probability
at least 1/2− o(1).

5 Proof of Lemma 4.5

We need to prove that most random strings r satisfy
Ew,x∼D[βw,x

r ] ≤ 2
3k. To this end, we need the follow-

ing auxiliary lemma, which is essentially an entropy
preservation argument.

Lemma 5.1 For any two (possibly probabilistic) al-
gorithms given by their functions, an encoder E :
{0, 1}k → {0, 1}k/10 and a decoder D : {0, 1}k/10 →
{0, 1}k,

Pr
r,x∼{0,1}k

[
x = D(E(x))

]
≤ 2−9k/10,

where r denotes the outcome of the random coin flips
of E and D. Furthermore, the inequality holds even if
E and D have shared randomness.

Proof. Let E,D be the two algorithms. Denote
by Er and Dr their deterministic versions operating
with a fixed random seed r. For every possible r,
partition the set {0, 1}k into at most mr ≤ 2k/10 parts
Xr

1 , . . . , Xr
mr

such for all i and x, y ∈ Xr
i we have

Er(x) = Er(y). Observe that for every fixed r, and
conditioned over the event that a random x falls in
Xr

i , Prx∼Xr
i
[Dr(Er(x)) = x] ≤ 1/|Xr

i |, and clearly
the probability that x falls in Xr

i is exactly |Xr
i |/2k.

So for every fixed r we have

Pr
x

[
x = Dr(Er(x))

]
=

mr∑

i=1

(
|Xr

i |
2k

)(
1

|Xr
i |

)

which is equal to
∑mr

i=1 1/2k ≤ 2−9k/10. Hence this
holds for a random r as well. ¤

Now consider the following encoder/decoder pair
E,D corresponding to C and A. We will assume that
E and D share a random string r, and describe their
operation for every possible r.

The encoder Er on x ∈ {0, 1}k computes y = C(x),
converts y into w by flipping each bit with probabil-
ity ε/2 independently of the other bits, and outputs
Er(x) , w¹A0

r
(the identity of the flipped bits is not

part of the shared randomness). By the definition of
A0

r, |Er(x)| ≤ k/10 for every x and r (If necessary,
Er(x) can be padded arbitrarily up to length k/10).

Before defining the decoder, let us denote by Sz
r ⊆

[k] the set of bits for which the value is determined
by Ar, given that the assignment to the influential
indices A0

r of the received word equals z.

The decoder Dr on z ∈ {0, 1}k/10 constructs
Dr(z) , x′ ∈ {0, 1}k by reconstructing x′i according
to Ar for all i ∈ Sz

r , and guessing x′i ∈ {0, 1} uniformly
at random for all other indices i ∈ [k] \ Sz

r .

We can now prove Lemma 4.5 by showing that
the pair E,D defined above contradicts the state-
ment of Lemma 5.1, unless for most random strings
r, Ew,x∼D[βw,x

r ] ≤ 2
3k. We start by observing that the

distributions Er(x) : x ∼ {0, 1}k and w¹A0
r

: w ∼ D
are identical for every r. Therefore, since for every
r the value βw,x

r depends only on w¹A0
r

and x, we

have Ew,x∼D
[
βw,x

r

]
= Ex∼{0,1}k

[
β

ext(Er(x)),x
r

]
for all

r as well, where ext(Er(x)) ∈ {0, 1}n is any arbi-
trary string (extension) whose restriction to A0

r equals
Er(x).

Now assume towards a contradiction that for at
least half of the random strings r,

Ew,x∼D[βw,x
r ] = Ex∼{0,1}k [βext(Er(x)),x

r ] >
2
3
k.

Since 0 ≤ βw,x
r ≤ k for all w, x and r, this means that

for at least half of the random strings r,

Pr
x∈{0,1}k

[βext(Er(x)),x
r ≥ k/2] > 1/6.

Therefore (taking into account that β
ext(Er(x)),x
r > 0

also implies that each of the bits not correctly deter-
mined by A0

r obtains the correct value with probability
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1
2 independently of the others),

Pr
r,x∼{0,1}k

[
x = Dr(Er(x))

]
≥ (

1
2
)(

1
6
)2−k/2

which is more than 2−9k/10 and thus contradicting
Lemma 5.1.

6 Proof of Theorem 3.4

Outline: For the proof of Theorem 3.4 we show
that there is an input distribution D on which any de-
terministic codeword reconstructor with query com-
plexity o(

√
R(C)) fails with probability larger than

1/3. This is done by constructing a set of indices
S ⊂ [n] such that for every deterministic reconstruc-
tor and for every i ∈ S, if Ei is the event that the re-
constructor errs on index i, then the events Ei, i ∈ S
are independent (with respect to D). Since the recon-
structor fails unless it reconstructs all indices i ∈ S
correctly, the probability that it does not fail goes
down exponentially with the size of the set S. Thus
it is sufficient to show that the probability of each Ei

is not too low, and that S is sufficiently large. The
latter is done using the Sunflower Lemma [7] and the
fact that C is a linear code.

Fix ε > 0. Let C be a family of linear [n, k, d] codes
and let A be its (q, ε) codeword reconstructor. Let
G1, . . . , Gn ∈ {0, 1}k denote the rows of C’s generating
matrix G, satisfying C(x)i = 〈Gi, x〉 (mod 2) for every
x ∈ {0, 1}k and i ∈ [n], and let n̂ , R(C) denote the
number of distinct rows in G.

The distribution D is defined similarly to the defi-
nition in Section 4, that is, a random word w ∼ D is
generated by picking a uniformly random y ∈ C and
then obtaining w by flipping each of the bits of y with
probability ε/2, independently of the other bits. As
we also mentioned in Section 4, w ∼ D is ε-close to C
only with probability 1 − o(1), but this will be suffi-
cient because we will show that for any r, Ar will fail
to reconstruct the correct codeword with probability
at least 1/2.

Lemma 6.1 The following holds for D and any linear
code C:

1. Let T ⊆ [n] and i ∈ [n] \ T be such that Gi

(the i’th row of C’s generating matrix) is linearly
independent of rows {Gj : j ∈ T}. Then for
any α ∈ {0, 1}|T |, Prw∼D:w¹T=α[DC(w)i = 1]
is equal to Prw∼D:w¹T=α[DC(w)i = 0] and thus
both is equal to 1

2 , where “w ∼ D : w¹T = α” is

shorthand for “w ∼ D conditioned over the event
that w¹T = α”.

2. Let S1, . . . , St ⊆ [n] be disjoint sets with |Si| ≤
q ≤ log n for all i ∈ [t]. For any sequence
〈αi ∈ {0, 1}|Si|〉i∈[t] of partial assignments, we

have Prw∼D
[
w¹Si

= αi for some i ∈ [t]
]

is

greater that 1− (1− (ε/2)q)t.

Proof. [Proof of Lemma 6.1] For the first item, no-
tice that since the codewords of C form a linear sub-
space, for every i ∈ [n] we have Pry∈C [yi = 1] =
Pry∈C [yi = 0] = 1/2 (here we assume without loss
of generality that C is not redundant, i.e. the gener-
ating matrix of C has no all-zero rows). Conditioning
the above over some restriction to y¹T has no effect
on indices i that are linearly independent of the in-
dices in T . This holds since the subset of C formed
by the restriction is an affine subspace not parallel to
the kernel of Gi. Finally, in D the i’th bit of y can be
flipped with some probability, but this has no effect
since the probability of yi being flipped is independent
of the value yi.

The second item follows from immediately from the
definition of D. ¤

Recall that Qi,r ⊆ [n] is the set of indices queried
by A on input i ∈ [n] and random string r. From
this point on let us fix r and prove that unless q ,
maxi∈[n]{|Qi,r|} is of order Ω(

√
log n̂), the probability

(over w ∼ D) that Ar correctly reconstructs w (into
y = DC(w)) is less than 1/2. Since r is fixed, we will
make the notation shorter by omitting the subscript r
from the sets Qi,r.

The proof proceeds in two steps. In the first step we
find a large subset F ⊆ [n] of indices, such that Qi ∩
Qj = Qi′∩Qj′ for all i, j, i′, j′ ∈ F , and in addition, for
all i, j ∈ F the values DC(w)i, DC(w)j are independent
of w¹Qi ∩Qj

. F is constructed by first finding a large
sunflower in the sets Q1, . . . , Qn and then removing
from it the (not too many) “bad” petals that violate
the above property. In the second part of the proof
we show that given a large enough set F as above, the
probability that Ar incorrectly reconstructs at least
one of the indices in F is high.

Definition 6.2 A sunflower with t petals and a core T
is a collection of sets Q1, . . . , Qt such that Qi∩Qj = T
for all i 6= j.

Lemma 6.3(Sunflower Lemma [7]) Let Q be a
family of n sets, each set having cardinality at most
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q. If n > q!(t− 1)q then Q contains a sunflower with
t petals. In particular, Q contains a sunflower of size
at least 1

q n1/q.

Let R be a set of n̂ indices corresponding to n̂
distinct rows in G. Let Q = 〈Qi〉i∈R be the fam-
ily of sets queried by Ar on inputs i ∈ R. By def-
inition, Q contains n̂ sets, each of size at most q.
From Lemma 6.3 we can obtain a sunflower S ⊆ Q,
S = Qi1 , . . . , Qit

, with t ≥ 1
q n̂1/q petals. Let T ⊂ [n]

denote the core of S. We define the span of the core
T as span(T ) = span{Gi : i ∈ T} which is equal to

{ ∑

i∈T

αiGi (mod 2) : ∀i, αi ∈ {0, 1}
}

which is a subset of {0, 1}k. Since |T | ≤ q the span of
T contains at most 2q different rows from G.

Next we form a family S ′ ⊆ S of sets by removing
from S every petal Qij for which Gij belongs to the
span of T . Namely, we set S ′ , {Qij ∈ S : Gij /∈
span(T )}. Notice that the resulting family S ′ is a
sunflower as well, with the same core T . Furthermore,
the size of S ′ is at least t′ ≥ 1

q n̂1/q − 2q.

Intuitively, the query sets in S ′ correspond to those
indices in R that are “independent” of w¹T . We call
these indices free indices and denote their set by F .
Namely, F = {i : Qi ∈ S ′}. By the first item of
Lemma 6.1, for every free index i ∈ F and all α ∈
{0, 1}|T | we have Prw∼D:w¹T=α[DC(w)i = 1] is same
as Prw∼D:w¹T=α[DC(w)i = 0] and thus both is equal
to 1

2 .

Now we can show that if q = o(
√

log n̂), then with
probability at least 1/2 one of the free indices will
be reconstructed incorrectly by Ar. Assume that the
contrary is true, i.e. Prw∼D[βw] > 1/2, where βw

is the indicator of the event that Ar reconstructs all
free indices correctly. This implies that there ex-
ists an α ∈ {0, 1}|T | such that Prw∼D:w|T =α[βw] >
1/2. If for some i ∈ F the value of Aw

r (i) is de-
termined by the fact that w¹T = α then the prob-
ability that Ar reconstructs i incorrectly is 1/2 (since
Prw∼D:w¹T=α[DC(w)i = 0] = 1

2 ). So it must be the
case that having w¹T = α does not determine Aw

r (i)
for any of the free indices i, and in particular, for every
Si , Qi \ T , Qi ∈ S ′ there must be an assignment αi

to w¹Si
for which Ar reconstructs i incorrectly. Since

the sets Si are disjoint we can apply the second item
of Lemma 6.1 by which the probability that one of the

free indices is reconstructed incorrectly is at least

1− (1− (ε/2)q)|S
′| ≥ 1− (1− (ε/2)q)

1
q n̂1/q−2q

which is at least 1 − e−(ε/2)q( 1
q n̂1/q−2q). Notice that

the above probability is larger than 1/2 (in fact it is
almost 1) if (ε/2)q( 1

q n̂1/q−2q) > 10, which is the case
for q = o(

√
log n̂). Hence a contradiction.

7 Extensions and open problems

7.1 Reconstruction against random
noise

In the usual definition of locally decodable codes
(and self-reconstructible codes) it is assumed that the
noise is adversarial, i.e. that the set of corrupted loca-
tions is chosen in a worst case manner. Our definition
of message and codeword reconstruction is against ad-
versarial noise as well. But does reconstruction be-
come easier in the random-noise5 model?

While both local decoding and self correction be-
come trivial in the random-noise model (via simple
repetition codes), this is not the case for reconstruc-
tion. In fact, our proofs were using input distributions
that exactly correspond to the random noise model.
Moreover, there is a general reduction that allows to
translate any query-complexity lower bound in the
adversarial-noise model for message reconstruction to
a lower bound in the random-noise model (or alterna-
tively, translate any upper bound in the random-noise
message reconstruction model into one that works in
the adversarial-noise model) via LDCs:

Claim 7.1 Let C be a code with a q-query message
reconstructor against random noise, and let H be a
p-query LDC. Then the code H(C)(x) , H(C(x)) (the
LDC H composed with C) has an O(pq)-query message
reconstructor in the adversarial-noise model.

We omit the formal proof of Claim 7.1, but the main
idea is that the additional LDC encoding enables con-
verting adversarial noise into random noise. This is
the case since by the definition of an LDC, every bit
of the codeword y ∈ C can be decoded correctly with
high probability, independently of other bits.

Combining Claim 7.1 with Theorem 3.2, and us-
5In the random-noise model the received word w is obtained

by flipping (independently) each bit of the codeword y with
probability at most ε, and the requirement is that for every
y ∈ C the decoding/correction/reconstruction is successful with
probability at least 2/3, taken over both r and w.
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ing the fact that there are constant query LDCs, we
get that message reconstruction against random noise
requires Ω(log k) queries. We can also deduce corre-
lations for lower bounds concerning codeword recon-
struction, however here the size of the LDC used be-
comes important as it affects the codeword size of the
combined code.

We note that while there are codes of super-
polynomial length with an O(log k)-query message re-
constructor, we do not know any polynomial-length
code with an O(log2 k)-query message reconstructor.
So, the real bound in Theorem 3.2 may be higher
than Ω(log k) for efficient codes. On the other hand,
the repetition code, whose encoding is obtained by
concatenating O(log k) copies of the original message,
has a trivial log k-query message reconstructor against
random noise. Thus for random noise our lower bound
is optimal, irrespective of the length of the code.

7.2 Partial reconstruction

In a more general setting, we may require that a
message reconstructor should decode correctly any t
bits of the message, instead of all k. It is straightfor-
ward to extend the lower bound in Theorem 3.2 for
this generalization to Ω(log t). Similarly, if we require
that a codeword reconstructor should decode correctly
any t bits of the codeword instead of all n, then we
can extend Theorem 3.4 to provide a lower bound of
Ω(

√
log t̂), where t̂ is the number of distinct rows in

the t rows corresponding to the decoded part.

7.3 Open problems

• Our results suggest that one cannot get mes-
sage reconstructors that are significantly more
query-efficient than the amplified versions of
constant-query LDCs. It is an interesting ques-
tion whether this connection is bidirectional, i.e.
whether q-query message reconstruction implies
q-query local decoding with error probability
O(1/k).

• Are there codes of polynomial length that have
O(log k)-query message reconstructors? A pos-
itive answer would be an intermediate step
towards proving that efficient constant query
LDCs exist.

• In the case of codeword reconstruction, Theo-
rem 3.4 says that for any linear code the code-
word reconstructor must have query complexity
Ω(
√

log n̂). On the other hand we have linear

codes with O(log n̂)-query codeword reconstruc-
tor. We expect the upper bound to be the cor-
rect one, but we are currently unable to close
this gap.
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