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Abstract. Identical products being sold at different prices in different
locations is a common phenomenon. To model such scenarios, we supple-
ment the classical Fisher market model by introducing transaction costs.
For every buyer i and good j, there is a transaction cost of cij ; if the price
of good j is pj , then the cost to the buyer i per unit of j is pj + cij . The
same good can thus be sold at different (effective) prices to different buy-
ers. We provide a combinatorial algorithm that computes ε-approximate
equilibrium prices and allocations in O

(
1
ε
(n+ logm)mn log(B/ε)

)
op-

erations - where m is the number goods, n is the number of buyers and
B is the sum of the budgets of all the buyers.

1 Introduction

Identical products being sold at different prices in different locations is a common
phenomenon. Price differences might occur due to different reasons such as

– Shipping costs. Oranges produced in Florida are cheaper in Florida than
they are in Alaska, for example.

– Trade restrictions. A seller with access to a wider market might sustain a
higher price than one that does not.

– Price discrimination. A good might be priced differently for different people
based on their respective ability to pay. For example, conference registration
fees are typically lower for students than for professors.

To capture such scenarios, we supplement the classical Fisher model of a
market by introducing transaction costs. For every buyer i and every good j,
there is a transaction cost of cij ; if the price of good j is pj , then the cost to
the buyer i per unit of j is pj + cij . The same good can thus be sold at different
effective prices to different buyers. Apart from non-negativity, the transaction
costs are not restricted in any way and in particular, do not have to satisfy the
triangle inequality.

Fisher’s Market Model with Transaction Costs: In Fisher’s model, a mar-
ket M has n buyers and m divisible goods. Every buyer i has budget Bi. We
consider linear utility functions, i.e., the utility of a buyer i on obtaining a bun-
dle of goods xi = (xi1, xi2, . . .) is

∑
j uijxij where uij are given constants. Each
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good has an available supply of one unit (which is without loss of generality).
In addition to its price, a buyer also pays a transaction cost cij per unit of good
j. The allocation bundle for buyer i is a vector xi such that xij denotes the
amount of good j allocated to buyer i. A price vector p is an equilibrium of M
if there exists allocations xi such that

– xi maximizes the utility of i among all bundles that satisfy the budget
constraint, i.e. xi ∈ arg maxyi{

∑
j uijyij :

∑
j(pj + cij)yij ≤ Bi}

– Every good is either fully allocated or is priced at zero, i.e. ∀j, either
∑
i xij =

1 or pj = 0.

Characterization of Market Equilibrium: We now characterize the equilib-
rium prices and allocations in our model. The ratio uij/(pj + cij) denotes the
amount of utility gained by buyer i through one dollar spent on good j. At given
prices, a bundle of goods that maximizes the total utility of a buyer contains only
goods that maximize this ratio. Let αi = maxj uij/(pj + cij) be the bang-per-
buck of buyer i at given prices. We will call the set Di = { j |uij = αi(pj + cij) }
the demand set of buyer i. Hence, xij > 0 ⇒ j ∈ Di. The conditions charac-
terizing these equilibrium prices and allocations appear in table A below.

An ε-approximate market equilibrium is characterized by relaxing the mar-
ket clearing condition (Equation (3)) and optimal allocation condition (Equation
(4)). Refer to equations (7) and (8) in table B.

A: Market Equilibrium

∀i
∑
j

(pj + cij)xij = Bi (1)

∀j
∑
i

xij ≤ 1 (2)

∀j pj > 0 ⇒
∑
i

xij = 1 (3)

∀i, j xij > 0 ⇒ uij
αi

= pj + cij (4)

.

B: ε-Approximate Market Equilibrium∑
j

(pj + cij)xij = Bi (5)

∑
i

xij ≤ 1 (6)

pj > ε ⇒
∑
i

xij ≥ 1/(1 + ε) (7)

xij > 0 ⇒ uij
αi
≥ pj + cij

1 + ε
(8)

The relaxation of exact equilibrium conditions can be achieved in other ways.
For example, [7] use a definition of ε-approximate market equilibrium that relaxes
the budget constraints. Our algorithm can be easily adapted to this definition
by simple modifications to the termination conditions.

Our Result

Our main result is a combinatorial algorithm that computes ε-approximate
equilibrium prices and allocations in O

(
1
ε (n+ logm)mn log(B/ε)

)
operations

- where m is the number goods, n is the number of buyers and B is the sum of
the budgets of all the buyers. This algorithm is a generalization of the auction
algorithm of Garg and Kapoor [7] to our model with the transaction costs. This
generalization is not straight forward; the presence of transaction costs intro-
duces new challenges. The term ‘auction algorithm’ is used to describe ascending



price algorithms (such as the one in [7]) which maintain a feasible allocation at
all times. The algorithm makes progress by revoking a portion of goods currently
assigned to a buyer and reallocating it to another buyer offering a higher price.
Our method of reallocating goods is similar in spirit to the path auctions used
by [9]. The auction algorithms in both [7] and [9] crucially use the properties
of monotonic decrease in surplus and acyclicity of the demand graph. However,
these properties cease to exist when transaction costs are introduced. The main
technical contribution of this paper is in dealing with the absence of these prop-
erties (and yet getting almost the same results). A more detailed discussion of
the same is presented in the full version of this paper [1].

Related Work

The computation of economic and game theoretic equilibria has been an active
area of research over the past decade. Hardness results and algorithmic results
[10] have been delineating the boundary between what is efficiently computable
and what is not.

Convex programming has been one of the main tools in designing algorithms
for market equilibrium. A simple modification of the convex program introduced
by [6, 5] captures the equilibria of our problem as its optimal solution. (Refer to
[1] for details) This proves existence and uniqueness of equilibria. It also implies
that the ellipsoid algorithm can be used to get a polynomial time algorithm to
compute the equilibrium4. The auction algorithm is combinatorial, runs faster
and provides a simple alternative that can be implemented efficiently in practice.
It is not clear if one can construct an interior point algorithm to solve the convex
program. Ye [12] gave one such algorithm for the Eisenberg-Gale convex program.

A strongly polynomial time algorithm for the Fisher linear market was given
by Orlin [11]; it does not seem like his ideas can be adapted directly to our
setting. Chen et al [2] study a model similar to ours, in the context of profit-
maximizing envy-free pricing (for a single commodity but at different locations).

Codenotti et al [3] studied transaction costs that are a fixed fraction of the
price, and hence can be interpreted as taxes. The taxes could be uniform, that
is, depend only on the good, or non-uniform, that is, depend on the good and
the buyer. In the Fisher’s model, our algorithm can also handle per-dollar taxes,
with minimum modifications.

Extensions and Open Problems

All of our results can be easily extended to quasi-linear utilities, that is, the
buyers have utility for money as well, which is normalized to 1. So the utility of
the bundle xi is

∑
j(uij − pj)xij . Extending the results to other common utility

functions is an open problem. In particular, Garg, Kapoor and Vazirani [8] extend
the auction algorithm to separable weak gross substitute utilities. The potential

4 Since the equilibrium could be irrational, the ellipsoid algorithm would compute an
equilibrium with precision δ in time proportional to log(1/δ).



function they use is the total surplus, and we don’t know a combinatorial bound
on the number of events in their algorithm. As mentioned earlier, this potential
function cannot be used in the presence of transaction costs, and therein lies the
difficulty in extending our results to this case.

The auction algorithm for the traditional models can be made to be dis-
tributed and even asynchronous, with a small increase in the running time. We
show that a similar distributed/asynchronous version of the algorithm may not
converge in the presence of transaction costs. An interesting open question is if
there is some other asynchronous/distributed algorithm that also converges fast.
In particular, is there a tattonnement process that converges fast (like in [4])?

Outline: We provide an overview, followed by the details of our algorithm in
Section 2. Section 3 contains the analysis of the running time. The proofs of
lemmas in Section 2 and 3 have been omitted due to space constraints and can
be found in the full version of this paper [1].

2 Algorithm

Theorem 1. We can find ε-approximate equilibrium prices and allocations in
O
(
1
ε (n+ logm)mn log(B/ε)

)
operations where B = (1 + ε)

∑
iBi.

Overview Our algorithm maintains a set of prices and allocations and modifies
them progressively. To initialize, we set all the prices pj = ε and all the alloca-
tions are empty. The algorithm is organized in rounds. At the end of each round,
we raise the price of one good by a multiplicative factor of 1 + ε. Any allocations
made before the price raise continue to be charged at the earlier, lower price.
Therefore at any point in the algorithm, a good may be allocated to buyers at
two different prices, pj and pj/(1+ε). During a round, we take a good away from
a buyer at the lower price and allocate it to a buyer (possibly the same buyer)
at the current, higher price. We find a sequence of such reallocations such that
we eventually find a buyer with positive surplus and a good in her demand set
such that all of that good is allocated at the current price. When we find such
a buyer-good pair, we increase the price of that good and end the round. The
algorithm terminates when the budgets of all the buyers are exhausted.

Following invariants are maintained throughout the algorithm:
I1: Buyers have non-negative surplus i.e. no buyer exceeds her budget.
I2: All prices are at least ε.
I3: Every good is either priced ε or is fully allocated.
I4: Any good j allocated to a buyer i must be approximately most desirable.

(As in Equation (8))
I5: A good j is allocated at price either pj or pj/(1+ε) where pj is the current

price.
Invariant I3 is a tighter version of equation (7). We maintain I3 and I5 until

the end of the algorithm whence we merge the two price tiers. This may lead
to some goods being undersold, but we prove that equation (7) still holds. Also



note that invariant I4 holds for any allocations, whether at the higher or lower
price tier. Unless mentioned otherwise, the statements of all the lemmas that
follow are constrained to maintain these invariants.

We now present the details of our algorithm. Each round consists of roughly
two parts: 1) We construct a demand graph G on the set of buyers and 2) We
perform multiple iterations of a reallocation procedure - which we call a transfer
walk. At the end of each round, we increment the price of some good. The
sequence of rounds ends when the surplus of all the buyers reduces to zero. At
the end, we readjust the allocations to merge the two price tiers. In what follows,
we explain our algorithm in three parts: a) Construction and properties of the
demand graph, b) Transfer walks and c) Readjustment of allocations.

Notation: We denote the allocations of good j to buyer i at prices pj and
pj/(1 + ε) as hij and yij respectively. We denote by zj = 1−

∑
i (hij + yij) the

amount of good j unassigned at any point in the algorithm. Given any prices
and allocations, the surplus ri of buyer i is the part of her budget unspent:

ri = Bi −
∑
j

(pj + cij)hij −
∑
j

(
pj

1 + ε
+ cij

)
yij

Notice that since the prices remain constant throughout a round except at
the end, the demand sets of all the buyers are well defined. In each round we fix a
function π(i) = min{ j | j ∈ Di }. Intuitively, we will attempt to allocate the good
π(i) to i in this round, ignoring all the other goods in Di for the moment. Any
choice of a good from Di suits as π(i), but we fix a function for ease of exposition.

Construction and properties of the demand graph: We construct a di-
rected graph G on the set of buyers. An edge exists from buyer i to k if and
only if ykπ(i) > 0. A node i in this graph with (1) no out-edges (i.e. a sink), (2)
ri > 0 and (3) zπ(i) = 0 will be defined to be ‘unsatisfiable’.

Lemma 1. For an unsatisfiable node i, the price of the good π(i) can be in-
creased by a multiplicative factor of 1 + ε.

But the graph G may not contain an unsatisfiable node to start with. Hence
we perform a series of reallocations until we create and/or find such a node.

The reallocation involves the following step: For an edge i → k in G with
ri > 0, we take away the lower price allocation of good π(i) for k and allocate it
to i at the current price. In short, we perform the operations ykπ(i) ← ykπ(i) − δ
and hiπ(i) ← hiπ(i) + δ for a suitably chosen value of δ. This process reduces ri,
ykπ(i) and increases rk. If ykπ(i) reduces to zero, we drop the edge (i, k) from the
graph. When we make such a reallocation, we say that we transfer surplus from
i to k. Note that the surplus is not conserved. This is because the price paid by
i for the same amount of the good, including the transaction costs, could even
be lower than the price paid by k.

Lemma 2. If the edge from i to k exists in G with ri > 0, then we can transfer
surplus from i to k such that either the surplus of i becomes zero or the edge
(i, k) drops out of G.



We can repeatedly apply Lemma 2 to transfer surplus along a path in G.

Corollary 1. If there exists a path from i to k in G and ri > 0, then we can
transfer surplus from i to k such that either the surplus of all the nodes on the
path except k becomes zero or an edge in the path drops out of G.

Finally, G may contain cycles. Consider the edges (i1, i2) and (i2, i3) in G and
let j1 = π(i1) and j2 = π(i2). If the transaction costs are all zero, then it can be
argued that the last price raise for j1 must have taken place before the last price
raise for j2. Repeating this argument, one can preclude the existence of cycles in
G in absence of transaction costs. This acyclicity of G forms a pivotal argument
in the algorithm of Garg and Kapoor [7]. In the full version of this paper [1],
we provide a sketch of how a cycle can emerge in G when transaction costs are
present. We also show that the algorithm of [7] can slow down indefinitely if G
contains cycles. Therefore, we need to be able to transfer surplus around a cycle.

Lemma 3. If there exists a cycle in G and exactly one node in the cycle has
positive surplus, then we can transfer surpluses in such a way that either all the
node in the cycle have zero surplus or an edge in the cycle drops out.

In a round, we use the above lemmas to perform multiple iterations of the
transfer walk.

Transfer Walk
Step 1: Find a node i0 with a positive surplus. If there are no such nodes,

then terminate the round and jump to readjustment of allocations.
Step 2: Follow a path going out of i0 in G in a depth-first-search fashion.

We look at the first edge in the adjacency list of the last visited node i on the
path. Let (i, k) be this edge. If node k is yet unvisited, we follow that edge to
extend the path. If k is already on the path, then we have found a cycle in G.
Finally if i has no out-edges, then we have found a sink. Whichever the case, we
now transfer surplus along the current path from i0 to i as in Corollary 1. If an
edge along the path drops out, we trigger event 2d. Otherwise, we trigger events
2a-2c depending upon case. The transfer walk must end in a finite number of
operations in one the of following events:

Event 2a - The path reaches a sink i with zπ(i) = 0: Let j = π(i). By
Corollary 1, we must have transferred a positive surplus to i even if ri was
zero at the begining of the walk. Hence i is an unsatisfiable node. Raise
pj ← (1 + ε)pj . Terminate the walk and the round.
Event 2b - The path reaches a sink i with zπ(i) > 0: Let j = π(i). By
invariant I3, pj = ε. We let δ = min( ri/ε, zj ). We then assign hij ← hij+δ.
If δ = ri/ε then the surplus of i goes to zero otherwise zj goes to zero. In
either case we end this transfer walk.
Event 2c - The path finds a cycle: Let i be the last node visited on the path
and an edge (i, k) in G reaches a node k already visited on the path. By
Corollary 1, all the nodes in the cycle except i have zero surplus. Therefore,
we apply Lemma 3 until the surplus of i becomes zero or an edge in the cycle
drops out. We terminate the current walk.



Event 2d - An edge drops out during path transfer: In this case we terminate
the current walk.

If a transfer walk ends in event 2a, we terminate the current round and start
the next one. Otherwise if events 2b-2d are triggered, we start a new transfer
walk. If the surplus of all buyers is found to be zero in Step 1, we move to the
last phase, which is readjustment of allocations.

Readjustment of allocations: At the end of the transfer walks, all the required
invariants are satisfied, but the same good may be allocated to the same or
different buyers at different prices: pj and pj/(1 + ε). Therefore in this phase,
we merge the two tiers of allocation for every buyer-good pair to create the final

allocations. For all i, j such that yij > 0, we assign xij ← hij +
pj
1+ε+cij

pj+cij
yij .

The final equilibrium prices are the prices at the termination of the algorithm.

Theorem 2. The algorithm produces ε-approximate equilibrium prices and al-
locations.

3 Analysis

Lemma 4. If R is the number of rounds in the algorithm, then the number of
transfer walks that end in an edge dropping out of G is at most nR.

Proof of Theorem 1:
Initialization and readjustment: Both the initialization and final adjust-

ment of allocations can be performed in mn operations.
The number of rounds: The price of exactly one good is raised by multi-

plicative factor of 1 + ε in each round except the last round. Starting at ε, the
maximum value to which a price may be raised is B = (1 + ε)

∑
iBi. Therefore,

there can be at most R = 1 + m
ε log(Bε ).

Constructing the graph: For each buyer, we maintain all the goods in
a balanced tree data structure that sorts the goods first by the bang-per-buck
uij/(pj + cij) and then by the index j. In this manner, we can compute the
function π(i) in O(logm) time. Given π(i), every node may have an edge to
every other node. Therefore, the graph G can be constructed in O(n2 +n logm)
operations. After the price increase at the end of the round, the sorted trees can
be maintained in time O(n logm) while the transfer of allocations from higher
to lower price tier can be completed in O(n) operations.

Number of transfer walks: All the remaining computation in the algo-
rithm takes place within the transfer walks. Since we follow the first edge going
out of each vertex, the depth-first-search requires only O(n) operations. The
surplus transfer along a path and a cycle can similarly be performed in O(n)
operations. When an edge drops out, updating G involves simply incrementing
a pointer. Therefore, overall a transfer walk requires O(n) operations.

We will now bound the number of transfer walks that happen throughout
the algorithm, including all the rounds. We will classify them by the event that



ends the walk. At most R transfer walks can terminate the round. At most m
walks can end with zj going zero. Lemma 4 bounds the number of walks that
end with an edge dropping out of the graph. The only remaining case is that
the walk ends when the surplus of the last visited node on the path vanishes.
A transfer walk ending in this case leaves one less node in G with a positive
surplus. To see this, observe that a transfer walk starts with a node on the same
path with positive surplus and by the time it ends in this case, all the nodes on
the path have zero surplus by Corollary 1 and Lemma 3.

Let r+ denote the number of nodes in G with positive surplus. After initial-
ization we have r+ = n. The only event which may increase r+ is event 2d. If an
edge (i, k) drops out during surplus transfer along the path, node k may be left
with some positive surplus that was absent at the start of the walk. Therefore
r+ increases by at most one in this event. Combined with Lemma 4, this implies
a bound of n+ nR on the number of times r+ reduces.

It is clear from the above analysis that the algorithm performs at most O(nR)
transfer walks. Combined with the other computation bounds, this yields an up-
per bound of O

(
1
ε (n+ logm)mn log(B/ε)

)
on the running time of the algorithm.
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