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Abstract. Let m, q, ` be positive integers such that m ≥ ` ≥ q. A family H of
functions from [m] to [q] is said to be an (m, q, `)-family if for every subset S of
[m] with ` elements, there is an h ∈ H such that h(S) = [q]. Let, N(m, q, `) be
the size of the smallest (m, q, `)-family. We show that for all q, ` ≤ 1.58q and
all sufficiently large m, we have

N(m, q, `) = exp(Ω(q)) logm.

Special cases of this follow from results shown earlier in the context of perfect
hashing: a theorem of Fredman & Komlós (1984) implies that N(m, q, q) =
exp(Ω(q)) logm, and a theorem of Körner (1986) shows that N(m, q, q+ 1) =
exp(Ω(q)) logm. We conjecture that N(m, q, `) = exp(Ω(q)) logm if ` =
O(q). A standard probabilistic construction shows that for all q, ` ≥ q and all
sufficiently large m,

N(m, q, `) = exp(O(q)) logm.

Our motivation for studying this problem arises from its close connection to a
problem in coding theory, namely, the problem of determining the zero error list-
decoding capacity for a certain channel studied by Elias [IEEE Transactions on
Information Theory, Vol. 34, No. 5, 1070–1074, 1988]. Our result implies that
for the so called q/(q− 1) channel, the capacity is exponentially small in q, even
if the list size is allowed to be as big as 1.58q. The earlier results of Fredman &
Komlós and Körner cited above imply that the capacity is exponentially small if
the list size is at most q + 1.

1 Introduction

Shannon [S56] studied the zero error capacity of discrete finite memoryless
noisy channels. Such a channel can be modeled as a bipartite graph (V,W,E),
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where (v, w) ∈ E iff the letterw can be received when the letter v is transmitted.
The goal then, is to encode messages as strings of letters from the input alphabet
V and recover it from the received message. The goal naturally is to use as few
input letters as possible and still recover the intended message perfectly. Shan-
non [S56] and Lovász [L79] determined the best rate of transmission achievable
under this model for several specific channels.

We are interested in the list-decoding version of this problem, studied by
Elias [E88]. For example, consider the channel shown in Figure 1. It is not hard
to see that for this channel, no matter how many letters are used in the encoding,
it is impossible to recover an input message uniquely (assuming there are at
least two possibilities for the input message). However, it is not hard to see
that one can always encode messages using strings of letters such that based on
the received message one can narrow down the possibilities to just two, that is,
we cannot decode exactly but we can list-decode with a list of size two. This
motivates the following definition.
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Fig. 1. The 3/2 channel

Definition 1 (Code, Rate). Consider a channel C = ([q], [q′], E) with q input
letters and q′ output letters. We say that a sequence σ ∈ [q]n is compatible with
σ′ ∈ [q′]n if for i = 1, 2, . . . , n, we have (σ[i], σ′[i]) ∈ E. A subset S ⊆ [q]n

is said to be a zero error `-list-decoding code for the channel C if for all σ′ in
[q′]n,

|{σ ∈ S : σ and σ′ are compatible}| ≤ `.

Let n(m,C, `) be the minimum n such that there is a zero error `-list-decoding
code S for the channel C, such that S ≥ m. The zero error list-of-` rate of the
code S is

RC,`(S) =
1
n

log
(m
`

)
,

and the zero error capacity of the channel C is the least upper bound of the
attainable zero error list-of-` rates of all codes.
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For the 3/2 channel Elias [E88] proved that the zero error capacity when
` = 2 is lower bounded by log(3) − 1.5 ≈ 0.08 and upper bounded (see (2)
below) by log(3) − 1 ≈ 0.58. In this paper, we study generalization’s of the
3/2 channel. The q/(q−1) channel corresponds to the complete bipartite graph
Kq,q minus a perfect matching. Thus, the transmission of any letter can result
in all but one of the letters being received. It is easy to see that that it is not
possible to design a code where one can always recover the original message
exactly. However, it is possible to design codes that perform list-decoding with
lists of size q− 1. In fact a routine probabilistic argument shows the following.

Proposition 1. n(m, q, q − 1) = exp(O(q)) logm.

The q/(q−1) channel is thus a natural and simple channel where exact decoding
is not possible, but list-decoding with moderate size lists is possible. The main
point of interest for us is that the rate of the code promised by Proposition 1 is
exponentially small as a function of q. Is this exponentially small rate the best
we can hope for if the list size is restricted to be q − 1? Yes, and this follows
from a lower bound on the size of families of perfect hash functions shown by
Fredman and Komlós [FK84]. A generalization of the result of Fredman and
Komlós obtained by Körner [K86], implies that the rate is exponentially small
even if we allow the decoder to produce lists of size q. For what list size, then,
can we expect list-decoding codes with constant or inverse polynomial rate?

Proposition 2. For all q we have, n(m, q, dq ln qe) = O(q logm).

On the other hand, it can be shown that the rate cannot be better than 1
q unless

the list size is allowed to depend on m.

Proposition 3. All functions ` : Z+ → Z+ and all q, for all large enough m,
n(m, q, `(q)) ≥ q logm.

Thus, we know that the rate is exponentially small when the list size is required
to be exactly q, and it is an inverse polynomial when the list size is θ(q ln q).
These observations, however, do not completely determine the dependence of
the rate on the list size, or even the smallest list size (as a function of q) for
which there are codes with rate significantly better than an inverse exponential.
We conjecture the following.

Conjecture 1 The conjecture has two parts.

1. For all constants c > 0, there is a constant ε, such that for all large m, we
have

n(m, q, cq) ≥ exp(εq) logm
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2. For all function `(q) = o(q log q) and for all large m we have

n(m, q, `(q)) ≥ qω(1) logm

In this paper, we make progress towards the first part of the conjecture.

Theorem 1 (Main result). For ε > 0, there is a delta > 0 such that for all
large q and for all large enoughm, we have n(m, q, (γ−ε)q)) ≥ exp(δq) logm,
where γ = e/(e− 1) ≈ 1.58.

2 Techniques

As stated above the inverse exponential upper bounds on the rate when the list
size is q−1 or q follow from results proved earlier in connection with hashing. In
this section, we formally state this connection, review the previous techniques,
and then outline the argument we use to obtain our result.

2.1 Connection to hashing

Definition 2. Let q, `,m be integers such that 1 ≤ q ≤ ` ≤ m. A family H of
functions from [m] to [q] is said to be an (m, q, `)-family of hash functions if for
all `-sized subsets S of [m], there is a function h ∈ H such that h(S) = [q].
N(m, q, `) is the size of the smallest (m, q, `)-family of hash functions. For con-
venience, we will allow m, q and ` to positive real numbers, and use N(m, q, `)
to mean the size of the smallest (m′, q′, `′)-family where m′, q′ and `′ are inte-
gers such that m′ ≥ m, q′ ≥ q and `′ ≤ `.

The connection between the family of hash functions and zero error list-
decoding codes for the q/(q − 1) channel is straightforward. Suppose we have
an (m, q, `)-code C ⊆ [q]n. Such a code naturally gives rise to n functions
h1, h2, . . . , hn from [m] to [q]: where hi(j) = k iff the i-th letter of the j-
th codeword is k ∈ [q]. It is then straightforward to verify that for every set
S ⊆ [m] of size ` + 1, we have hi(S) = [q] for some i ∈ {1, 2, . . . , n}. This
translations works in the other direction as well: if there is an (m, q, `)-family
of hash functions of size n, then there is an (m, q, `− 1)-code C ⊆ [q]n.

Proposition 4. For all m, q, and `, we have n(m, q, `) = N(m, q, `+ 1).

In light of the above, we will concentrate on showing lower bounds forN(m, q, `).
Our main result can then be reformulated as follows.

Theorem 2. For all ε > 0, there is a δ > 0, such that for all large q, ` ≤(
e
e−1 − ε

)
q, and all large enough m,

N(m, q, `) ≥ exp(δq) logm.
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It is easy to see that Theorem 1 follows immediately from this. In Section 4.2
we will formally prove this theorem. We now present an overview.

2.2 The lower bound argument

It will be helpful to review the proof of the lower bound shown by Fredman and
Komlós [FK84].

Theorem 3. For all large q and all large enoughm,N(m, q, q) ≥ O(q−1/2 exp(q)) logm.

First, we note two simple lower bounds on N(m, q, q). First, any one hash

function can perfectly hash at most
(
m
q

)q
sets of size q. So,

N(m, q, `) ≥
(
m

q

)(
m

q

)−q
≈ 1√

2πq
exp(q). (1)

This bound has the required exponential dependence on q but not the logarithmic
dependence on m. A different argument gives us a logarithmic dependence on
m. If we restrict attention to all elements of [m] that are mapped by the first hash
function to some q−1 of the [q] elements of [m], then clearly every q-sized sub-
set of these elements must be perfectly hashed by at least one of the remaining
hash functions. From this, we conclude that N(m, q, q) ≥ N

(
( q−1
q )m, q, q

)
(provided m ≥ q), which implies

N(m, q, q) ≥ log q
q−1

(
m

q − 1

)
≥ q log

(
m

q − 1

)
. (2)

[A similar calculation can be used to justify Proposition 3.] This bound, gives
us the required logarithmic dependence on m but not the exponential depen-
dence on q. Fredman and Komlós devised an ingenious argument that combined
the merits of (1) and (2). Consider a set T of size q − 2. Clearly, if a func-
tion maps two of the elements of T to the same value in [q], then this hash
function is incapable of perfectly hashing any q-element superset T ′ ⊇ T . An
averaging argument shows that for if T is chosen uniformly at random then
all but an exponentially small fraction of the original family do map some two
elements of T to the same element. Furthermore, for every two elements of
[m] − T one of the remaining hash functions (that are on-to-one on T ) must
map these two elements differently. By (2), the number of hash functions re-
maining must be at least log(m− q + 2). Thus, the size of original family must
be at exp(Ω(q)) log(m− q+2). (The arguments used by Fredman and Komlós
and Körner are more sophisticated and yield slightly better bounds.)
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Our argument is similar. Suppose we have an (m, q, `) family of hash func-
tions where ` = 1 + 1

e − ε (for some ε > 0). As in the argument above, we
pick a set T of size q − 2. The main observation now is that for any fixed func-
tion h : [m] → [q], the expected size h(T ) (as T is chosen at random) is about
q
(
1− 1

e

)
, and there is a sharp concentration of measure near this mean value.

Thus, only for an exponentially small fraction of the hash functions in the family
is the image of T at least q

(
1− 1

e + ε
)
. The majority of the functions already

suffer so many collisions on T , that they cannot cover all of [q] when an addi-
tional

(
1
e − ε

)
q elements are added to T . Using an argument similar to the one

used to show (2), we conclude that an exponentially small fraction of the origi-
nal family must be at least log(m − q + 2). The lower bound will follow from
this. This argument is presented in detail in Section 4.1. It however is somewhat
weaker than the bound claimed in Theorem 2. The stronger result is obtained by
applying this idea recursively. The formal proof proceeds by induction, and is
presented in Section 4.2.

3 Preliminaries

In this section we develop the tools that will be necessary in the proof of Theo-
rem 2 in Section 4.1 and 4.2.

Definition 3 (Derived function). Let m, q , q′ be integers such that m ≥ q >
q′ ≥ 1 and let T ⊆ [m] Let h : [m] → [q] be a hash function such that
|h(T )| ≤ q−q′. Then, the function hT,q′ is defined as follows. Let j1, j2, . . . , jq′
be the smallest q′ elements of [q]− h(T ). Then, for all i ∈ [m], let

hT,q′(i) =
{
k if h(i) = jk
1 otherwise

.

The following proposition follows immediately from our definition.

Proposition 5. Let h : [m]→ [q]. If T, T ′ ⊆ [m] are such that |h(T )| ≤ q − q′
and h(T ∪ T ′) = [q], then hT,q′(T ′) = [q′].

Lemma 1. If H is a family of hash functions from [m] to [2]. Then, there is a
subset U ⊆ [m] of size at least m/2|H| such that |h(U)| = 1, for all h ∈ H.

Proof. Consider the map from [m] to {1, 2}|H| defined by i 7→ 〈h(i) : h ∈ H〉.
The range of this map has size exactly 2|H|. It follows that there are at least
m/2|H| elements of the domain [m] that map to the same element. ut

Definition 4 (Dangerous function). We say that the function h : [m] → [q] is
ε-dangerous for the set T ⊆ [m] if |h(T )| ≥ q

(
1− 1

e + ε
)
.



Zero error list-decoding capacity of the q/(q − 1) channel 7

Lemma 2. Let h : [m] → [q]. Let T be a random subset of [m] chosen uni-
formly from among all subsets of [m] of size q − 2. Then, if m� q,

Pr
T

[h is ε-dangerous for T ] ≤ 2 exp(−2ε2q).

To prove Lemma 2, we will need the following concentration result due to
McDiarmid.

Lemma 3 (see McDiarmid [M89]). Let X1, X2, . . . , Xn be independent ran-
dom variables with each Xk taking values in a finite set A and let f : An → R.
For all k, let f change by at most ck if only the value of Xk is changed, that is,
maxx∈Ak |f(x) − f(y)| ≤ ck, when x and y differ only in the kth coordinate.
If Y = f(X1, X2, . . . , Xn) is the random variable with expectation E[Y ], then
for any t ≥ 0,

Pr[Y −E[Y ] ≥ t] ≤ exp
(
−2t2∑n
i=1 c

2
k

)
.

Proof (of Lemma 2). Pick q − 2 elements from [m] with replacement, let the

resulting set be T . With probability more than
(

1− (q−2
2 )
m

)
we have that |T | =

q − 2. Now, fix an h ∈ H. For j ∈ [q], the probability that j 6∈ h(T ) is exactly,(
1− |h

−1(j)|
m

)q−2
. Thus, by linearity of expectation, we have

E[|[q]− h(T )|] =
q∑
j=1

(
1− |h

−1(j)|
m

)q−2

≥ q

1− 1
qm

q∑
j=1

|h−1(j)|

q−2

= q

(
1− 1

q

)q−2

= q

(
1 +

1
q − 1

)−(q−2)

≥ q exp
(
−q − 2
q − 1

)
≥ q

e
.

The second inequality follows from Holder’s Inequality. Thus, E[|h(T )|] ≤
q(1 − 1

e ). We think of |h(T )| as a function of f(X1, X2, . . . , Xq), of q − 2
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independent random variables X1, X2, . . . , Xq−2 (each distributed uniformly
over the set [m]).

Note that f changes at most by 1 if the value of any of the the variables is
changed (leaving the rest unchanged). We may thus conclude from Lemma 3
that

Pr
[
|h(T )| ≥ q

(
1− 1

e
+ ε

)]
≤ exp

(
−2

ε2q2

q − 2

)
≤ exp

(
−2ε2q

)
.

This implies that if T is chosen to be a random set of size q − 2, then the
probability that h is dangerous for T is at most(

1−
(
q−2
2

)
m

)−1

exp
(
−2ε2q

)
≤ 2 exp

(
−2ε2q

)
.

ut

Corollary 1. LetH be a family of hash functions from [m] to [q]. Then, there is
a set T ⊆ [m] of size q − 2 such that at most 2 exp(−2ε2q)|H| hash functions
inH are ε-dangerous for T .

Proof. Pick T at random. By Lemma 2, the expected number of ε-dangerous
hash functions for T is at most 2 exp(−2ε2q)|H|. There must be a at least one
choice for T with this property. ut

4 Proof of Theorem 2

4.1 A weaker bound

Our goal in this section is to show the following weaker form of the main theo-
rem, which will serve as the basis for the inductive argument, when we present
the proof of the main result.

Theorem 4. For ε > 0, large q and all large enough m, we have N(m, q, (γ −
ε)q) ≥ exp(δq) logm, where γ = 1 + 1

e ≈ 1.37.

Proof. LetH be an (m, q, `)-family with ` ≤ (γ− ε)q. By Corollary 1, we have
a set T of size q − 2 such that the number of functions that are ε-dangerous for
T is at most 2 exp(−2ε2q)|H|. Fix such a T and consider the derived family

H′ = {hT,2 : h ∈ H is ε-dangerous for T}.

By Lemma 1, there is a set U ⊆ [m] of size m/2|H
′| such that |h′(U)| = 1 for

all h′ ∈ H′. We claim that |U | <
⌈
q
(

1
e − ε

)⌉
. For, otherwise let T ′ be a subset
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of U of size q′ =
⌈
q
(

1
e − ε

)⌉
, and consider the set T ∪ T ′. If h ∈ H is not

dangerous then |h(T )| < q − q′ and, therefore, |h(T ∪ T ′)| < q. On the other
hand if h is ε-dangerous for T , then our definition of U ensures that |h(T ′)| = 1
and, therefore, |h(T ∪ T ′)| ≤ |T |+ 1 < q. Thus,

m

2|H′|
<

⌈
q

(
1
e
− ε
)⌉

.

This, together with |H′| ≤ 2 exp(−2ε2q)|H| implies our claim. ut

4.2 The general bound

In this section, we will prove the Theorem 2. It will be convenient to restate it
in a form suitable for an inductive proof. For k ≥ 1 and ε > 0, let

`k(q, ε) = q

(
1 +

1
e

+
1
e2

+ · · ·+ 1
ek
− ε
)
− 2k.

Theorem 5 (Version of main theorem). For all k ≥ 1, ε > 0, q ≥ 2k and all
large enough m,

N(m, q, `k(q, ε)) ≥
1
4k

exp
(

2ε2q
e2k

)
logm.

Proof. We will use induction on k. The base case k = 1, follows from the
Theorem 4 proved in the previous section.

Induction step: Suppose the claim is false, that is, there is an (mk, qk, `k)-family
Hk such that `k ≤ `k(qk, ε) and

|Hk| <
1
4k

exp
(

2ε2qk
e2k

)
logm. (3)

[We use k in the subscript for parameters associated with the Hk to make em-
phasize the correspondence with the parameter k used in the induction.] From
Hk we will derive an (mk−1, qk−1, `k−1)-familyHk−1 such that

|Hk−1| ≤ |Hk|; (4)

mk−1 ≥m
1− 1

k
k ; (5)

qk−1 ≥ qk
(

1
e
− ε

4

)
≥ qk
ε2

; (6)

`k−1 ≤ `k−1(qk−1, ε). (7)
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Then, using the induction hypothesis, we obtain

|Hk| ≥ |Hk−1| ≥
1

4(k − 1)
exp

(
2ε2qk−1

e2(k−1)

)
logmk−1 (by the induction hypothesis)

≥ 1
4(k − 1)

exp
(

2ε2qk
e2k

)(
1− 1

k

)
logmk;

=
1
4k

exp
(

2ε2qk
e2k

)
logmk,

contradicting (3).
It remains to describe howHk−1 is obtained fromHk. The idea, as outlined

in the introduction, is this. In the hope of using induction, we will first pick a
subset T of size qk − 2, which most hash functions map into a small number
of elements. These functions can now be viewed as mapping [mk] − T to [qk],
so that the problem reduces to one of covering a large subset of [qk] with `k −
qk + 2. However, not all functions are guaranteed to be so well-behaved. For
the few functions that do perform well on T , we need to take evasive action,
by restricting attention to a subset of the universe on which these functions are
guaranteed to be fail.

This idea is implemented as follows. Using Corollary 1, we first obtain a set
T ⊆ [mk] of size qk − 2 such that at most

2 exp
(
−2
( ε

4

)2
qk

)
|Hk| ≤ 2 exp

(
−2
( ε

4

)2
qk

)
· 1
4k

exp
(

2ε2qk
e2k

)
logm ≤ 1

2k
logmk

hash functions in Hk are
(
ε
4

)
-dangerous for T . Now consider the family of

derived functions

H′ = {hT,2 : h ∈ Hk is
(
ε
4

)
-dangerous for T}.

Using Lemma 1, we obtain a set U ⊆ [mk] of size at least (mk − qk + 2)m
− 1

2k
k

such that |h(U)| = 1 for all h ∈ H′. Our family Hk−1 will be the following set
of hash functions from U to [qk−1] (where qk−1 =

⌈
qk(1

e −
ε
4)
⌉
).

Hk−1 = {hT,qk−1
: h ∈ Hk is not

(
ε
4

)
-dangerous for T}.

We claim that for all T ′ ⊆ U of size `k− (qk−2), there is a function h ∈ Hk−1

such that h(T ′) = [qk−1]. For, consider the set T∪T ′ of size `k. By the definition
of Hk there is an h ∈ Hk such that h(T ∪ T ′) = [qk]. Such an h is not

(
ε
4

)
-

dangerous for T because our definition of U ensures that |h(T ∪ T ′)| < qk. So
for such an h we have

|h(T )| < qk

(
1− 1

e
+
ε

4

)
≤ qk −

⌈
qk(

1
e
− ε

4
)
⌉

= qk − qk−1.
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Hence, for such an h, by Proposition 5, we have hT,qk−1
(T ′) = [qk−1].

Thus, Hk−1 is an (mk−1, qk−1, `k−1)-family for `k−1 = `k − (qk − 2). In
particular lk−1 ≥ qk−1. We need to verify (4)–(7). The definition of |Hk−1|
immediately implies (4). To verify (5) note that for mk � qk,

|U | ≥ (mk − qk + 2)m
− 1

2k
k ≥ m1− 1

k
k .

Since qk−1 =
⌈
qk(1

e −
ε
4)
⌉
, (6) holds. Finally, to justify (7), note that

`k−1(qk−1, ε) ≥ qk
(

1
e
− ε

4

)(
1 +

1
e

+ · · ·+ 1
ek−1

− ε
)
− 2(k − 1)

≥ qk
[
1
e

+
1
e2

+ · · ·+ 1
ek
− ε

e
− ε
(

1 +
1
e

+ · · ·+ 1
ek−1

)]
− 2(k − 1)

≥ qk
(

1
e

+
1
e2

+ · · ·+ 1
ek
− ε
)
− 2(k − 1)

≥ qk
(

1 +
1
e

+ · · ·+ 1
ek−1

− ε
)
− 2k − qk + 2

≥ `k(qk, ε)− (qk − 2)
≥ `k − (qk − 2)
= `k−1.

ut
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