
Computational Complexity II Course Instructor: V. Arvind

Monotone Circuit Lower Bounds

Lecturer: V. Arvind Scribe: Ramprasad Saptharishi

1 Motivation

The holy grail for computer science has been trying to somehow show that
P 6= NP . And another problem that is equally intriguing is to show that
NP * P/poly, trying to find circuit (over ∧,∨,¬) lower bounds for problems
in NP .

But suppose we were able to drop the ¬ gate from the basis, we would be
able to compute only monotone functions, but can we show some monotone
circuit lower bounds for some hard problem in NP? In this lecture we shall
see that the CLIQUE function requires super-polynomial sized monotone
circuits.

2 Preliminaries

Definition 1. A boolean function f is said to be a monotone boolean func-
tion if x ≤ y =⇒ f(x) ≤ f(y) where x ≤ y is by the bit-wise partial order
on strings.

A circuit is said to be monotone if it consists of only ∨ and ∧ gates.

Claim 2. A boolean function is monotone if and only if it can be computed
by a monotone circuit

Proof. One direction is clear, if a function can be evaluated by a monotone
circuit, it has to be monotone. The other direction as well is fairly obvious.

Clearly f(On) = 0 and f(1n) = 1 (otherwise it has to be a constant
function, which has a trivial monotone circuit). Hence on every path from
On to 1n on the boolean hypercube, take the first string x such that f(x) = 1.
We now just need to have an ∧ gate with all the 1 positions of x as input,
and this has to be ∨-ed over the x on every path.

Definition 3.

CLIQUEk,n = {(x1, · · · , x(n
2)

)|the graph induced by them has a k clique}

1

Theorem 4 (Razbarov). CLIQUEk,n requires monotone circuits of size
O(n

√
k) for k ≤ n

1
4

This could have been an attack on the NP * P/poly problem if the
monotone complexity and actual complexity of any function was polyno-
mially related. But unfortunately this isn’t true for general functions, one
could tweak the perfect matching problem to have a problem in P to have
exponential monotone circuit complexity.

However these are true for the so called “Slice Problems” where the
functional value is defined by a singe slice on the hyper cube. That is, there
exists a k such that for any string with weight more than k has 1 as the
output, and any string with weight less than k has 0 as the output.

The proof of Razborov’s theorem will be achieved by approximating
circuits by “clique indicators”, and showing that the approximated circuit
will have to make a lot of errors and also that every gate as such makes small
errors (thereby meaning that there should be a lot of gates that collectively
make a lot of error).

3 Proof of Razborov’ Theorem

Definition 5. A clique indicator IX is a simple circuit such that IX is 1 on
graphs that have the subset X ⊆ [n] as a clique.

A (m, l) approximator is ∨r
i=1IXi such that |Xi| ≤ l for every i and that

r ≤ m, (i.e) it is the OR of at most m clique indicators each of whose size
is bounded by l.

We shall approximate the circuit for CLIQUEk,n with (m, l) indicators
and measure the errors on specific types of instances:

• Positive Tests: Graphs on n vertices with just a k-clique. There are(
n
k

)
such graphs.

• Negative tests: (k − 1) colourable graphs or (k − 1)-partite graphs. If
these are counted with the colouring, then there are (k− 1)n of them.

3.1 Building the Approximate Circuit

The circuit shall be built bottom up, each input xi is already a clique indi-
cator so there is nothing to be done there.

2

Suppose at some internal node of the circuit, say an ∨ gate, has two
inputs A and B whose approximators have already been defined.

A =
r∨

i=1

IXi , |Xi| ≤ l, r ≤ m

B =
s∨

j=1

IYj , |Yj | ≤ l, s ≤ m

We could approximate this ∨ gate by just A∨B but that could potentially
give us a (l, 2m) approximator, while want to stay at (l,m). The following
lemma by Erdös and Rado comes to our rescue.

Lemma 6 (Sunflower Lemma). Suppose F ⊆ 2[n] such that for all S ∈
F, |S| ≤ l. Then if |F| > (p−1)l ·l!, then there exists a “p-petalled sunflower”,
that is, there exists Z1, · · ·Zp ∈ F such that Zi ∩ Zj = Z for all i 6= j.

Proof. The proof will just be an induction on l.
When l = 1, then the core is the null set and we have p disjoint sets as

the p petals.
As for the inductive step, pick a maximal disjoint collection of subsets

from F say Z1, · · · , Zm. If m > p there is nothing to be done since we
already have a p-petalled sunflower with an empty core.

The other case is when m < p. Let Z =
⋃

Zi, and by maximality
of the collection of sets, every set in F must intersect with Z and |Z| ≤
m · l ≤ (p − 1) · l. Hence an element of Z is contained on an average in
|F|
|Z| > (p−1)l·l!

(p−1)·l = (p− 1)l−1 · (l− 1)! many sets of F, and hence there exists an
element x ∈ Z such that it is contained in more than (p− 1)l−1 · (l− 1)! sets
of F. Now consider the collection of those sets that contain x and remove x
from it. By induction you have a sunflower of p petals, put back x into the
core and we have got the required sunflower

We shall have F = {X1, X2, · · · , Xr, Y1, · · · , Ys} and choose m such that
m = (p− 1)l · l!, hence if we have more than m clique indicators, we “pluck”
the sunflower. If X1, · · · , Xp form the p-petalled sunflower, replace all of
them by the common intersection X1∩X2. And hence, with every plucking,
the number of clique indicators go down by 1, repeat this process until you
have at most m clique indicators.

Thus we have approximated an ∨ gate, we shall call it A tB.

3

Approximating an ∧ gate requires a little more work. A ∧B looks like

A ∧B =

(
r∨

i=1

IXi

)
∧

 s∨
j=1

IYj


=

r∨
i=1

s∨
j=1

(
IXi ∧ IYj

)
We now have two problems, firstly IXi ∧ IYj isn’t even a clique indicator.

This can be tackled by just replacing IXi ∧ IYj by IXi∨Yj . If |Xi + Yj | > l,
just drop this clique indicator. As for our second problem of having a union
of 2m clique indicators, apply the plucking as before to reduce this number
to m. This approximator will be denoted by A uB

The approximator of the output gate will be our approximate circuit C ′.

3.2 Approximated circuit makes lots of errors

Lemma 7. Either C ′ is 0 on all positive tests or the number of negative
tests on which C ′ is 1 is at least(

1−
(

l
2

)
k − 1

)
(k − 1)n

Proof. The only way C ′ is 0 on all positive instance is when our A u B
approximator throws out all clique indicators because their sizes are greater
than l. Hence, if it is non-zero on positive test cases,

C ′ =
r∨

i=1

IXi

where 0 6= r ≤ m and |Xi| ≤ l. Pick a negative instance at random among
the (k − 1)n choices. The probability that the approximator outputs a 1
is clearly upper bounded by the probability that IX1 outputs a 1, which is
equal to 1 − Pr[IX1 = 0]. IX1 outputs a 0 if and only if two vertices of X1

lie in the same partition of the random negative test, and this happens with
probability (|Xi|

2

)
k − 1

≤
(

l
2

)
k − 1

Hence, the number of errors made on negative tests is lower bounded as
claimed in the lemma.

4

3.3 Each gate makes few errors on positive tests

Lemma 8. The number of positive tests on which C ′ fails is at most

size(C) ·m2 ·
(

n− l − 1
k − l − 1

)
Proof. We shall consider the errors introduced by the approximator at a
single gate, and then apply the union bound to get the bound claimed.

If g = A ∨B, then our construction for the approximator for g involves
taking a simple ∨ (which doesn’t introduce any error) and then repeatedly
plucking until we get down our number of clique indicators. The plucking
operation replaces a larger clique indicator IXi by IX with X ⊆ Xi and
hence will accept only more graphs and cannot make the approximator an-
swer a 0. Hence A tB introduces no errors on positive tests.

Suppose g = A∧B, our first step was to replace IXi∧IYj by IXi∪Yj . These
two functions behave the same on positive tests and hence won’t introduce
any errors. The second step was to drop indicators of size greater than l.
Dropping such clique indicators may make the approximator err on those
positive graphs that contain a clique on these l+1 or more places, and there
are at most

(
n−l−1
k−l−1

)
of them and there are at most m2 clique indicators,

giving us the bound claimed.

3.4 Each gate makes few errors on negative tests

Lemma 9. The number of negative tests on which C ′ fails is at most

size(C) ·m2 ·

((
l
2

)
k − 1

)p

· (k − 1)n

Proof. Again, we shall analyse the errors introduced at each gate.
If g = A ∨ B then the errors have to be introduced at the plucking

operations. We need to consider the negative tests that are accepted after
plucking which were rejected before. Pick the (k − 1)-partition randomly
among the (k − 1)n partitions, and let G be the resulting negative graph.
For any sunflower Z1, · · · , Zp, we estimate the probability that IZi outputs
0 on G whereas IZ outputs a 1.

5

Pr
[
IZ = 1 ∧

(∨
IZi = 0

)]
≤ Pr

[∨
IZi = 0|IZ = 1

]
=

p∏
i=1

Pr [IZi = 0|IZ = 1]

≤
∏

Pr[IZi = 0]

≤

((
l
2

)
k − 1

)p

The first line follows from the definition of conditional probability. The
second line is true because the petals of the sunflower are disjoint and hence
the probabilities are independent. The third is true because “Zi is not a
clique” is less likely to happen given the fact that Z is a clique1. The fourth
line follows because Zi is not a clique if and only if two vertices of it fall in
the same partition.

And since there are at most m plucks, the desired bound follows if g is
an ∨ gate.

Suppose g = A ∧ B, the step where we replace IXi ∧ IYj by IXi∨Yj does
not cause any graph that was rejected before to be accepted now. The
step of dropping large clique indicators also doesn’t not cause additional
negative graphs to be accepted. It’s again the plucking process that creates
the trouble, and that goes through the same analysis as given for the ∨ gate.
And since there are at most m2 packing’s, the claimed bound is obtained.

3.5 Choosing parameters

If we choose l = b
√

kc, p = d
√

k log ne and m = (p − 1)l · l!, the lemmas
would then show that

size(C) = nΩ(
√

k)

The details are left to the reader.

1if this intuition is not clear, the reader should work out the easy details

6

