
Lectures on the PCP Theorems Course Instructor: V. Arvind

Lecture 1

Lecturer: Partha Mukhopadhyay Scribe: Ramprasad Saptharishi

We shall be following the notes of Venkatesan Guruswami’s course titled
“The PCP Theorems and Hardness of Approximation”, can be found on his
homepage.

1 The Theorem

The motivation for this was to look at NP and other classes as a proof
checking system like the IP characterisation of PSPACE or the AM char-
acterisation of BP ·NP . The notion of the Probabilistically Checkable Proof
systems was first given by (blah), and they also gave the first proof of the
PCP theorem which characterises NP .

1.1 Definition of a PCP System

A PCP(r, p) system for a language L is an interactive proof system between
a Prover and a Verifier and is done as follows:

• x ∈ Σn is provided as input

• Prover does some computation on x and write a proof of length poly(n)

• Verifier does some computation, takes r(n) random bits and probes
the proof at p(n) places. And then does some compution to decide
whether he is accepting the proof or not.

• Completeness: If x ∈ L, there exists a proof such that the verifier will
accept it with probability 1.

• Soundness: If x /∈ L, then whatever proof is given to the verifier, the
verifier rejects with probability ≥ 1/3

1.2 The Statement of the Theorem

Theorem 1 (The PCP Theorem). For all L ∈ NP , there exists a PCP(O(log n), O(1))
system for L.

1

That is, there exits a proof such that the verifier makes O(log n) coin
tosses and chooses a constant number of bits to probe in the proof and can
provide a complete and sound verification.

2 The Constraint Graph

Definition 2. G = (G = (V,E), C,Σ) , C = {Ce}e∈E ⊆ Σ × Σ is called a
constraint graph, with Ce being the constraints on every edge as relations
over Σ.

An assignment is a map σ : V → Σ and we say σ satisfies an edge
(u, v) ∈ E if (σ(u), σ(v)) ∈ Ce

2.1 GAP · CGc,s(G): The Gap Version

Given as input is a constraint graph G = ((V,E), C,Σ).

• If there exists an assignment σ : V → Σ such that it satisfies more
than c fraction of edges, output “YES”

• If every assignment σ satisfies atmost s fraction of vertices,

• Output anything otherwise

Theorem 3 (Dinur’s Theorem). GAP · CG1,s(G) is NP−hard for a fixed
alphabet Σ and constant s.

And it is clear that one can amplify this gap to 1
2 with O(log n) random

bits, and hence

Claim 4. Dinur’s Theorem =⇒ PCP Theorem

2.2 Roadmap of Proof of Dinur’s Theorem

To show that GAP · CG1,s is NP−hard, we shall reduce graph three-
colourability to to this. The idea is that we can represent the decision
problem of graph three-colourability as a gap problem by itself; the assign-
ment considered as just the colour of the vertex.

3Colour(G) = GAP · CG1,1− 1
m

((G,C, {1, 2, 3}))

where the constraints are just the inequality constraints (Σ×Σ− diag) and
m = |E|

2

Thus the reduction is just amplifying the gap
(
1, 1− 1

m

)
to (1, s). This

will be done by applying a partial reduction for logarithmically many steps.
The partial reduction involves 4 steps:

1. Degree Reduction: Make it a constant degree graph, with not too much
blow up in the size fo the graph. The gap reduces, but only by a
constant factor

2. Expanderize: Convert the graph to an expander, again with just con-
stant factor troubles in graph size and gap.

3. Gap Amplification: This was the innovation of Dinur. You amplify
gap, compensate for the losses in the other 3 steps, but on the other
hand your Σ size blows up a lot.

4. Alphabet Reduction: The alphabet size comes down, finally gap is now
twice the original gap, with not too much blow up in the size of the
graph.

3 The Reduction

3.1 Degree Reduction

Let G = (V,E) be the graph with the set of constraints being C. For every
vertex v ∈ V , blow it up into a cloud of deg(v) many vertices, and embed
an (deg(v), d0, λ0) expander over the cloud for some predefined d0 and λ0.

Now the vertex set cardinality of the new graph is
∑
deg(u) = 2|E|,

and the edge set cardinality is |E| +
∑ deg(u)d0

2 = |E|(1 + d0). As for the
constraints, retain the edge constraints to the appropriate edges in the new
graph, and equality constraints within each cloud. We then have a constant
degree constraint graph over the same alphabet.

Of course, we want the gap to be respected. Define gap =fraction of
edges unsatisfied by the best assignment. Let the gap of G be gap and that
of the new graph is gap′. Clearly gap = 0 =⇒ gap′ = 0, but we don’t want
to lose much on any non-zero gap.

Claim 5. If gap 6= 0, gap′ ≥ gap
O(1)

Proof. Let σ′ be the best assignment for G′. Define an assignment σ for
G as σ(v) = maj(σ′(u)) over all u ∈ cloud(v). Let |F | be the set of edges
violated by σ, then clearly gap ≤ |F |

|E| .

3

Let e = (u, v) ∈ F , and let e′ = (u′, v′) be the corresponding intercloud
edge in G′. And let Su = {v ∈ cloud(u)|σ′(v) 6= σ(u)}. Now either σ′

satisfies e′ or it doesn’t.
Suppose σ′ satisfies e′, then either u′ ∈ Su or v′ ∈ Sv since otherwise e′

would be satisfied. Hence we have

gap|E| ≤ gap′|E′|+
∑
u∈V

|Su|

• Case 1: if gap′|E′| ≥ gap|E|
2 , then we are done since

gap′ ≥ gap|E|
2|E|(1 + d0)

=
gap

2(1 + d0)
=

gap

O(1)

• Case 2: Otherwise,
∑
|Su| ≥ gap|E|

2 . Let Sau be the set of vertices in
Su that are coloured a by the assignment σ′.

Clearly |Sau| ≤ 1
2 |cloud(u)|, and since cloud(u) is an expander, there

exists c|Sau| many edges going out of Sau for some appropriate c. And
all these edges are violations since we have forces equality constraints
over the intracloud edges.

Thus counting the number of unsatisfied edges,

|F ′| = gap′|E′| ≥ c
∑
u∈V

|Sau| ≥
c

2
gap|E|

and we then have that gap′ = gap
O(1)

Hence we now have a constant degree graph with decent gap.

3.2 Expanderize

We have our graph G to be a d-regular graph with n vertices. Now take
a H = (n, d0, λ0) expander (λ0 is the second largest eigenvalue of the non-
normalized adjacency matrix) for suitable parameters and just superimpose
on G.

The adjacency matrix (non-normalized) is clearly satisfies

AG′ = AG +AH

4

And by the Rayleigh characterisation of the second largest eigenvalue, the
second largest eigenvalue of the non-normalized adjacency matrix of G′:

λ2(G′) ≤ d+ λH < d+ d0

and hence G′ is an expander.
As for the new constraints, just add trivial (always true) constraints on

the new edges. the size of the edge set |E′| = |E|+ nd0
2 = n(d+d0)

2 and

gap′ =
gap|E|

n
2 (d+ d0)

=
gap

O(1)

Hence we now have reduced the generalised gap version to a special case
on constant degree expanders.

3.3 Gap Amplification: a sketch

G is a (n, d, λ) expander. Fix a parameter t, the value shall be chosen later.
The new constraint graph has the same set of vertices, Σ′ = Σ1+d+···+dt

and
edges in the new graph are vaguely like t step walks in G.

For every u ∈ V , it can reach 1 + d + · · · + dt vertices in a t step walk,
vertices counted with repetition. In this context, an assignment σ′ : V → Σ′

can be thought of as a vector with 1 + d + · · · + dt coordinates where each
coordinate σ(u)v can be thought of u’s opinion about v.

The constraints are the following, for every edge e = (a, b), it can be
intepretted as a t step walk from a to b. For every (u, v) in the t-walk, check
if (σ′(a)u, σ′(b)v) must be in Ce of the input graph.

Now, suppose σ′ is the best assignment, we shall again extract a σ for
G. Look at all the vertices that could have an opinion about u, and take
the majority of the opinions.

Let F be the set of unsatisfied edges in G with respect to σ, and gap′

the new gap.
gap′ = Pr

e′
[e′ is rejected under σ′]

By the way we’ve chosen our σ, there is a “good” chance that σ′(a)u = σ(u)
and σ′(b)v = σ(v). Hence if (u, v) ∈ F , there is a good chance that e′

contains the edge (u, v) to be rejected.
Roughly speaking,

gap′ ≥ 1
O(1)

Pr
e′

[e′ passes through F]

5

Since we have an underlying expander, missing |F | is “rare”

gap′ ≥ 1
O(1)

(
1−

(
1− |F |

|E|

)t)

≥ t

O(1)
|F |
|E|

and t is chosen such that the amplification, taking into account the losses in
the other steps, is geq2.

But our alphabet is now Σdt+1
, and thus we need to reduce the alphabet

size back to Σ, which is the next sub-routine in the reduction.

6

Lectures on the PCP Theorems Course Instructor: V. Arvind

Lecture 2

Lecturer: Partha Mukhopadhyay Scribe: Ramprasad Saptharishi

4 Overview

This class we shall look at the gap-amplification routine. This isn’t the
original method that Dinur adopted in her paper, this was suggested by
Jaikumar Radhakrishnan by considering some special kinds of random walks

5 Gap Amplification

5.1 Lazy Random Walks

Let G(V,E) be a d-regular graph. We can then talk of two kinds of random
walks:

1. After stopping random walk (ASRW): Follows the subroutine

(a) Pick v ∈ V at random

(b) Take a random step

(c) Stop there with probability 1
t

(d) Go to step (b).

2. Before stopping random walk (BSRW): Given a start vertex v, follows
the subroutine

(a) Stop at v with probability 1
t

(b) Take a random step

(c) Go to step (a)

It’s clear that the length of an ASRW is atleast 1 whereas that of a
BSRW could be 0 as well. And also, every ASRW walk stops after finitely
many steps1.

1one can easily show that probability of any infinite long ASRW is 0

7

Let (u, v) be some edge and Y be the random variable that counts the
number of u− v moves in an ASRW. Suppose you are given a promise that
the edge is traversed k times, we want to estimate the distributions on the
end points of the random walk, that is Pr[b = w|Y = k] where b is the end
of the walk.

Before we actually get to this, let us look at Pr[b = w|Y ≥ k], when the
edge is traversed atleast k times. Once we’ve made the k-th move on (u, v),
the rest is just a BSRW starting at v! Hence for every w ∈ V ,

Pr[b = w|Y ≥ k] = Pv,w

where Pv,w is probability of reaching w from v through a BSRW.
And turning the walk around, we can also see that for all w′ ∈ V

Pr[a = w′|Y ≥ k] = Pw′,u

Now,

Pv,w = Pr[b = w|Y ≥ k] =
Pr[b = w ∧ Y ≥ k]

Pr[Y ≥ k]

=
Pr[b = w ∧ Y = k] + Pr[b = w|Y ≥ k + 1]

Pr[Y = k] + Pr[Y ≥ k + 1]

=
(

Pr[b = w ∧ Y = k]
Pr[Y = k]

+
Pr[b = w ∧ Y ≥ k + 1]

Pr[Y ≥ k + 1]

)
/

(
Pr[Y = k]

Pr[Y ≥ k + 1]
+ 1
)

=
(

Pr[b = w ∧ Y = k]
Pr[Y = k]

+ Pv,w

)
/

(
Pr[Y = k]

Pr[Y ≥ k + 1]

)
and with some cross-multiplication and cancelling, we get

Pr[b = w ∧ Y = k]
Pr[Y = k]

= Pr[b = w|Y = k] = Pv,w

and similarly for w′. This then shows that the conditioned on a fixed edge
being traversed k times, the end points of the AFRW are independantly
distributed.

5.2 The Amplification Process

The reduction procedure would be a little different, we shall consider a ran-
domized verifier who is constructing the new graph G′ from G. Later we
shall remove the randomness to get our deterministic polynomial time re-
duction.

8

The input is the constraint graph on G = (V,E) which is a (n, d, λ)
expander with alphabet Σ and gap as gap. We want to get a new graph
G′ = (V,E′) with new constraints and alphabet as Σ′ = Σ1+d+···+dt

for a
parameter t which shall be chosen later.

Verifier’s Procedure:

• Do an ASRW on the graph G for t steps, let the start vertex be a and
the end vertex be b.

• The edge (a, b) is given weight Pa,b, the probability of the ASRW
starting at a and ending at b.

• The edge (a, b) is given the constraints as follows for any assignment
σ : V → Σ1+d+···+dt

:

For every edge (u, v) in the ASRW, (σ′(a)u, σ′(b)v) should be satisfied
in the old graph.

The problem with this is that we now have a complete graph on V , with
the probabilities of choosing them as the weights. This is too costly since
we need to do this reduction for O(log n) steps and we can’t have anything
more than |E′| = O(1)|E|. This problem howeever will be fixed later.

5.3 Lowerbounding gap′

Let σ′ : V → Σ′ be the best assignment for G′. We shall extract an assign-
ment for G to get an upperbound on gap′.

σ(u) is defined as follows:

• Do a BSRW starting at u. This generates a probability distribution
X(v) on the vertices reachable from u with a path of length atmost t.

• For all a ∈ Σ, let
Pa =

∑
σ′(v)u=a

X(v)

Define σ(u) = c such that Pc = maxa∈ΣPa, the “most frequent opinion
of u from other vertices”.

Let F be the set of unsatisfied edges, we may throw in some more un-
satisfied edges so that gap = |F |

|E|

Definition 6. A u→ v step in the verifier’s a→ b walk is said to be faulty
if

9

• (u, v) ∈ F

• dist(a, u) ≤ t and σ′(a)u = σ(u)

Let N be the random variable that counts the number of faulty steps in
the verifier’s walks. And clearly gap′ ≥ Pr[N ≥ 0]

Lemma 7.

E[N] ≥ t

8|Σ|2
|F |
|E|

Proof. Let (u, v) ∈ F . Clearly it’s enough to show that the expected value
of u→ v faulty steps (say Nuv) is bounded below by t

8|Σ|2
1
|E|

E[Nuv] =
∑
k≥1

kPr[u→ v is faulty|k (u→ v)steps] Pr[k (u→ v)steps]

Claim 8. Pr[(u→ v) is faulty|k (u→ v)steps] ≥ 1
4|Σ|2

Pf: The required probability is just checking

1. dist(a, u) ≤ t and σ′(a)u = σ(u)

2. dist(b, v) ≤ t and σ′(b)v = σ(v)

But these two are independant distributions given the promise that the
edge (u, v) is traversed k times. So Pr[1 ∨ 2] = Pr[1] + Pr[2]

Pr[σ′(b)v = σ(v)|dist(b, v) ≤ t] · Pr[dist(b, v) ≤ t]

By our choice of σ(u), Pr[σ′(b)v = σ(v)|dist(b, v) ≤ t] ≥ 1
|Σ|

And

Pr[dist(b, v) ≤ t] = Pr[b is generated within t steps]

= 1−
(

1− 1
t

)t
> 1− 1

e

>
1
2

And together with the two bounds, the claim is done.

10

And thus with this claim,

E[Nuv] ≥ 1
4|Σ|2

E[number of (u, v) steps]

E[number of (u, v) steps] =
∑
k≥1

E[number of (u, v) edges|k steps in walk] Pr[k steps in walk]

Now for any d-regular graph, after starting with the uniform distribution
on the vertices, after an i step random walk, the probability of traversing
any edge is 1

2|E| for every i. Hence,

E[number of (u, v) steps] =
1

2|E|t
∑

k

(
1− 1

t

)k−1

=
1

2|E|t

(
1−

(
1− 1

t

))−2

=
t

2|E|

∴ E[Nuv] ≥ 1
4|Σ|2

· t

2|E|

and summing over every edge (u, v) ∈ F , the lemma is proved.

Before we go further in bounding gap′, let us first prune the graph down.

5.4 Pruning down the graph

We have a complete graph because the verfier is able to look at all paths
and hence we have all edges in G′. The natural thing to do is to cut down
the verifier’s walks.
Modified Verifier: Fix a parameter B = ct

• If the verifier makes more than B steps, put no constraint on (a, b).

• Otherwise use the same test as in the earlier veifier.

Throw away all unconstrained edges from G′. It’s clear that the degree of
this graph is bounded by 1+d+ · · · dB and size(G′) ≤ c′size(G). Probabili-
ties are rational numbers with the numerators and denominators depending
on B and t alone and hence the weights(probabilities) can be removed by
having multiple edges.

Now we shall argue that the bounds on gap′. Let σ′ be the best assign-
ment for G, we shall extract σ just as in the earlier case, by considering the

11

most frequent opinion. Again, we can throw some unsatisfied edges to make
gap = |F |

|E| .

Definition 9. A u → v step is said to be faulty′ if it is faulty and the
verifier stops within B steps in that walk.

Let N ′ be the random variable that counts the faulty′ steps, and let
NF be the random variable that counts the number of times the walk passes
through F and let S be the number of steps. We need to argue that Pr[N ′ >
0] is large.

Theorem 10 (Second Moment Method). For any random variable N ,

Pr[N > 0] ≥ E[N]2

E[N2]

The proof of this theorem is left as an exercise.

Now for a similar lemma as in the earlier case.

Lemma 11.

E[N ′] ≥ t

16|Σ|2
· |F |
|E|

Proof. E[N ′] = E[N] − E[N |S > B] Pr[S > B] and we know that Pr[S >

B] =
(
1− 1

t

)B. And again by the same argument used earlier, we get

E[N |S > B] =

∑
k≥1

(B + k)
1

2|E|

(
1− 1

t

)k−1 1
t

 |F |

=
B + t

2|E|
|F |

∴ E[N |S > B] Pr[S > B] ≤ e−B/t
(
B + t

2|E|
|F |
)

Now we can choose c appropriately and be done.

Now, we need to bound E[N ′2]. Let χi be the indicator random variable
that checks if the ith step of the verifier is in F . It is clear that N ′ ≤ NF

and hence E[N ′2] ≤ E[N2
F] =

∑
E[χiχj]. Hence

E[N ′2] ≤ 2
∑
i,j

E[χiχj]

≤ 2
∑
i

Pr[χi = 1] ·
∑
j≥i

Pr[χj = 1|χi = 1]

12

When i = j, Pr[χj = 1|χi = 1] = 1, otherwise, it is equal to

Pr[a walk starting from an endpoint on F takes its (j − i)th edge in F]
×Pr[the walk takes atleast j − i more steps]

The second term we know is equal to
(
1− 1

t

)j−i, the bound for the first
term follows from the following expander lemma.

Lemma 12. Let G = (n, d, λ) expanderand F ⊆ E. Then the probability
that a random walk with initial step in F will move in F at the lth step is

≤

(
|F |
|E|

+
(
λ

d

)l−1
)

Proof. The proof is exactly like the proof of the mixing time lemma, same
adjacency matrix trick.

Hence taking j − i = l,

E[N ′2] ≤ 2
∑
i

Pr[χi = 1]

(
1 +

∑
l

(
1− 1

t

)l(|F |
|E|

+
(
λ

d

)l−1
))

≤ 2
∑
i

Pr[χi = 1]
(

1 + (t− 1)
|F |
|E|

+O(1)
)

The O(1) comes in because d and λ are constants which are fixed ear-
lier. Now we can assume that |F |

|E| ≤
1
t , otherwise we already have attained

constant gap.

E[N ′2] ≤ O(1)
∑
i

Pr[χi = 1]

= O(1)E[NF]

≤ O(1)t
|F |
|E|

And now using our second moment method, we have

Pr[N ′ > 0] ≥ t

O(1)
|F |
|E|

and we are through with gap-amplification.

13

Lectures on the PCP Theorems Course Instructor: V. Arvind

Lecture 3

Lecturer: Bireswar Das Scribe: Ramprasad Saptharishi

6 Overview

We are not at the last step of the subroutine that achieves the reduction
to prove Dinur’s Theorem. We would be applying the routine for O(log n)
steps and hence this clearly means that the alphabet can’t be as large as it
is at the end of step 3. Our goal is to now reduce the alphabet size down to
a constant without losing the amplification achieved.

We would need a lot of machinary for this step, the crux is the Assign-
ment Tester.

7 Assignment Tester =⇒ Alphabet Reduction

Definition 13. A q-query assignment tester AT (γ > 0,Σ) is a reduction
algorithm P whose input is a boolean circuit Φ over X and outputs a system
of constraints Ψ over X and a set of auxillary variables Y such that:

• Y takes values from Σ

• Each constraint ψ ∈ Ψ depends on atmost q variables.

• For all a : X → {0, 1}

– If Φ(a) = 1, then there exists an assignment b : Y → Σ such that
a ∪ b satisfies all constraints ψ ∈ Ψ

– If a is δ-far2 from any satisfying assignment of Φ, then for every
assignment b : Y → Σ, a ∪ b violates atleast γδ fraction of the
constraints.

But in order to use this in our constraint graphs, we need a 2-query
assignment tester since each constraint is an edge in the constraint graph.

2by the relative hamming distance

14

And from the definition if the Φ was satisfiable then gap = 0 for the
constraints. And if the Φ was not satisfiable, then every assignment is 1-far
from a satisfying assignment (since there aren’t any satisfying assignments)
and hence the gap is atleast γ. This is just like the PCP reduction, except
for the running time of the assignment tester, which could potentially be
exponential.

But we can apply this assignment to only some small circuits of the
graph, and help is reduce the alphabet size.

Theorem 14 (Composition Theorem). Let P (γ > 0,Σ0) be a 2-query as-
signment tester. Then for any constraint graph G = (G,C,Σ) can be con-
verted, in polynomial time, to another constraint graph G′ = (G′, C ′,Σ0)
such that:

• size(G′) ≤ O(1)size(G)

• gap(G) = 0 =⇒ gap(G′) = 0

• There exists a β > 0, depending only on P and |G|, such that gap(G′) ≥
β · gap(G)

Proof. The idea is to apply P on each constraint on the edges to transform
the graph into another constraint graph. First we need to give P a circuit,
so we shall encode the elements of Σ as binary strings by using an error
correcting code.

Let e : Σ → {0, 1}l be a constant rate code, (i.e) l = O(log |Σ|) and
minimum distance being ρ = 1

4 , that is x 6= y =⇒ ∆(e(x), e(y)) ≥ ρ · l.
Our constraint graph is (G = (V,E), C,Σ), for each constraint c ∈ C on

the variable u, v of G, define a new constraint on [u] ∪ [v], where [u] is the
encoding of u under e, as follows:

Φu,v(a, b) = 1 if and only there exists α, α′ ∈ Σ such that e(α) = a,
e(α′) = b and c(α, α′) = 1 for all constraints c on the edge (α, α′).

We can then interpret Φu,v : {0, 1}2l → {0, 1} as a boolean circuit and
feed it to the 2-query assignment tester. The output obtained will now
be a list of constraints Ψu,v, each dependant on just two variables. And
hence this can be interpretted as a constraint graph over Σ0, say (Gu,v =
(Vu,v, Eu,v), Cu,v) such that [u]∪ [v] ⊆ Vu,v. Our new constraint graph (G′ =
(V ′, E′), C′,Σ0) will just be these small constraint graphs pasted together.

• V ′ =
⋃
e∈E Ve

• E′ =
⋃
e∈E Ee

15

• C′ =
⋃
e∈E Ce

Now we need to show that this graph proves the theorem. Firstly, the
size bound of G is clear since each edge of G is blown up by the output of
the assignment tester’s output on the constraints. And since, with possible
addition of multiple edges, each Gc is of equal size the size of G′ is clearly
O(1)size(G); and is also clear that this can be done in polynomial time.

When gap(G) = 0, we have a satisfying assignment to our input cir-
cuit to the assignment tester. Hence by definition of the assignment tester,
gap(G′) = 0.

As for the other case, let σ′ : V ′ → Σ0 be the best assignment. From
this, extract an assignment σ : V → Σ as follows:

σ(u) = arg min
a

(σ′([u]), e(a))

that is, pick the nearest codeword to the label. There is a catch, σ′ should
assign {0, 1} values for [u] for all u ∈ V , but that has to happen since any
other value would only make more constraints unsatisfied.

Atleast gap(G) · |E| edges have to be violated in the old graph; we now
want to count the number of violations in G′. Let (u, v) be violated by σ.

Claim 15. σ′([u]) · σ′([v]) is atleast ρ
4 -far from any satisfying assignment

for the constraint circuit Φu,v of the edge (u, v)

Proof. Let (e(a), e(b)) be the satisfyign assignment for Φu,v that is closest to
σ′([u]) ·σ′([v]); this forces c(a, b) = 1 for all constraints c on the edge. Hence,
either a 6= σ(u) or b 6= σ(v) otherwise it would contradict the assumption
that (u, v) ∈ F . Without loss of generality, let us assume that a 6= σ(u).
Then

ρ ≤ ∆ (e(a), e(e(u)))
≤ ∆

(
e(a), σ′([u])

)
+ ∆

(
σ′([u]), e(e(u))

)
≤ 2∆

(
e(a), σ′([u])

)
And since we have a concatenation of σ′([u]) and σ′([v]), it has to be

atleast ρ
4 -far from any satisfying assignment for Φu,v

Hence the σ′ violates atleast γ · ρ4 fraction of the constraints in each such
Gu,v and hence violates gap(G)γ · ρ4 fraction of constraints in G′ and thus
proves the theorem with β = γ · ρ4

16

8 In Search of an Assignment Tester

Once we have a 2-query assignment tester, then by the earlier theorem
we are done. Infact, the following theorem tells us that finding a q-query
assignment tester over Σ = {0, 1} would be enough.

Theorem 16. Let P be a q-query (γ, {0, 1}) assignment tester. Then we
can onstruct a 2-query (γq , {0, 1}

q) assignment tester from P .

Proof. On an input Φ over X, let P output Ψ as the set of constraints over
the variables X∪Y . We shall define the 2-query assignment tester as follows:

• The auxillary variables are Y ∪ Z where Z = {zψ|ψ ∈ Ψ} over the
alphabet {0, 1}q

• For each constraint ψ ∈ Ψ, we add q constraints as follows. Let
v1, · · · , vq be the inputs that ψ depends on (repeat something if less).
Add the constraint (zψ, vi) for every 1 ≤ i ≤ q such that it is satisfied
by (a, b) if the assignment a (∈ {0, 1}q) satisfies ψ and the value that
a gives to vi is b.

Hence, any assignment that satisfies everything in Ψ can be clearly ex-
tended to satisfy every constraint in the 2-query assignment tester’s output.
And since we are spreading every constraint over q 2-query constraints, an
assignment that is δ-far from a satisfying assignment will violate γδ

q fraction
of constraints.

We shall construct a 6-query assignment tester and this shall then give
us a 2-query assignment tester over the alphabet Σ0 such that |Σ0| = 64.
We would require a lot of machinary before that.

9 Linearity Testing

Definition 17. A function f : {0, 1}n → {0, 1} is said to be a linear function
if there exists S ⊆ [n] such that f(x) = ⊕i∈Sxi

This basically means that for all x, y ∈ {0, 1}n, f(x⊕ y) = f(x)⊕ f(y).

For every S ⊆ [n], let χS : {0, 1}n → {0, 1} be defined as FS(x) = ⊕i∈Sxi.
Given an input function f , the linearity test tries to distinguish the two
cases:

• f is equal to χS for some S ⊆ [n]

• f is “far” from every χS

17

9.1 The Blum-Luby-Rubinfeld Test

Definition 18. Two functions f and g from are said to be δ-far if

Pr
x

[f(x) 6= g(x)] ≥ δ

They are said to be δ-close if

Pr
x

[f(x) 6= g(x)] ≤ δ

BLR Test:
Input f : {0, 1}n → {0, 1}

1. Pick x, y ∈R {0, 1}n

2. Accept if f(x⊕ y) = f(x)⊕ f(y), reject otherwise.

Claim 19 (BLR Completeness). If f is linear, BLR always accepts

Proof. Clear!

Claim 20 (BLR Soundness). If f is δ-far from any linear function, then
BLR rejects with probability ≥ δ

Proof. We shall do a fourier analysis on the function for the proof. First we
shift our notation from {0, 1} to {−1, 1}, thus each χS(x) =

∏
i∈S xi

Pr[BLR rejects] = Pr
x,y

[f(x)f(y) 6= f(xy)]

= Ex,y

[
1− f(x)f(y)f(xy)

2

]
It is easy to see that {χS}S⊆[n] forms an orthonormal basis for the set of

boolean functions under the following inner product definition:

〈f, g〉 =
1
2n
∑
x

f(x)g(x)

And hence, every boolean function f can be written as

f(x) =
∑
S

fSχS(x)

and the coefficients fS , under this basis, are called the fourier coefficients.
And by Parseval’s identity,

∑
S f

2
S = 1

18

Ex,y[f(x)f(y)f(xy)] = E
[∑

fSχS(x)
∑

fTχT (y)
∑

fTχT (xy)
]

= E
[∑

fSfT fUχS(x)χT (y)χU (xy)
]

Now

Ex,y[χS(x)χT (y)χU (xy)] = Ex,y

∏
i∈S

xi
∏
j∈T

yj
∏
j∈U

xkyk


= Ex,y

 ∏
i∈S∆T

xi
∏

j∈T∆U

yj


= Ex

[∏
i∈S∆T

xi

]
Ey

[∏
i∈T∆U

yi

]
And this will be non-zero only if S∆T = T∆U = φ =⇒ S = T = U . Hence

Ex,y[f(x)f(y)f(xy)] =
∑
S

f3
S

≤
(

max
S

fS

)(∑
S

f2
S

)
= max

S
fS

Also,

fS = 〈f, χS〉

=
1
2n
∑
x

f(x)χS(x)

=
1
2n

 ∑
f(x)=χS(x)

1−
∑

f(x) 6=χS(x)

1


= 1− 2 Pr

x
[f(x) 6= χS(x)]

Hence,

Ex,y[f(x)f(y)f(xy)] ≤ max
S

fS

= 1− 2 min
S

Pr
x

[f(x) 6= χS(x)]

= 1− 2 min d(f, χS)
= 1− 2δ

19

Hence

Pr[BLR rejects] = Ex,y

[
1− f(x)f(y)f(xy)

2

]
≥ δ

20

Lectures on the PCP Theorems Course Instructor: V. Arvind

Lecture 4

Lecturer: Bireswar Das Scribe: Ramprasad Saptharishi

10 Overview

Last time we saw that the existence of a constant query assignment tester
completed the alphabet reduction process. This class we shall construct
a constant query assignment tester, and complete the proof of the PCP
theorem.

11 A constant query assignment tester

Given a circuit Φ as input, we need to output a set of constraints with
the properties that preserve gap. The first step that we would be doing is
arithmetize circuits.

11.1 Arithmetizing Circuit-Sat

Introduce variables for every input bit and also for every gate. Let x, y be
the input wires and z the output wire for some gates. Add the following
constraints for that gate:

• AND: xy − z = 0

• OR: x+ y − xy − z = 0

• NOT: x+ z = 1

where all the operations are done over F2.
And to check if the output of the circuit is 1, if z is the variable of output

gate, we have add the constraint z − 1 = 0.
We would now have one variable for every gate, apart from the inputs.

Let us refer to the set of equations as {P1, · · · , Pm}.

Hence we now have a set of quadratic constraints to be checked to solve
circuit satisfiability.

21

11.2 Testing Quadratic Systems

Given an assignment a ∈ {0, 1}N for the set of quadratic equations, one
could naively check by plugging in a into every constraint and check. But
for this we would need to know the entire assignment, we are looking for a
constant number of queries to test the system.

Hence instead of checking if Pi(a) = 0 for every i, we shall look at a
random linear combination of them and check if the following is zero:

Pr̄(a)
m∑
i=1

riPi(a) = 0

Clearly, if each of the Pi(a) = 0, then the linear combination would be
zero. And even otherwise, we have the following easy claim for the soundness
of the test.

Claim 21. If Pi(a) 6= 0 for some i, then

Pr̄
r

[∑
riPi(a)

]
= 0

By collecting all linear and quadratic terms separately,

Pr̄(a) = s0 +
N∑
i=1

siai +
∑

1≤i,j≤N
tijaiaj

Definition 22. Given an assignment a ∈ {0, 1}N , define the following func-
tions.

• L(s) =
∑
aisi

• Q(t) =
∑
aiajtij

Hence our test amounts to checking if Pr̄(a) = s0 + L(s) + Q(t) = 0.
Recall the Hadamard encoding of a string x.

Definition 23. For a vector x = {x1, · · · , xr} over a field F, the Hadamard
encoding of x, denoted by Had(x) is given by:

Had(x)(s) =
r∑
i=1

sixi

22

The Hadamard code is the longest possible linear code that does not
have any repeated symbols as it contains all possible linear combinations of
x.

And the function Q defined above is the Quadratic Function encoding of
the assignment a.

Definition 24. Given a vector x = {x1, · · · , xr} in a field F, the quadratic
function encoding of x, denoted by QF (x) is given by:

QF (x)(t) =
∑

1≤i,j≤r
xixjtij

Note that the quadratic function encoding of x is just the hadamard
encoding of the vector x⊗ x.

The assignment tester will now be described as a Prover-Verifier protocol,
since we are applying the assignment tester only on the edges (which are of
constant size) in our graph we are not worried about the running time of
the assignment tester.

Given a circuit, the verifier picks the random vector r̄ and based on that
the prover provides the satisfying assignment (if any), the table for L and
the table for Q for the satisfying assignment. Now with just two queries (one
for L and another for Q) the verifier can check if Pr̄(a) = 0. But there is
no guarantee that the tables that the prover provided was correct, we need
some way to reject malicious provers.

The verifier needs to check for the following:

1. L is a linear function, the hadamard encoding of some c ∈ FN2 , and Q
is a liner function on Fn2 , the hadamard encoding of C = (Cij)1≤i,j≤N .

2. Q and L are tables for the same assignment c, that is, Cij = cicj . (this
means that Q is a quadratic function encoding, not just a hadamard
encoding of a vector)

3. The assignment that both the tables are referring to is indeed the
assignment to the set of quadratic constraints.

The BLR test would check conditions 1 with few queries (with high
probability). As for the other conditions, we would need some way of finding
the actual value of L and Q though the tables could be slightly distorted;
we need a way to self-correct.

23

The Self-Correct Algorithm: SC(f, x)

• Pick y at random

• Output f(x⊕ y)⊕ f(y)

Lemma 25. If f is δ-close to a linear function L for some δ < 1
4 , then

for any x ∈ {0, 1}n the algorithm SC(f, x) computes L(x) with probability
atleast 1− 2δ.

Proof. Since y and x⊕ y are distributed uniformly at random,

Pr
y

[f(y) 6= L(y)] ≤ δ

Pr
y

[f(x⊕ y) 6= L(x⊕ y)] ≤ δ

∴ Pr
y

[SC(f, x) = L(x)] ≥ 1− 2δ

Now for condition 2, pick random s, s′ ∈ {0, 1}N and the following must be
true.

L(s)L(s′) =
(∑

aisi

) (
ajs

′
j

)
=

∑
aiajsis

′
j

= Q(s⊕ s′)

And this can be checked by the self-correction procedure.

And finally for condition 3, to check if a was the actual assignment, we
need to check if the coefficient of si is ai. And hence we can randomly pick
and i and check if SC(L, ei) = ai. We shall now put the assignment tester
together and then formally prove the completeness and soundness.

11.3 The Final Assignment Tester

Input

A boolean circuit over variables X and gates Y such that |X|+ |Y | = N .

Initialization

Arithmetize the circuit to get a set P = {P1, · · · , Pr} of quadratic con-
straints over the variables A = {z1, · · · , zn}. Let {z1, · · · , z|X|} correspond
to the variables of X and the rest for the gates Y .

24

The Proof Provided

• The assignment a = (a1, · · · , aN) ∈ {0, 1}N for the variables A

• A table L

• A table Q

Verification

Step 1:

• Run BLR on L

• Run BLR on Q

Step 2: Pick s, s′ at random and check if the following holds:

SC(L, s)SC(L, s′) = SC(Q, s⊗ s′)

Step 3: Pick a random vector r̄ and compute the coefficients si and tij such
that

Pr̄(a) = s0 +
N∑
i=1

siai +
∑

1≤i,j≤N
tijaiaj

and check if
s0 + SC(L, S) + SC(Q,T) = 0

Step 4: Pick a random i ∈ {1, 2, · · · , |X|}. Check if

SC(L, ei) = ai

11.4 Proof of Correctness

Completeness of the entire test is clear, an honest prover will convince the
verifier with probability 1 since he would pass every step of the verifier’s
procedure.

Firstly, if L or Q is δ-far from a linear function, then by the soundness
of the BLR test we know that step 1 would reject with probability ≥ δ. For
step 2, we would be needing this simple lemma.

Lemma 26. Given a non-zero matrix (atleast 1 non-zero entry) M , for a
random choice of vectors s, s′,

Pr
s,s′

[sTMs′ = 0] ≤ 3
4

25

Proof. Let Mij be the non-zero entry, note that

sTMs′ +(s+ ei)TMs′ + sTM(ej + s′)+ (s+ ei)TM(s′ + ej) = eTi Mej = Mij

And hence this is non-zero, atleast one of the the above has to be non-zero.
And since they are all identically distributed, the lemma follows.

Lemma 27. If L is δ-close to Had(c) and Q is δ-close to Had(C) such that
Cij 6= cicj for some i, j, then step 2 rejects with probability atleast 1

4 − 6δ

Proof. Since L is δ-close to Had(c), by our earlier lemma we know that with
prob atleast 1− 2δ, SC(L, s) = L(s) = sT c, and similarly for Q.

And thus with probability atleast 1 − 6δ, the equality being tested in
step 2 is

sT ccT s′ = sTCs′

=⇒ sT (ccT − C)s′ = 0

And since ccT −C is a non-zero matrix by assumption, the earlier lemma
bounds this probability by 3

4 . And hence, the lemma follows.

Lemma 28. If L is δ-close to Had(c) and Q is δ-close to QF (c) and if
Pj(c) 6= 0 for some j, then step 3 rejects with probability atleast 1

2 − 4δ

Proof. With the accuracy of the self-correct routine, with probability atleast
1− 4δ,

Pr̄(a) = s0 +
N∑
i=1

siai +
∑

1≤i,j≤N
tijaiaj

is equivalent to the check in step 3:

s0 + SC(L, S) + SC(Q,T)

And from our earlier lemma, we know that if Pi(c) 6= 0 for some j, then
with probability 1

2 this above evalutes to 0. Hence with probability atleast
1− 2δ − 1

2
s0 + SC(L, S) + SC(Q,T) 6= 0

and thus step 3 would reject.

Theorem 29. For a suitable bound on δ, if an assignment a to our initial
circuit Φ was δ-far from the closest satisfying assignment to the circuit, then
the test rejects wiht probability atleast δ

8 irrespective of the contents of the
tables.

26

Proof. Firstly, if L or Q were δ-far from the nearest Hamming codeword,
then step 1 rejects it with probability atleast δ. And if they do not refer to
the same assignment, then step 2 would catch that with probability atleast
1
4 − 6δ.And if a is not a satisfying assignment to P, then with probability
atleast 1

2 − 4δ we catch that in step 3.
If the assignment aX(the restriction to just the input variables) was δ-

far from any satisfying assignment for the circuit Φ, and in particular cX(c
being the satisfying assignment for P). And with probability atleast 1− 2δ,
SC(L, ei) = ci. Since aX is δ-far from cX , then with probability δ, ai 6= ci
over the random choice of i in {1, 2, · · · , |X|} and hence with probability
atleast δ(1− 2δ) the verifier rejects in step 4.

The total accumulated error can be shown to be less than δ
8 for a suitable

bound on δ. 3

12 The End Game

All that’s left to be done is to derandomize this protocol, and since we don’t
care about any resource bounds, we can enumerate all possible random
strings and do this. We can then output the set of constraints, such that
each constraint depends on only a constant number of variables (6, I think;
the BLR takes 6 queries, 24 is definitely an upper bound).

And hence for every edge in our old constraint graph, we now have ex-
ponentially many constraints, but we can do this without and hastles since
it still only is a constant size increase in the size of G.

However, if we were to apply the 4 steps on the entire original graph, we
would get an exponential sized proof. This was more or less the proof of the
earlier result that NP ⊆ PCP (n3, O(1)).

Now we have a constant query assignment tester, and hence alphabet re-
duction, and thus the PCP reduction required to prove Dinur’s theorem with
suitable choice of the parameter t to double the gap. And that completes
the proof of the PCP theorem.

3in class we did each of the steps with probability 1
4

and for that δ < 1
28

was good
enough

27

13 Brief Sketch of the Proof

1. Showing that the gap version of three colourability was NP -hard im-
plied the PCP theorem. Hence we wanted to amplify the gap from
(1, 1− 1/m) to (1, s) for some s.

2. The PCP Reduction was done in 4 steps:

3. Degree reduction: We just spread every vertex of our graph into a
cycle, and put an expander on every cloud.

4. Expanderize: Super-imposed an expander over this graph.

5. Gap Amplification: We used “lazy random walks” to amplify the gap.
This on the other hand increased the alphabet size.

6. In order to reduce the alphabet size, we were on the lookout for a
2 query assignment tester. We then showed that any constant query
assignment tester can be used to construct a 2-query assignment tester.
The idea was to put this assignment tester on every edge, since edges
were of constant size, running time of the assignment tester wasn’t
crucial.

7. In order to get a constant query assignment tester, we arithmetized
circuits, to give is a set of quadratic constraints.

8. With the BLR tests and the self-correction procedure, we deviced a
Prover-Verifier protocol where the verifier, which on derandomization
gave us a constant query assignment tester.

9. The derandomized version is now used for every edge in our constraint
graph, thereby reduces the alphabet size back to constant size with
just a constant factor increase in the size and gap, which can be com-
pensated for in the “Gap Amplification” process with the choice of t
in hand.

10. And thus we have a way of doubling the gap with just a constant
size increase in the graph size. This then allowed us to repeat this
for O(log n) steps to get the gap from (1, 1− 1/m) to (1, s), and thus
proving Dinur’s Theorem, and hence the PCP Theorem

28

	The Theorem
	Definition of a PCP System
	The Statement of the Theorem

	The Constraint Graph
	GAPCGc,s(G): The Gap Version
	Roadmap of Proof of Dinur's Theorem

	The Reduction
	Degree Reduction
	Expanderize
	Gap Amplification: a sketch

	Overview
	Gap Amplification
	Lazy Random Walks
	The Amplification Process
	Lowerbounding gap'
	Pruning down the graph

	Overview
	Assignment Tester -3mu Alphabet Reduction
	In Search of an Assignment Tester
	Linearity Testing
	The Blum-Luby-Rubinfeld Test

	Overview
	A constant query assignment tester
	Arithmetizing Circuit-Sat
	Testing Quadratic Systems
	The Final Assignment Tester
	Proof of Correctness

	The End Game
	Brief Sketch of the Proof

