
Complexity Theory II Course Instructor: V. Arvind

Lecture 7 : ??, 2006

Lecturer: V. Arvind Scribe: Srikanth Srinivasan

1 Concatenated codes

In this lecture, we will look at concatenated codes, a method by which two
different codes (with certain suitable parameters) can be composed to give
a code over a more useful, smaller alphabet. More formally:

Assume the existence of an [no, ko, do]qo outer code, with encoding function
Co over a large alphabet Σo, and an [ni, ki, di]qi inner code with encoding
function Ci over a smaller alphabet Σi such that qo = qki

i . Then the concate-
nation of the two codes is an [no.ni, ko.ki, do.di]qi code over Σi, the encoding
function (denoted by Co.Ci) of which is computed as follows:

• The input is first divided into blocks of ki symbols each. Each block
can be considered to be a member of Σo, and the message itself to be a
member of Σko

o . The encoding function Co is applied to this message.

• The output of Co is a member of Σno
o , and each symbol can be consid-

ered a member of Σki
i . The inner code is now applied to each symbol

to obtain a member of Σni
i .

• The concatenation of the no messages obtained above is the output.

Firstly, let us look at the distance of Co.Ci. Given distinct inputs x and
y, the distance (over alphabet Σo) after the application of Co is atleast do.
That is, at least do blocks of Co(x) (interpreted over Σi) differ from the cor-
responding blocks of Co(y). Each of these blocks, after the second decoding
phase, will differ in atleast di places. Hence, the distance between Co.Ci(x)
and Co.Ci(y) is atleast dodi.

Also note that, assuming the existence of an efficiently computable bijection
π : Σo 7→ Σki

i , the concatenated code is efficiently encodable if both the
inner and outer codes are. Note also that if Co and Ci are both linear, and
π is also linear, then so is Co.Ci.

1



1.1 A simple decoding function

The decoding function does simply the opposite of the encoding function.
It splits its input into no blocks of ni symbols each and decodes each block
using the decoding function for the inner code. It then interprets this output
as a member of Σno

o , and decodes that using the decoding function of the
inner code. This decoding function can correct up to (do−1)(di−1)

2 errors,
which is not the maximum possible. More on this in the next lecture.

2 Justesen codes

Our goal in this section is to construct an [n, Rn, δn]2 codes for some con-
stants R and δ. To do this, we will use the idea of concatenated codes above.
First, given any n1 and n2 we can construct two Reed-Solomon codes such
that one is an [n1, n1/2, n1/2]n1 code, and the other an [n2, n2/2, n2/2]n2

code, such that both are codes over fields of characteristic 2. If we fur-
ther set n1 = 2n2 , we clearly have a vector space isomorphism π : Fn1 7→
Flog n1/ log log n1

n2 . Hence, we can concatenate the two codes obtained above
to obtain a linear code, which is a [n1n2, n1n2/4, n1n2/4]n2 code, i.e, an
[n, n/4, n/4]q code, where q < log n, which is very small in terms of the
input length.

If we can further obtain a [O(log q), log q, log q
c ]2 code, we will clearly be done

(we can reach our goal by concatenating this code with the one we already
have). But how do we obtain such a code? The answer lies in the Gilbert-
Varshamov bounds, which assures us of the existence of such (linear) codes.
Since the number of such (linear) codes is only 2O((log q)2), i.e 2O((log log n)2),
which is polylogarithmic in n, we can go through all possible codes and
find the optimal code, which is guaranteed to be as efficient as outlined
above. However, the Justesen code tells us that we can do the above even
more easily. Instead of searching for the above code, one can simply use all
possible codes (a different one for each symbol), and obtain a good code. To
prove this, however, we need the following technical lemma:

Lemma 1. There are 24l2(1− 1
2Ω(l) ) linear [4l, l, l/8]2 codes.

Proof. Assume a random 4l× l matrix C over F2 is picked. Given any x 6= 0
from Fl

2, and any row of C, the probability that the inner product of the
row with x is 0 is 1

2 . Now, using Chernoff bounds, we get

Pr
C

[wt(C(x)) < l/8] ≤ 2−c.l

2



where c > 1. Hence,

Pr
C

[∃x 6= 0.wt(C(x)) < l/8] ≤ 2−Ω(l)

Thus, we are done. 2

Returning to the Justesen code, let q = 2l, where l is as above. Let
E1, E2, . . . , E24l2 be all the 4l × l matrices over F2. The encoding function

of the Justesen code C : Fnl/4
2 7→ F4nl

2 is computed as follows:

• Obtain outer code [n, n/4, n/4]q code as outlined above.

• Divide the input into blocks of l bits each, and obtain message in the
outer alphabet. Encode using outer code. The output is a member of
Fn

q , and can be converted into a member of Fnl
2 .

• Divide the above into blocks of l bits and to the ith block, apply the
encoding function E

i mod 24l2 . The resulting message, a member of
F4nl

2 , is the output.

Let us analyze the distance of the above encoding function. Clearly, at the
last stage, at least n/4 of the n l-bit blocks are non-zero. The number of
blocks that are encoded by codes that are not [4l, l, l/8]2 codes is at most
n. 1

2Ω(l) . Hence, at least n/4− n/2Ω(l) of the non-zero blocks are encoded by
[4l, l, l/8]2 codes. Therefore, the number of non-zero bits in the output is
atleast (n/4− n/2Ω(l)). l

8 , which is nl
32(1− 1

2Ω(l) ). Hence, we have obtained a
[4nl, nl

4 , nl
32(1− o(1))]2 code.

3


