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1 Overview

In the last lecture we ...

2 Today’s topic: Error correcting codes

2.1 Goal for the day

In this lecture, we shall look at:

e The notion of communication across a binary symmetric channel in
the presence of noise

e The use of error-correcting codes with a view to optimizing communi-
cation with a good rate and good capacity for correcting errors

e Upper bounds on how good an error-correcting code can be: the Shan-
non capacity and the Singleton bound.

e Lower bounds that guarantee the existence of “good” codes, in fact,
that guarantee that the average code is good: the Gilbert bound and
the Varshmov bound.

e Codes that can be encoded and decoded efficiently: the Reed Solomon
code and the Berlekamp Welch decoder

2.2 Binary symmetric channel

A binary channel is a communications channel from a sender to a receiver
where the sender sends binary data (a stream of Os and 1s) to the receiver,
and there is a likelihood that some of the bits may get flipped. A binary
symmetric channel is a binary channel where the bit flip probabilities are:

e Same for flip from 0 to 1 and 1 to 0 (hence the term symmetric)



e Same for all bits (probability p < 1/2)

e Independent for all bits. That is, the flipping of one bit in no way
affects the flipping of another bit.

In the BSC setup, the ezpected number of bit flips in the received message
is p times the length of the message.

2.3 Use of error-correcting codes

Although the BSC specifically talks of a binary channel, we shlal develop
the theory overa general finite alphabet.

The idea of error-correcting codes is to use the fact that if the total num-
ber of bit flips (in general, changes in letters) is less than a certain threshold,
the original message should be recovered perfectly. This is achieved by in-
troducing redundancy into the original message. Here’s how it’s done.

e The original message, called the message, is what the sender is trying
to convey. The collection of all possible messages is the message space
and the length of the message is termed the message length.

e The sender uses an encoding algorithm to convert the message into a
(somewhat larger) message called the code or encoded message. This
is what is sent across the channel. The collection of all possible codes
is termed the code space.

e The channel flips some bits of the encoded message.

e The receiver receives a corrupted encoded message. The receiver ap-
plies a decoding algorithm to this corrupted message. If the message
is completely uncorrupted, the decoding algorithm must retrieve the
original message. Hopefully, if only a few of the letters of the encoded
message have been changed, the decoding algorithm still recovers the
message accurately.

Three parameters used to measure the effectiveness of the encoding-
decoding algorithms:

e Comparison between the size of the message space and the code space.
Ideally, the code space should not be much larger than the message
space. A reasonable thing to hope for is that the code length is linear
in the message length.



e The maximum number of bit flips (letter changes) that can be tolerated
still giving the correct decoding.

e The efficiency of the encoding and decoding algorithms, as a function
of the length of the original message.

We shall use the following symbols throughout the discussion of codes:

by the alphabet

k message length
ok message space
n code length
xr code space

C:¥* - ¥" encoding algorithm
D:¥" - ¥F decoding algorithm

2.4 Hamming distance

The Hamming distance between two words in X! is the number of coordinates
where they differ. The Hamming distance between z and g in X! is denoted
as dg(z,y). Some properties of the Hamming distance:

e The Hamming distance is a metric. That is, dg is symmetric, nonneg-
ative, and satisfies the triangle inequality.

e When ¥ = F; (a finite field) the Hamming distance is translation-
invariant on the vector space F'. That is, dy(7,y) = du(z+ 2,y + 2)
for all z € F'.

For binary codes, the Hamming distance between two words x and y
measures the minimum number of bit flips to go from z to y. Thus, Hamming
distance is a realistic measure of distance via bit flips.

For a code, the minimum distance d is defined as the minimum of dis-
tances between pairs of codewords:

d= min ds(C(z).C() (1

2.5 Error correcting/decoding radius

The idea in coding theory as we shall study it is to replace the probabilistic
BSC model with a deterministic model:



e The sender takes the message m € ¥* and uses C to convert m to a
codeword ¢ € X".

e ¢ is transmitted over the channel. The channel has the property that
it will alter at most e coordinates of ¢.

e The receiver obtains ¢/, with the guarantee that dy(c,c’) < e, and is
expected to recover m using the decoding algorithm D.

Two easy observations:

Observation 1 (error-correcting radius and minimum distance). Let ¢ =
C(m). The encoding-decoding algorithm is said to be capable of correcting
upto e errors if D(¢’) = m whenever dy(c,¢) < e. The maximum e for
which this holds is termed the error-correcting radius or decoding radius of
the algorithm. Then, if e is the error-correcting radius and d is the minimum
distance:
d—1
e ——
- 2

Proof. The intuitive idea is that if e is the error-correcting radius, then the
closed Hamming spheres of radius e about the codewords must be pairwise
disjoint. Let x and y be codewords such that dg(z,y) = d. Then, x and y
differ in exactly d coordinates.

Suppose 2e > d. Then, consider z obtaiend by changing e of the differing
coordinates from x to y. Clearly, d(z,z) = e and d(y,2) = d —e < e.
Hence z lies in the Hamming balls of radius e centered at x and y, causing a
contradiction. Hence, the assumption 2e > d is flawed, giving the result. O

The converse is also true, albeit only at a theoretical level:

Observation 2. Ife < %, then there exists a decoding algorithm that cor-
rects upto e errors. However, we cannot say a priori whether this algorithm
will be polynomial time, or even efficient.

Proof. 1f e < (d — 1)/2, triangle inequality forces the Hamming balls about
codewords to be pairwise disjoint. Thus, whatever word the receiver gets lies
in at most one Hamming ball. The receiver can now apply the brute-force
algorithm: compute distance from every codeword, and find the codeword
from which the distance is not greater than the error-correcting radius. [



2.6 Formal measures of goodness of codes

We can now formally define two measures of the efficiency of the code:

e Rate R of the code: This is the ratio of message length to code length.
Using smybols as above, R = k/n.

o Minimum distance d of the code: This is min,, dg(z, y) where x and
y range over codewords.

e Relative minimum distance § of the code: This is d/n where d is the
minimum distance and n is the code length.

The four challenges in front of us:

e Make R as large as possible

e Make ¢ as large as possible

e Make C' as efficient as possible (in terms of time)

e Make D as efficient as possible (in terms of time), and try to make
sure that D decodes upto the full error-correcting radius.

A code over an alphabet of size ¢ with message length k, code length n
and minimum distance > d is termed a (n, k, d), code.

2.7 Families of codes

A family of codes is a collection of codes parametrized by ¢ € N, wherein the
ith code is a (ni, ki, d;) code. We can have two kinds of families of codes:
those with constant alphabet size, and those where the alphabet size also
depends on 7. Our ultimate aim is to construct families of codes over a
constant sized alphabet (in fact, a binary alphabet) that are good. Further,
we assume, for simplicity, that the k; are increasing.

A first consideration for families of codes is the relative spacing of valid
message lengths. Ideally, we would like to be able to encode and decode
words of any length. Thus, we would like to be able to pad any message
to a message length k;. Because complexities of encoding and decoding
algorithms are given as functions of k;, we want that the expansion in the
message to reach a valid message length is by a constant factor. Thus, we
would like that the ratios k;y1/k; are bounded by a constant.

The four measures of goodness of a code can be extended to give measures
of goodness for a family of codes:



e The rate R: We look at the limit (inferior) of the rates of all codes in
the family.

e The relative minimum distance : We look at the limit (inferior) of
the relative minimum distance of all codes in the family.

e The encoding algorithm C: We measure the bound on the running
time of C; (the encoding algorithm for the it code) as a function of
k; (the i*" message length). Note that because the ratios k;iq/k; are
constant, the running time of the algorithm as a function of actual
message length differs only by a constant factor (if the running time
is polynomial).

e The decoding algorithm D: We measure the bound of the running
time of D; (the decoding algorithm for the i** code) as a function of
n; (the i*" code length). Note that if the rate R is bounded below by
a constant, this growth rate is roughly the same as the growth rate
with respect to k; (The uncoded message).

2.8 Probabilistic model

Fact 3. A code with error-decoding radius e for code length n is “good” for
binary symmetric channels with the bit flip probability < ce/n where ¢ <1
is a suitable constant(?).

The heuristic justification for the above: the expected number of errors
in the received code word is pn where p is the bit flip probability. Hence,
if pn < ce, the expected number of errors is ce, which is quite small with
respect to e. By using Chernoff or Chebyshev bounds, and the nature of the
probability distribution, we can actually obtained that the probability that
the number of errors is bounded above by e is quite high, dependign on the
choice of ¢. Moreover, the suitable choice of ¢ depends only on p and not on
n.

The Shannon capacity of a channel is the maximum posible value a prob-
abilistic analogue of what we called the rate.

Fact 4 (Shannon). The Shannon capacity of a binary symmetric channel
with bit flip probability p is 1 — Ha(p) where Ha(p) is the Shannon entropy
of the probability distribution of the distribution (p,1 — p).



3 Bounds both ways

3.1 Singleton bound: an upper bound

The Singleton bound (named after a person called Singleton) establishes an
additive tradeoff between the rate R and relative minimum distance of a
code. It works for codes over all finite alphabets.

Theorem 5 (Singleton bound). For a code with mesage length k, code
length n and relative minimum distance d:

d+k<n+1
In particular, for a family of codes, as n — oo, we have:

lim R+6=1

n—oo

Proof. Consider the map X" — Y¥~! obtained by projecting onto the first
k — 1 coordinates. Composing this with the encoding map, we obtain a
map ¥* — ¥*~1 The map cannot be injective, hence there are two distinct
messages whose corresponding codewords are equal in the first £k — 1 posi-
tions. The Hamming distance between these two codewords is bounded by
n—k+1, giving that d <n — k + 1. O

Prima facie, the Singleton bound seems a very weak upper bound. Sur-
prisingly, however, it is possible to obtain a lower bound such that the gap
between the two is not much. Even more surprisingly, a code satisfying the
Iwoer bound can be found randomly.

3.2 Volume of the Hamming ball

We are interested in estimating the number of points in the Hamming ball
of radius d — 1 in X" where |X| = gq.
For any r, the number of points of weight exactly equal to r is:

(¢ - 1)'"(:)

To find the number of points in the Hamming ball of radius d — 1, we
need to sum up for 0 < r < d — 1. If we denote this by V,(n,d), we have

Vo) = 3 - (")

r=0
We want to find a good upper bound on V,(n, d). Here goes:



Proposition 6 (Volume bound).

Va(n,d) < n2™H20)

Proof.
Va(n,d) < sumiZ} <7:)
= Va(n,d) < n(Z)
= Va(n,d) < n((g)
= Va(n,d) < nexpnlogn — (dn)log(én) — ((1 —d)n)log((1 —d)n)
— Va(n,d) < mnexp—n(dlogd+ (1—0)log(l—0))
= Va(n,d) < n2nH20

3.3 Gilbert bound

Theorem 7 (Gilbert bound). For d < n/2, there is a [n, k,d]2 code such
that k& < n(1— H2(0)) —logn — ¢ where ¢ > 0 si a suitable positive constant.

Proof. A greedy algorithm produces the code successfully with high prob-
ability. Let C : {0,1}* — {0,1}" be defined as follows. Enumerate the
elements of the message space as z1,x2. ...

Traverse over the z; and to each z;, assign a value y; = C(z;) that
satisfies the constraints imposed by y; for j < 7. In other words, at each
step, pick y; such that for all j < i:

du (i, C(x5)) > d

To show that the greedy algorithm works, we need to show that at each
stage, there exists at least one candidate for y;. Equivalently, it suffices to
show that the union of Hamming balls of radius (d — 1) about the previous
y;s does not cover the whole region. The volume bound (proposition ?7?)
tells us that:



i—1

Volume of first 4 — 1 Hamming balls Z Volume of j* Hamming ball

j=1
= Volume of first i — 1 Hamming balls < (i —1)Va(n,d)
— Volume of first 4 — 1 Hamming balls < 2FV5(n, d)
— Volume of first i — 1 Hamming balls < 2Fp2nf20

Putting k£ < n(1l — H2(0)) — logy(n) gives:

Volume of first ¢ — 1 Hamming balls < n2"~os2(n)=¢
2n
c

—> Volume of first ¢ — 1 Hamming balls <

The first ¢ — 1 balls cover at most 1/c fraction of the points. Thus,
there is always a candidate for y; outside the Hamming balls. In fact, the
probability that a randomly picked point lies outside the Hamming balls is
nonnegligible. O

Observation 8 (Randomized algorithm also works). Note that the above
gives an algorithm in two senses:

o [t gives a randomized polynomial-time algorithm, because at each stage,
the number of candidates for y; is a nonnegligible fraction of the total
nubmer of words, and the checking for eahc y; based on the past y;s is
a polynomial-time subroutine.

e [t gives a deterministic polynomial-time algorithm, if at each stage,
we do a brute-force (lexicographically) on the y;s, and always pick the
least y;. The brute-force algorithm, however, may not (in fact, will
not) run in polynomial time.

3.4 Linear codes

Let ¥ be identified with F,, the finite field of ¢ elements. Then the alphabet
Y™ can be treated as a vector space Fy' with addition coordinatewise. The
code is termed a linear code if the encoding map C : ¥¥ — ¥" is a linear
map. Note that for linear codes, the code space is a k-dimensional vector
subspace of ™. Since the Hamming distance is translation-invariant, we



have dy(z,y) = dg(z — y,0) and hence the minimum distance is equal to
the distance between 0 and the closest codeword.

The weight of a codeword is defined as the number of nonzero coordinates
in that codeword. The weight of a codeword equals its distance from zero.
The above observations tell us that for a linear code, the minimum distance
equals the minimum of weights over all possible codewords.

3.5 Varshamov bound

The Varshamov bound establishes the existence of, and in fact, gives a
method to probabilistically obtain, a good linear code.

Theorem 9 (Gilbert bound). For d < n/2, there is a [n, k, d]2 linear code
such that &k < n(1 — Hz(d)) — 3logn.

Proof. Pick a random linear transformation C : Ff¥ — Fy. We argue that C
has a significant probability of defining a linear code of minimum distance
> d. In other words, the probability that the image of C has a vector of
weight strictly smaller than d is less than 1.

For each vector of weight less than d, the probability that it occurs
in the code space is 287", by the union bound, the probability that the
Hamming ball of radius d — 1 intersects the code space is bounded above by
2F="V4(n, d). But from the same computation used for the Gilbert bound,
we have that 25~"V5(n,d) < 1 when O

4 Reed-Solomon code

4.1 Setting of the code

The Reed-Solomon code is constructed over a suitable finite field of ¢ ele-
ments.

4.2 Description of the code

Idea of the Reed-Solomon code:

e The message word goes into constructing the coefficients of the degree
k (over a suitable finite field)

e The code word stores the wvalue taken by the polynomial at a fixed
collection of n points. This collection of points of evaluation is fized
beforehand and is independent of the message (hence, in particular, it
is known to the receiver with certainty).
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The n points of evaluation are denoted x1, xo ... x,. The message (whose
letters form the coefficients) is written coey ... cp—1.

4.3 Decoding: Berlekamp-Welch

Proposition 10 (Berlekamp-Welch decoding). The Reed-Solomon code can
be decoded upto the maximum decoding radius, in polynomial time.

Proof. We first outline an algorithm, and then prove its correctness:

1. Find polynomials N and E such that:
(a) deg(E) <e<(n—k—-1)/2
(b) deg(N) < (n+k—1)/2
(c) For each i, N(x;) = E(x;)y;

2. If E|N output the polynomial N(z)/E(zx), otherwise output “error”
(indicating that the code word went outside a Hamming ball).

Let us examine step (1) carefully. We begin by proving that there do
exist candidates for £ and N. let I be the set of coordinates at which the
polynomial value got corrupted. Then the following are possible candidates
for N and E:

=
=
I
&
=
i
=

Let’s see why this works.
1. since |I| < e, deg(F) < e.

2. Since deg(P) = k, we have deg(N) < k+e. But e = (d —1)/2 and
d = n — k, so simplifying, we get deg(N) < (n+k —1)/2.

3. the condition N(z;) = E(z;)y; is clearly satisfied for ¢ € I, because
E(z;) =0 and N(z;) =0 as well. For ¢ ¢ I, N(z;) = E(x;)p(x;). But
p(z;) = y; (Because this is an uncorrupted letter) and hence N(z;) =

Suppose (N, E) and (N, E') are two pairs saitsfying the definition. Then
we claim that NE' = N'E. To show this, we observe that NE' and N'E
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agree on n values: namely all the x;s. Because the total degree on both
sides is at most (n — 1), the two polynomials are identically equal.

Thus we are guaranteed two things: there exists a pair (N, F) satisfying
the three conditions with the property that p(x) = N(x)/E(z), and that
any other pair (N’, E’) satisfying the three conditions also gives the same
value of p(z). O
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