Complexity Theory II Course Instructor: V. Arvind

Lecture 4,5 : Aug 11, 2006

Lecturer: V. Arvind Scribe: Ramprasad Saptharishi

1 Overview

Hardness PRG Derandomization
E ¢ P/poly nt—mn BPP C SUBEXP
E gZ SIZE(2¢") | logn —n | BPP =P

In the first few lectures, we say that hardness — PRG, and then we saw
that hardness — derandomization.

In this lecture we shall look at other implications between hardness,
PRGs and derandomization

2 Hardness «— PRG

Theorem 1. Suppose G : logn — n be a quick PRG which is secure against
circuits of size n, i.e

1
V|IC| < mn, -
n

Pr [C(y)=1— Pr [C(G(:p))zl]‘ <

yERY™ zERXlogn
then, there 3f, f € E, f ¢ SIZE(2").

Proof. Let logn = 1. G’ : | — [+ 1 be the truncated version of G. Hence
clearly

V|C| < n,

yERMIT! zeRM! n

Pr [C) =11~ Pr [C(E@)=1]| <

Range(G') = {y|ly = G'(x)} and clearly Range(G') is computable in E since
given a y we can run through all |z| = |y| — 1 and check if G'(z) = y.

Claim: Range(G') ¢ SIZE(2")

For if it were in SIZE(2"), it would mean that you can next bit predict
G using a this circuit which will be of size 2€1°8™ = n€ < n, contradicting
the hardness of G.

Thus we now have a language (Range(G’)) which is computable in F
but is not in SIZE(2"). O

And together with what we have done earlier, we have Hardness <+ PRG.

3 Derandomizing Identity Testing

Impagliazzo and Kabanets then showed that derandomization has implica-
tions of lower bounds on arithmetic circuits. In this section we shall look
at the main result of the paper “Derandomization identity testing means
proving circuit lower bounds - Impagliazzo,Kabanets”.

We would need to use the result from a paper by Impagliazzo, Kabanets
and Wigderson in their paper “In search of an easy witness”.

Theorem 2 (Impagliazzo,Kabanets,Wigderson). If NEXP C P/poly then
NEXP=FEXP.

We know from the [BFNW] result discussed in the earlier lecure, EX P C
P/poly implies EXP = MA = AM. And hence NEXP C P/poly =
NEXP=MA=AM.

We shall give the proof this in section

3.1 The Permanent

2

Permyg(A): a degree n polynomial over n* variables.

Permgz(A) = Z Haw(i)

oS, i=1
Let P, be the function evaluating the permanent for an n x n matrix.
And the permanent satisfies the following conditions:

Pi(x) = =
P(x) = Y XiPia(X;)
j=1

And more, any functions that satisfies the above properties has to be
the permanent.

Summing up a few results we know already:

[Valiant79]: Perm is #P complete

[Toda89]: PH C pPPerm

[BFNW + IKW]: NEXP C P/poly = NEXP = EXP = MA =
PH = PPerm

3.2 ACIT: Arithmetic Circuits for Identity Testing

ACIT = {C|C defines a polynomialp, p = 0}.
Obviously, degp < 2572E(C) " And we also know the Schwarz-Zippel lemma

Lemma 3 (Schwarz-Zippel). If p: F™ — F,p # 0 of degree d, then for any
subset S C F

aggn [p(a) = 0] < 9]

Claim 4. ACIT € coRP

Proof. We shall appeal to Shwarz-Zippel by choosing our S = {1,2,3,..., 252}
for a size s circuit. Then\ the Schwarz-Zippel lemma would have bounded
the error probability to 22%2 < 27 but the value of pc(a) could be huge, as

large as 22"’ Thus we need to do chinese remindering

Assume that pc # 0. We would now evaluate C' modulo a random
m € {232, ey 253}. By the prime number theorem, atleast 8%1 fraction of
them would be primes.

Our bad case happens when either m is composite or m divides pco(a).
Case 1 can happen with probability atmost (1 — S%) Now if pc # 0, atmost
2% primes in the range can divide it, and thus the probability that a random
prime divides po is < # <275,

Hence, if pc # 0

Pripc(a) =0 mod m] <27°+ 9" 4 (1- 3—4) <(1- 3—5)

Repeating this over s® independantly chosen m from the range, we can
get the error probability less than half, and thus ACIT € coRP. O

3.3 Circuits for Permanent and Identity Testing
Define ACP = {(C,n) : C evaluates Perm/,*"}.

Claim 5. ACP <I' ACIT

Proof. Let C be a circuit evaluating a polynomial p over n? variables. In-

terpretting p,, to be a function of a matrix {:UU}?J Let p; be the restriction
of p,, to {i x i} matrices of variables. Thus if p,, evaluates the permanent,
so will p; on the restricted matrix.

Now define
hi(x) = pi(z)—=x

hi(X) = pi(X) =Y Xipic1(X;)
j=1

Now clearly if p,, evaluates the permanent, then each of the h; has to be
identically zero. And hence look at

h(z) =Y hi(X)?
i=1
and C evaluates permanent if and only if h = 0. O

3.4 The Impagliazzo-Kabanets Theorem
Theorem 6 (Impagliazzo-Kabanets). If ACIT € SUBEXP, either NEXP ¢

P/poly or Permgy does not have polysized arithmetic circuits.

Also not that if BPP = P, then NP = MA. And we then can’t have
NEXP C P/poly since it would then absurdly give NP = NEXP.

Proof. If NEXP C P/poly, NEXP = pFPerm — NpFerm,

Claim: NEXP C P/poly, Perm has poly sized circuits = NEXP C
NPAC'IT

Pf: Let L € NEXP, and x an instance of L. Now by our assumption,
L € NPPe™ and hence L = £(MP*™™) for some n* time machine M.

This forces the largest permanent queries to be those of n* x n* matrices.
Guess the permanent cirucit, can be done since the size of the circuit is
polynomially bounded! In order to verify, we know that ACP <P ACIT,
so use that as a query for the oracle. And thus NEXP C NPACIT,

Now with this claim, if you further have that ACIT € SUBEXP, we
can then would be able to simulate NEXP in NFE thus giving an absurd
implication that NE = NEX P. Hence the main theorem is proved. O

4 Proof of Theorem 2

Just like we have P/poly, and we shall use a similar notation C/f.

Definition 7. For any complezity C and function f : N — N, L € C/f if
there exists a sequence of strings {y;}i>o with |yn| = f(n) and L' € C such
that for allx € ¥*,x € L & (2,y4) € L'

The proof of this theorem shall be broken down into the following steps:
1. EXP ¢ i.0o— SIZE(n®) for each ¢
2. EXP ¢ io— [DTIME(2")] /n¢ for each c.
3. NEXP=EXP = EXP ¢io— [NTIME(2")]/n
4. NEXP C P/poly = EXP ¢ i.o— [NTIME(2")] /n

5. Theorem: If NEXP # EXP, then AM C i.o— [NTIME(2")] /n
for every € > 0

4.1 Proof of Step

The number of boolean functions on length n inputs is 22" and we saw earlier

that the number of boolean functions that have size < n¢ is atmost 2”6, for
some ¢’ (depending on ¢)

Now the inputs are x1,22, -+, Tpeya, - ,2on. Define a function f as
follows:

Vi<n®42 , f(z;)
Vi > n° + 2 , f(CL‘Z)
where b; = maj(C(x;)) over all circuits C € SIZE(n°).

Clearly this is in DTIME(2™"") C EXP but not in SIZE(n¢) at any
length. O

b;
0

4.2 Proof of Step

The number of boolean functions over n inputs is 22". Consider turing
machine descriptions M of size leqn with advice of size n® running for
atmost 27 steps. Let § = All boolean functions from " — ¥ computed by

such turing machines. As earlier |§| < one’.

And hence we can find a assignment of truth values to the first n® + 2
strings that diagonalises against §. The lexigraphically least of such assign-
ments is our language in EX P, but not in i.o— [DTIME(2™)] /n®. O

4.3 Proof of Step

We shall show that if NEXP = EXP, then [NTIME(2")] /n C io —
[DTIME(2™)] /n for some fixed c. And then, using step [2| we would be
done.

Let U be a universal non-deterministic turing machine that takes a pair
(7,2) as input and simulates the ith non-deterministic machine M; on «x for
2l#l steps and accepts iff M; accepts z within that many steps. Hence

£(U) € NTIME(21*1+1ily

Now for every language L € NTIM E(2") can be decided in NTTM E(2/#*1i)
where [i] is the constant sized description of the machine accepting L. And
by our assumption this can be simulated in DTIME(2™) for some fixed

c. Consequently, every language in [NTIM E(2")] /n can be simulated in
[DTIME(2™)] /n, and the proof is done. O

4.4 Proof of Step

Just similar to the earlier proof, every language in [NTIM E(2")] /n can
be simulated in SIZFE(n?) for some fixed d and we would hence obtain a
similar contradiction to [l if @ is false. O

4.5 Proof of Step

By the [BFNW] theorem we have that EXP ¢ P/poly would imply that
BPP Cio— SUBEXP. The point to note here is that the proof of the
theorem relativises!

For every oracle A,

EXPA ¢ PA/poly = BPPA Cio— SUBEXP™

where SUBEX P“Y" is the class of SUBEXP turing machines with oracle
A but is allowed only small (polynomial sized) queries to the oracle.
In particular, when A = SAT,

EXP ¢ P /poly = BP.NP = AM C BP.P"" Cio—~ NSUBEXP

Like in the BENW case, if we can get hold of a “suitably hard” function,
then we can derandomize AM into SUBFE X P non-uniformly.

Assume NEXP # EXP, let £(M) =L € NE,L ¢ EXP. Since L is
a language in NTIM E(2"), accepting paths of M are of size 2", one can
interpret them as functions from ™ to 3.

The number of oracle circuits of size n¢ is atmost 2”6, for some ¢/, and
hence they can all be enumerated in EXP. Since L ¢ EXP, there must
exist infinitely many n such that there is an x,, of length n such that the
accepting paths of M on x,, do not have polynomial sized circuits.

Pick an xz; that fails for ¢ = 1, and a larger string x5 that fails for ¢ = 2
and so on. Hence, this gives you an infinite sequence {x,} such that for every
polynomial n¢, all but finitely many x,,’s are such that M (x,)’s accepting
paths are not in STZESAT(|z,|°).

This basically shows that the computations paths are not in P/poly
almost everywhere.

Consider advice strings of this form z, = 1 -z, if such an x, exists at
that length, and 0"*! otherwise. Now with this advice, in NTTM E(2/*])
one can guess the computational path of M (z,), and we would get the hard
function.

And now, with our Nisan-Wigderson design as in [BFNW] we can sim-
ulate BP.NP = AM in NSUBFEXP with the advice z,.

Hence NEXP # EXP = AM C io— [NTIME(2™)]/n¢ for every
€e>0 O

4.6 Proof of Theorem [2]

We have remarked earlier that if NEXP C P/poly, then EXP = MA =
AM. And further, with step o, NEXP C P/poly and NEXP # EXP
would imply that EXP = AM Cio— [NTIME((2")] /n.

Now, if NEXP # EXP with the assumption that NEXP C P/poly,
by [4| we have EXP ¢ i.o — [NTIME(2")] /n, contradicting the above im-
plication.

Hence NEXP C P/poly= NEXP = EXP O

5 One more theorem

Definition 8. L € M A - EXP if there exists a polynomial time predicate

R(z,y,2) and a polynomial n® such that if x € L, there exists a y € n2"
such that

PRy, 2) =1] > 3
And if x ¢ L,
Pr{R(y,2) = 1] < 5

Theorem 9. MA- EXP ¢ P/poly, ZEXPN? ¢ P/poly

Proof. It EXP ¢ P/poly, then we are done. Otherwise, we know that
EXP = MA. And just as P = NP = EXP = NEXP, we can extend
EXP=MAto EEXP=MA-EXP.

But EEXP ¢ P/poly, infact DTIME(2"™) ¢ P/poly for any f that

grows!

And MA C ZPPN? and hence again we have ZEX PNP C P/poly O

	Overview
	Hardness PRG
	Derandomizing Identity Testing
	The Permanent
	ACIT: Arithmetic Circuits for Identity Testing
	Circuits for Permanent and Identity Testing
	The Impagliazzo-Kabanets Theorem

	Proof of Theorem 2
	Proof of Step 1
	Proof of Step 2
	Proof of Step 3
	Proof of Step 4
	Proof of Step 5
	Proof of Theorem 2

	One more theorem

