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1 Introduction

“Expander Codes” for a subclass of “Low Density Parity Check” codes.
They are linear codes, which have rates and minimum distance measures
very close to optimal. Added to these nice properties, they have very efficient
decoding algorithms, in this lecture we shall see one linear time decodable
expander code and a linear time parallelly decodable expander code.

2 Linear Codes: Recall

Definition 1. A linear code, C, is a subspace of Fn
q of dimension k. This also

referred to a [n, k] linear code. The code can also be thought of a mapping
from Fk

q to Fn
q , expanding k column vectors to n column vectors. k is also

referred to as the block size of the code.

Definition 2. An k× n matrix G is called the generating matrix of a [n, k]
linear code C if the rows of G for a basis for C.

And since this generator matrix defines a linear transformation from
Fk

q → Fn
q , the linear transformation can be thought of as the encoding func-

tion for k-column vectors into n-space.

Also, we can think of C as a kernel of a homomorphism,

H : Fn
q → Fn−k

q

C = {x : HxT = 0}

The matrix H forms a basis of the orthogonal complement of C and is
called the parity check matrix of C.

Definition 3. The minimum distance (ρ) for any code C is defined as the
least hamminng distance between any two codewords,

ρ = min
x,y

∆(C(x), C(y))

And for any linear code, ρ = minx wt(C(x))
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3 Bipartite Expanders and Expander Codes

Definition 4. A bipartite graph G = (VL ∪ VR, E) is called a (c, d)-regular
graph if every vertex in VL has degree c and every vertex in VR has degree
d.

We shall be referring to the vertices on the left as “variables” and those
on the right as “constraints”. The edges from x on the left to y on the right
will be interpretted as if the y depends on variable x.

Definition 5. A (c, d, ε, δ)-expander is a (c, d)-regular graph such that for
every S ⊆ VL such that |S| ≤ ε|VL| =⇒ |Γ(S)| ≥ δ|S|

Let B be a (c, d)-regular graph, with VL = {v1, · · · , vn} variables and
VR = {p1, · · · , pm} with m = cn

d . And similar to the rotation maps, we
define a map b :

[
cn
d

]
× [d] → VL such that b(i, j) returns the j-th neighbour

of vertex i ∈ VR

Definition 6. Let S be an error correcting code of block length d. The
expander code C(B,S) consists of all code words [x1, · · · , xn] such that for
all i ∈

[
nc
d

] [
xb(i,1), xb(i,2), · · · , xb(i,d)

]
∈ S

Lemma 7. Suppose B is a
(
c, d, α, c

dε

)
-expander and S is a code with rate

r greater than c−1
c and minimum distance ε, then the expander code C(B,S)

has

• rate(C) ≥ cr − (c− 1)

• minimum relative distance ρ(C) ≥ α.

Proof. Let H be the parity check matrix of S; H will be a (d−k)×d matrix
where r = k

d . Each constraint imposes (1 − r)d = d − k linear restrictions.
Hence the total number or linear restrictions from all the constraints is
atmost

nc

d
(1− r)d = cn(1− r)

Hence the total degrees of freedom is atleast n− cr(1− r). And hence

dim(C) ≥ n− nc(1− r)
rate(C) ≥ 1− c(1− r)

= cr − (c− 1)

2



Suppose the minimum relative distance is not α, then there exists a
codeword w such that wt(w) < αn. Let Vw be the set of indices i such that
wi = 1; |Vw| < αn. The total number of edges coming out of Vw is c|Vw|. And
by our size bound on |Vw| and the definition of expansion, |Γ(Vw)| > |Vw| c

dε .
Hence the average number of edges per constraints is < dε, and therefore
should exists a constraint which has less than dε neighbours in Vw. But by
the definition of minimum relative distance, every code word in S must have
atleast dε ones, which gives us the required contrdiction.

Hence, minimum relative distance of C is atleast α.

4 “Easily” Decodable Expander Codes

In this section we shall look as two choices of our base code S to construct
an expander code with very efficient decoding algorithms.

4.1 The Even-Parity Expander Code

Definition 8. The even parity code of block length d is the set of all code
words x such that

d∑
i=1

xi ≡ 0 (mod 2)

The dimension of the even-parity code of block length d is d − 1 and
hence the rate is (d− 1)/d, and the minimum relative distance is ε = 2/d.

Let B be a (c, d)-regular expander whose expansion parameters shall
be fixed soon, and let S be the even parity code. If B were a (c, d, α, x)
expander, we would need x to be atleast c/2 for the expander code to have
minimum relative distance of α. But in order to be able to decode efficiently,
we need more than c/2 expansion, we would need 3c/4.

Decoding Algorithm:

Input: A corrupted assignment x on the variables.
Algorithm:

• If there exists a variable v that is incident to more unsatisfied con-
straints than satisfied, flip its value.

• Repeat until no more flips are possible.
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Claim 9. The algorithm runs in linear time

Proof. Clearly at every flip the number of satisfied constraints come down
by 1 and hence this has to stop after linear number of flips. We only need
to argue that every flip takes only constant number of steps.

Let S0, S1, · · · , Sc be sets such that

Si = {v|v has i unsatisfied constraints}

Pick a variable v from the right-most non-empty set (most number of un-
satisfied constraints), say Si; a flip is possible only if i > c

2 . If v was flipped,
the only variable that could get affected would be those that are at a dis-
tance 2 from v, and there are atmost cd of them. Hence, we would have to
move atmost cd many variables from one Sj to another, and this takes only
constant time.

Hence the algorithm runs in time O(size(B)).

We now need to show that the above “Decoding” Algorithm decodes
considerable errors.

Lemma 10. If B is a
(
c, d, α, 3c

4

)
, the decoding algorithm corrects upto a

α/2 fraction of errors.

Proof. Suppose w is the corrupted codeword and w0 is the nearest codeword.
A variable where w and w0 don’t match shall be referred to as the corrupt
variable, let X be the set of corrupt variables of w. Define the “stage” of the
algorithm at any stage as a tuple (u, v) where u is the number of unsatisfied
constraints and v is the number of corrupt variables; we want v to become 0.

Let us first consider the stages where v ≤ αu. Let s be the number of
satisfied neighbours of X. |Γ(X)| = u + s > (3c/4)v Each satisfied con-
straints should be connected to atleast 2 elements of X (since X is a set of
corrupt variables, a non-zero even number of flips should have happened),
and each unsatisfied constraint must be connected to atleast 1 element of
X. And hence, the number of edges going out = cv ≥ u + 2s. With this,
and the earlier inequality that u + s > (3c/4)v, we get u > cv/2. And now
by our averaging argument, there will exist one variable that will be flipped
since half or more of it’s neighbours are unsatisfied, hence the algorithm will
flip some corrupt variable.

Now we shall show that the algorithm will successfully decode to the
nearest codeword if we begin with atmost αn/2 corrupt variable. The only
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way it can flip an uncorrupt variable is when v > αn. Hence if this were
to happen, there should be some point when v = αn. But at this point,
the earlier inequalities work and it would tell us that u > cv/2 > cαn/2.
But initially u is atmost cαn/2 and throughout the algorithm this can only
decrease, which leads to a contradiction.

Hence the algorithm will decode correctly if there are atmost αn/2 cor-
rupt variables.

4.2 Explicit Constructions of Expander Codes

Let G = (V,E) be a (n, d, λ) spectral expander (λ is the second largest
eigenvalues of the un-normalized adjacency matrix). From this a bipartite
expander can be constructed by the “mid-point” partition.

For every e ∈ E, add a vertex for that edge and attach that vertex to
both the end points of the edge. Hence your new vertex set will be E ∪ V
and you have B, a (2, d)-regular graph.

Let S be an error correcting code of block length d with ε as the minimum
relative distance and r as the rate. Hence our expander code C(B,S) will
have rate ≥ 2r − 1.

Theorem 11 (Alon, Chung). Let G be a d regular spectral expander with λ
as its second largest eigenvalue of the un-normalized adjacency matrix. Let
X ⊆ V , |X| = γ|V |. Then the number of edges in the subgraph induced by
X is atmost

d|V |
2

(
γ2 +

λ

d

(
γ − γ2

))
We would be using this theorem to prove the following claim about the

expander code.

Claim 12. The minimum relative distance of CB,S is atleast(
ε− λ

d

1− λ
d

)2

Proof. Suppose there exists a w such that

wt(w) ≤ dn

2

(
γ2 +

λ

d
(γ − γ2)

)
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then by the theorem w must be adjacent to greater than γn constraints.
Since each constraint has 2 neighbours, the average number of variables per
constraints is

2dn
2

(
γ2 + λ

d (γ − γ2)
)

γn

Thus if

d

(
γ2 +

λ

d
(γ − γ2)

)
< εd

then a word of relative weight
(
γ2 + λ

d (γ − γ2)
)

cannot be a codeword of
C(G, S) and this inequality is satisfied for

γ <

(
ε− λ

d

1− λ
d

)

Hence, in particular (relaxing the inequalities), there can’t be a non-zero
codeword of weight < dn

2 γ2, and hence the minimum relative distance of

C(G, S) is atleast
(

ε−(λ/d)
1−(λ/d)

)2
.

Parallel Decoding Algorithm

1. If for any constraint, the variables in that constraint differ in atmost
dε
4 places from the nearest codeword, send a “FLIP” message to that
vertex.

2. If a variable v receives atleast one “FLIP”, flip it’s value.

3. Repeat this round.

Claim 13. If α fraction variables be corrupt relative to the nearest code-
word, then after one round of the parallel algorithm, then fraction of corrupt
variables (relative to the same codeword) is atmost

α

(
2
3

+
16α

ε3
+

4λ

εd

)
Proof. Let G be the d-regular graph from which B was derived, so C(B,S)
has dn

2 variables and n constraints. Let X be the set of αnd
2 corrupt variables.

The variables that remain corrupt at the end of one round are those that
don’t receive a “FLIP” message. We shall call a constraint “confused” if it
sends a “FLIP” message to something that’s not in X, and we shall call a
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constraint “unhelpful” if it is adjacent to a vertex in X but does not send a
“FLIP” message to it.

For a constraint to be confused, atleast 3dε
4 variables from X must be its

neighbours. And since each variable of X is a neighbour of 2 constraints,
the number of confused constraints is atmost

2αdn
2

3εd
4

=
4αn

3ε

Each of these can send atmost dε
4 “FLIP” signals and hence the number of

variables outside X that would receive “FLIP” signals is atmost

4αn

3ε

dε

4
=

dn

2
· 2α

3

For a constraint to be unhelpful, it must have more than dε
4 neighbours

in X. And hence the number of unhelpful constraints is atmost

2αdn
2

εd
4

=
4αn

ε

These constraints are vertices in our original graph and by Alon’s theo-
rem, there can be atmost

dn

2

((
4α

ε

)2

+
λ

d

(
4α

ε

))

variables such that both its neighbours are unhelpful (and hence doesn’t
receive a “FLIP” message).

And hence, the fraction of corrupt variables at the end one round is
atmost

α

(
2
3

+
16α

ε3
+

4λ

εd

)

And now with suitable choice of parameters now, we can show that this
decoding is also linear time. We shall choose α < ε2

48 and λ = 2
√

d− 1,
showing that the algorithm is linear time for these parameters is left to the
interested reader.

7


	Introduction
	Linear Codes: Recall
	Bipartite Expanders and Expander Codes
	``Easily'' Decodable Expander Codes
	The Even-Parity Expander Code
	Explicit Constructions of Expander Codes


