
CS640 Computational Complexity

Expanders: Vertex and Spectral Expansion
Instructor: Manindra Agrawal Scribe: Ramprasad Saptharishi

Last class we saw three very powerful and useful combinatorial objects:
extractors, expanders and pseudo-random generators. With the promise
that we shall get back to extractors and PRGs in a while, let us go into
expander graphs.

1 Two Notions of Expansion

1.1 Vertex Expansion

Last class we defined a notion of expansion. The definition we saw last
time is called vertex expansion.

A d-regular graph G on n vertices is called an (n, d, ε)-vertex expander
if for every subset S of size less than n/2, the number of edges going out of
S is atleast εd|S|. That is, E(S, V \ S) ≥ εd|S|.

Another definition is what is known as the spectral expansion.

1.2 Spectral Expansion

Let G be a n-vertex d-regular graph. Let A be the normalized adjacency
matrix, which is Aij = 1

d if (i, j) is an edge and 0 otherwise; the usual
adjacency matrix divided by d.

The reason we do this is that since G is d-regular, each row has exactly d
non-zero entries of value 1

d and so does each column. Therefore, each row
and column sum up to 1. And further, this is a symmetric matrix.

There is a theorem in linear algebra that states the following:

Theorem 1. Let A be a symmetric matrix with real entries. Then there exists
a basis {v1, v2, · · · , vn} such that each vi is an eigenvector with eigenvalue λi

which is real. And further, the basis is orthonormal, that is vi · vj = 0 if i 6= j and
vi · vi = 1.

And therefore, our normalized adjacency matrix has a set of orthonor-
mal eigenvectors as a basis. Without loss of generality, we can assume that
the eigenvalues are decreasing : λ1 ≥ λ2 ≥ · · · ≥ λn.
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Claim 2. λ1 = 1.

Proof. Firstly, we need to show that 1 is infact an eigenvalue. That is pretty
straightforward to see. Consider the vector of all 1s, which is sometimes
referred to as 1̄.

Note that A1̄ = 1̄ since each row of A adds up to 1. Therefore 1̄ is an
eigenvector corresponding to the eigenvalue 1. We now need to show that
all eigenvalues have to be at most 1.

Let λ be any eigenvalue and x be the eigenvector corresponding to λ.
Look at the product Ax. Without loss of generality, assume that the first
coordinate of x is the largest entry in x. Then we have

Ax = λx

=⇒ (Ax)1 = λx1

Now note that the LHS will merely be the average of some d coordinates of
x and the average of d coordinates can never be larger than the maximum
value. And hence, λ ≤ 1. Infact one can slightly tweak the argument to
show that |λ| ≤ 1.

Therefore all eigenvalues lie between 1 and −1; and 1 is the largest
eigenvalue.

Definition 1. The second largest eigenvalue of a graph G is the second largest
eigenvalue in magnitude of the normalized adjacency matrix A of G.

λ2(G) = max {|λ2|, |λn|}

With this, we can define our spectral expansion.

Definition 2. A n-vertex d-regular graph G is called a (n, d, λ)-spectral expander
if λ = λ2(G).

The use of this notion of expansion is that it allows us to use linear alge-
bra to analyse such graphs and their properties. We shall soon see that the
two notions of expansion are essentially equivalent. To easy the notation
used there, we shall used Dirac’s Notations for vectors; it is more intuitive
to understand in that setting.

2 Dirac’s Notation

Dirac’s notation of representing vectors, inner products, outer products is
widely used in Physics and expecially in the setting of quantum mechanics
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where equations start looking messy with ordinary vectors and transpose
etc. Dirac’s notation cleans them up and it makes it a lot easier to under-
stand.

• A normal vector v is written |v〉, pronounced as “ket v”, which is
the column vector. And the row vector vT is written as 〈v| and pro-
nounced as “bra v.”

• In this setting, note that the usual inner product is just the vector
product vT v which translates to 〈v| |v〉 which is “bra-ket (bracket) v.”

• The outer-product vvt which gives an n×n matrix is written as |v〉 〈v| .
This is used less often than the inner product but is very useful. For
example, the adjacency matrix E can be expressed as

E =
∑

(u,v)∈Edges

|u〉 〈v|

where 〈v| is the characteristic vector of v that has 1 in the v-th position
and 0 everywhere else.

This notation really cleans up a whole mess of arrow, or transposes or
dot-products etc. We shall see the power of this notation by using it to
prove the connection between vertex and spectral expansion.

3 Vertex Expansion ⇔ Spectral Expansion

The following theorem shows that the two notions of expansion are essen-
tially the same.

Theorem 3. Vertex expansion ⇔ Spectral Expansion

• If G was a (n, d, ε) vertex expander, then G is also a (n, d, λ) spectral ex-
pander where λ ≤ 1− (ε2/4).

• If G was a (n, d, λ) spectral expander, then G is also a (n, d, ε) vertex ex-
pander where ε ≥ (1− λ)/2.

If ε was large, then λ will be small and vice-versa

We shall prove just the second part of the theorem.
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Proof. Let G be a (n, d, λ) expander. Let S be any subset of vertices such
that |S| ≤ n/2. We want to estimate the number of edges going out of S.
Let T be the set of vertices that are not in S. We need to estimate E(S, T ).

The first step is to write E(S, T ) as a product of vectors/matrices. Let
uS be the characteristic vector of S, the vector which has a 1 on exactly
those coordinates that belong to S. In Dirac’s notation, |uS〉 =

∑
i∈S |i〉 and

similarly |uT 〉 . Now look at the term uT
SAuT :

uT
SAuT = 〈uS |A |uT 〉 =

(∑
i∈S

〈i|

)
A

∑
j∈T

|j〉


=

1
d

(∑
i∈S

〈i|

) ∑
(u,v)∈E

|u〉 〈v|

∑
j∈T

|j〉


=

1
d

∑
(i,j)∈E(S,T )

〈i| |i〉 〈j| |j〉 (all other terms become 0)

=
1
d
|E(S, T )|

Suppose {v1, v2, · · · , vk} is the orthonormal eigenbasis of A, let

|uS〉 =
n∑

i=1

αi |vi〉

|uT 〉 =
n∑

i=1

βi |vi〉

And therefore, we can calculate 〈uT |A |uS〉 as

〈uT |A |uS〉 =

(
n∑

i=1

αi 〈vi|

)A(
n∑

j=1

βj |vj〉)


=

(
n∑

i=1

αi 〈vi|

) n∑
j=1

λjβj |vj〉


=

n∑
i=1

αiβiλi 〈vi| |vi〉 (since i 6= j =⇒ 〈vi| |vj〉 = 0)
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We know that λ1 = 1 and that v1 = 1√
n
1̄ = 1√

n

∑n
i=1 |i〉 . And further,

〈uS | |v1〉 =
n∑

i=1

αi 〈vi| |v1〉

= α1

=⇒ 1√
n

n∑
i=1

〈uS | |i〉 =
|S|√

n
= α1

Similarly,
|T |√

n
= β1

Therefore

〈uS |A |uT 〉 −
|S||T |

n
=

n∑
i=2

αiβiλi∣∣∣∣〈uS |A |uT 〉 −
|S||T |

n

∣∣∣∣ ≤

∣∣∣∣∣
n∑

i=2

αiβiλi

∣∣∣∣∣
≤

n∑
i=2

|αi||βi||λi|

≤ λ

n∑
i=2

|αi||βi|

≤ λ

√∑
i=2

α2
i

√∑
i=2

β2
i

Now let us go back to the definition of |uS〉 . We know that ‖uS‖2 =
|S| = 〈uS | |uS〉 . Evaluating this as a linear combination of eigenvectors, we
have

|S| = 〈uS | |uS〉 =

(
n∑

i=1

αi 〈vi|

)(
n∑

i=1

αi |vi〉

)
=

n∑
i=1

α2
i

=⇒ |S| − α2
1 =

n∑
i=2

α2
i

=⇒
n∑

i=2

α2
i = |S| − |S|2

n
= |S|

(
n− |S|

n

)
=
|S||T |

n

Similarly
n∑

i=2

β2
i =

|S||T |
n
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Hence the above equation becomes∣∣∣∣〈uS |A |uT 〉 −
|S||T |

n

∣∣∣∣ ≤ λ
|S||T |

n

=⇒
∣∣∣∣E(S, T )− d|S||T |

n

∣∣∣∣ ≤ dλ
|S||T |

n

=⇒ E(S, T ) ≥ d|S||T |
n

− dλ
|S||T |

n

From the definition of vertex expansion, we have

E(S, T )
d|S|

= ε ≥ |T |
n

(1− λ)

≥ 1
2

(1− λ) ( since |S| ≤ n/2 and therefore |T | ≥ n/2)

Therefore, any graph with spectral expansion λ has vertex expansion of
1
2 (1− λ) .

In essence, both notions of expansion are equivalent. It is easier to work
with the spectral definition since it allows us to use a lot of linear algebra
techniques to analyze.
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