CS681 Computational Number Theory

Lecture 25 : The AKS Primality Test
Instructor: Piyush P Kurur Scribe: Ramprasad Saptharishi

We shall do the AKS primality test this class.

1 The Deterministic Primality Test
The algorithm is going to be the following:

1. Find two numbers r and [based on some requirements
2. Check if n is a perfect power. If it is, output COMPOSITE.

3. Check if any of the numbers less than [have a non-trivial gcd with n.
If they do, output COMPOSITE.

4. Forall 1 < a </, check if the following identity holds
(X+a)"=X"4+a (modn,X"—1)

Use repeated squaring to evaluate the LHS and RHS and check.
If any of the test failed, output COMPOSITE.

5. If all the above tests succeeded, output PRIME

We shall figure out what the requirement of r,l as we go along. That
would give a better picture of why we want those properties.

The algorithm will be in a way that if n was indeed a prime then the
algorithm would answer correctly. We only need to make sure that the al-
gorithm doesn’t make a mistake on composite n. We shall ensure that if a
composite n passes all the tests, then n has to be a power of a prime. And
since we saw that testing of a number was a perfect power is easy, that is
one of our preprocessing steps and hence such n will be eliminated. We
shall now choose parameters in a way that no composite n can pass all the
test.

Let us assume that n is composite, has p as a proper divisor and is not a
power of p. And let us assume that n passes all the tests. Note that p has to

1

be larger than [since we have already made sure that n does not have any
small factor in step 3.

The test is basically checking the identity (X+a)" = X"+a (mod n, X"—
1), which is just checking if two terms in the ring R = Z[X]/(n, X" — 1) =
Z/nZX] xrr

field.

— 1). Rings are a little hard to handle; would be easier to go to a

1.1 Moving to a Field

Instead of looking at R = Z(é(’ﬁzj)l()] , we shall look at the field F,,[X]/(h(X))
where h(X) the minimal polynomial of the primitive r-th root of unity.
Note that this just starting with R, going modulo the ideal generated by p,
then going modulo the ideal generated by i (X). The ideal generated by p
is a prime ideal in R and therefore R/(p) became an integral domain. Then
h(X) generates a maximal ideal being irreducible, and therefore we get the
field F = F,[X]/(h(X)).

The important thing to note here is that, if equations were satisfied in
R, they have to be satisfied in F as well as we are just going modulo some
ideals. This is like saying, if a = b in Z, then of course they are equal modp
as well. Thus let us work with this field. Now the next thing to note that
in F[X]/(h(X)), it is just F,(¢) and X plays the role of ¢. Thus, if some n
survived all the tests, then foreach 1 < a <

(X +a)" =X"+amod p, h(X)
Let us characterize this property of n by the following definition.
Definition 1. A number m is called introspective for a polynomial f if
FX)™ = f(X™) inF

As the name suggests, it says that m is curious with respect to X; such
powering can be pulled inside the brackets. The tests basically mean that
n is introspective for f(X) = (X + a). The following two observations are
trivial.

Observation 1. If my and my are introspective for f, then so is mima.

Observation 2. If m is introspective for f and g, then m is introspective for fg.

Since n passed the tests, we know that n is introspective for (X + a) for
all 1 < a <. And also note that, by the binomial theorem in [F,, [X],

(X+a)l=X+a

for any a. Therefore, p is introspective for (X + a) as well. Therefore, by
the two observations, and n’p’ is introspective for [[,.,.«;(X + a;). Let us
create two groups to capture this property.

1.2 The two groups

Let G be the group generated by n and p modulo r. Or in other words, G is
the set of numbers of the form n’p’ modulo r.

Similarly, let G be the group generated by {(X +a) : 1<a <!} inF.
And by the two observations, any element of G is introspective to any ele-
ment of G.

G = (n,p) C(Z/rZ)*
6 = ({(X+a):1<a<l})CF

Let |G| = t. Since G is a subgroup of (Z/rZ)*, t < r. Now note that
the group generated by n is a subgroup of G and its cardinality is ord,(n).
Therefore t > ord,(n).

We shall now get two bounds on the size of G.

1.3 An Upper Bound on |G|

Not that every element of G is actually a product of (¢ + a)’s since X is ¢
in F. In order to get a bound on the size of G let us restrict ourselves to just
products of distinct (¢ +a)’s. Setl =t — 1.

For every subset K of 1,2, - - - [, we can construct a polynomial fx (X) =
[Licx (X + i). And there are 2 such polynomials. These polynomials are
clearly distinct as each of them has a different set of roots. But what hap-
pens if we substitute ¢ in them? Is it possible that for K # K', fx(¢) =
frr(€)?

Suppose they were equal, then note that fx({)™ = fx/(¢)™ for any
m, and in particular any m € G. If m is in G, then fx(¢") = fx(()™ =
PO = Fro(C™). Thus, if g(X) = fi(X) — fir(X), then ¢ is a root
of g for every m € G. But since |G| = t, this means that g(X) has ¢ roots.
But ¢g(X) is a polynomial of degree at most [which is less than ¢. Such
a polynomial cannot have ¢ roots unless it is the zero polynomial. Thus,

3

fx (¢)s are distinct. Since there are 2!~! possible fx (X)s possible, each of
this would give a distinct fx(¢) in G. Therefore,

’g| 2 2t—1

1.4 A Lower Bound for |G|

Look at the set S = {n’p’ : 0<i,j <+V/t}. And if n wasn’t a power of p,
this set S has (1 + \/i)2 > t elements. Now, considering them modulo 7,
they are a subset of |G| and by pigeon hole principle, there must be some
my # mg € S such that m; = ms mod r and therefore m; = mq + kr. Then,

if /() €d
F(Q™ = FOM™TE = f(C™HE) = f(¢™) = [(O)™

Thus, if we were to consider g(X) = X™ — X", then every f({) € Gisa
root of g(X). Note that degree of g(X) is at most the max of m, ma. And
my = n'p! < nVinVt = n2Vi And since the degree of g is is at most n2V?,
the number of roots can also be only that much. Therefore

G| < n2V?

1.5 Conflicting Bounds

Combining the two bounds, we have

Now if we can ensure that the lower bound is larger than the upper
bound, we would get the contradiction we are looking for; that would rule
out the possiblity that a composite number passed all the tests.

Thus we want 201 > n2Vt, Taking logs, t — 1 > 2v/tlgn. And if t >
41og? n, that should be to make the bounds for |G| contradict.

Thus all we need to do now is find an r so that ord,(n) > 4log?n.

1.6 Getting an r such that ord,(n) > 4log*n

What we shall do to get an r is just try 1,2, - - - until it is satisfied. But how
long would we have to go until we hit a good r?

Look at the following number

4log?n
; 4
B= [] (n'—1) <nlen
i=1

If » was a prime number not dividing this B, then the order of n» modulo
r cannot be less than 4 log? n. The number of prime factors of B is at most
log? nlogn = log® n. And therefore, the log® n -+ 1-th prime would definitely
not divide B. Therefore, we can just enumerate all primes starting from 2
and get the log” n + 1-th prime. And this search is assured to be within
log® n by the prime number theorem. Therefore, we are in good shape.

2

The Final Algorithm

Thus, putting all the pieces together.

Algorithm 1 AKS PRIMALITY TEST

1:

Check if the input number n is a perfect power of some number. If so,
return COMPOSITE.
Find the least prime r such that ord,(n) > 4log”n. Let | = ord,.(n) — 1.
In the process, check if any of those 7’s have a non-trivial factor with n.
If yes, return COMPOSITE.
forl1 <a<ldo

if (X +a)"# X" +amod (n, X" — 1) then

return COMPOSITE.

end if
end for
return PRIME.

The total time complexity is about O(log'? n). The current best is about

O(log® n).

	The Deterministic Primality Test
	Moving to a Field
	The two groups
	An Upper Bound on |G|
	A Lower Bound for |G|
	Conflicting Bounds
	Getting an r such that ordr(n) > 4log2n

	The Final Algorithm

