Overview

Last class we stated a similar reciprocity theorem for the Jacobi symbol. In this class we shall do the proof of it, discuss the algorithm, and also do the Solovay-Strassen primality testing.

1 Proof of the Reciprocity of $\left(\frac{m}{n}\right)$

The proof will just be induction on m. Recall the statement of the theorem

$$
\begin{aligned}
\left(\frac{2}{n}\right) & =(-1)^{\frac{n^{2}-1}{8}} \\
\left(\frac{m}{n}\right)\left(\frac{n}{m}\right) & =(-1)^{\frac{m-1}{2} \frac{n-1}{2}}
\end{aligned}
$$

We shall just prove the second part here. The first part uses the same technique. Let us assume that the theorem is true for all $m^{\prime}<m$. If m is a prime, we do induction on n.

Suppose $m=m_{1} m_{2}$, then

$$
\begin{aligned}
\left(\frac{m_{1} m_{2}}{n}\right)\left(\frac{n}{m_{1} m_{2}}\right) & =\left(\frac{m_{1}}{n}\right)\left(\frac{n}{m_{1}}\right)\left(\frac{m_{2}}{n}\right)\left(\frac{n}{m_{2}}\right) \\
& =(-1)^{\frac{n-1}{2}\left(\frac{m_{1}-1}{2}+\frac{m_{2}-1}{2}\right)}
\end{aligned}
$$

From now on, the work shall be happening on the exponent and let us just denote $\frac{n-1}{2} E$ for the exponent of -1 . We want to evaluate $E \bmod$ 2 since we are looking at (-1) power the exponent and only the parity matters.

Let $m_{1}=4 k_{1}+b_{1}$ and $m_{2}=4 k_{2}+b_{2}$ where $b_{1}, b_{2}= \pm 1$ since m is odd.

$$
\begin{aligned}
E & =\frac{4 k_{1}+4 k_{2}+b_{1}+b_{2}-2}{2} \\
& =\frac{b_{1}+b_{2}-2}{2} \bmod 2 \\
\frac{m-1}{2} & =\frac{\left(4 k_{1}+b_{1}\right)\left(4 k_{2}+b_{2}\right)-1}{2} \\
& =8 k_{1} k_{2}+2 k_{1} b_{2}+2 k_{2} b_{1}+\frac{b_{1} b_{2}-1}{2} \\
& =\frac{b_{1} b_{2}-1}{2} \bmod 2
\end{aligned}
$$

And now it is easy to check that for $b_{1}, b_{2}= \pm 1$,

$$
\frac{b_{1} b_{2}-1}{2}=\frac{b_{1}+b_{2}-2}{2} \bmod 2
$$

and therefore, $E=\frac{m-1}{2} \bmod 2$ and hence,

$$
\left(\frac{m}{n}\right)\left(\frac{n}{m}\right)=(-1)^{\frac{n-1}{2} E}=(-1)^{\frac{n-1}{2} \frac{m-1}{2}}
$$

2 Algorithm to compute $\left(\frac{m}{n}\right)$

The reciprocity laws give a polynomial time algorithm to compute the Jacobi symbol $\frac{m}{n}$. Note that $\left(\frac{m}{n}\right)$ depends only on $m \bmod n$ and therefore we can reduce m modulo n and compute. When $m<n$, we use the reciprocity to get $\left(\frac{n}{m}\right)$ and we reduce again.

The bases cases (cases when either of them is 1 or $\operatorname{gcd}(m, n)>1$ or $m=2^{k} m^{\prime}$ or $n=2^{k} m^{\prime}$ etc) are omitted ${ }^{1}$.

The running time of this algorithm is $(\log m \log n)^{O(1)}$.

3 Solovay Strassen Primality Testing

The general philosophy of primality testing is the following:

- Find a property that is satisfied by exactly the prime numbers.

[^0]```
Algorithm 1 Jacobi SymboL \(\left(\frac{m}{n}\right)\)
 //base cases omitted
 if \(m>n\) then
 return \(\left(\frac{m \bmod n}{n}\right)\)
 else
 return \((-1)^{\frac{m-1}{2} \frac{n-1}{2}}\left(\frac{n}{m}\right)\)
 end if
```

- Find an efficient way to check if the property is satisfied by arbitrary numbers.
- Show that for any composite number, one can "easily" find a witness that the property fails.

In the Solovay-Strassen algorithm, the property used is the following.
Proposition 1. $n$ is prime if and only if for all $a \in(\mathbb{Z} / n \mathbb{Z})^{\star}$,

$$
\left(\frac{a}{n}\right)=a^{\frac{n-1}{2}}
$$

And with the following claim, we have the algorithm immediately.
Claim 2. If $n$ was composite, then for a randomly chosen from $(Z / n \mathbb{Z})^{\star}$,

$$
\operatorname{Pr}_{a \in(\mathbb{Z} / n \mathbb{Z})^{\star}}\left[\left(\frac{a}{n}\right) \neq a^{\frac{n-1}{2}}\right] \geq \frac{1}{2}
$$

Thus, the algorithm is the following.
All that's left to do is prove the claim. For that, let us look at a more general theorem which would be very useful.

Theorem 3. Let $\psi_{1}$ and $\psi_{2}$ be two homomorphisms from a finite group $G$ to a group $H$. If $\psi_{1} \neq \psi_{2}$, that is there is atleast one $g \in G$ such that $\psi_{1}(g) \neq \psi_{2}(g)$, then $\psi_{1}$ and $\psi_{2}$ differ at atleast $|G| / 2$ points.

This intuitively means that two different homomorphisms can either be the same or have to be very different.

Proof. Consider the set

$$
H=\left\{g \in G: \psi_{1}(g)=\psi_{2}(g)\right\}
$$

```
Algorithm 2 SOLOVAY-STRASSEN: check if \(n\) is prime
 Pick a random element \(a<n\).
 if \(\operatorname{gcd}(a, n)>1\) then
 return COMPOSITE
 end if
 Compute \(a^{\frac{n-1}{2}}\) using repeated squaring and \(\left(\frac{a}{n}\right)\) using the earlier algo-
 rithm.
 if \(\left(\frac{a}{n}\right) \neq a^{\frac{n-1}{2}}\) then
 return COMPOSITE
 else
 return PRIME
 end if
```

Note that clearly 1 belongs to $H$ and if $a, b \in H$, then so is $a b$ as $\psi_{1}(a b)=$ $\psi_{1}(a) \psi_{1}(b)=\psi_{2}(a) \psi_{2}(b)=\psi_{2}(a b)$. Inverses are inside as well and therefore, $H$ is a subgroup of $G$. Also since $\psi_{1} \neq \psi_{2}$, they differ at atleast one point say $g_{0}$. Then $g_{0} \notin H$ and hence $H$ is a proper subgroup of $G$.

By Lagrange's theorem, $|H|$ divides $|G|$ and since $|H|<|G|,|H|$ can atmost be $|G| / 2$. Since every element in $G \backslash H$ is a point where $\psi_{1}$ and $\psi_{2}$ differ, it follows that $\psi_{1}$ and $\psi_{2}$ differ at atleast $|G| / 2$ points.

The claim directly follows from the theorem since both the Jacobi symbol and the map $a \mapsto a^{\frac{n-1}{2}}$ are homomorphisms and hence will differ in atleast half of the elements of $(\mathbb{Z} / n \mathbb{Z})^{\star}$.

Thus, the Solovay-Strassen algorithm has the following error bounds:

- If $n$ is a prime, the program outputs PRIME with probability 1 .
- If $n$ is not a prime, the program outputs COMPOSITE with probability atleast $\frac{1}{2}$.

Of course, the confidence can be boosted by making checks on more such $a^{\prime}$ s.

All that's left to do is to prove the proposition.

## 4 Proof of the Proposition 1

We want to show that if $n$ is not a prime, there the two homomorphisms $a \mapsto a^{\frac{n-1}{2}}$ and $a \mapsto\left(\frac{a}{n}\right)$ are not the same. Thus, it suffices to find a single $a \in(\mathbb{Z} / n \mathbb{Z})^{\star}$ such that $\left(\frac{a}{n}\right) \neq a^{\frac{n-1}{2}}$.

## Case 1: $n$ is not square free

Suppose $n$ had a prime factor $p$ such that $p^{2}$ divides $n$. Recall that for all $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$, the Euler $\phi$ function evaluates to:

$$
\phi(n)=\prod_{i=1}^{k} p_{i}^{\alpha_{i}-1}\left(p_{i}-1\right)
$$

And hence, if $p^{2}|n \Longrightarrow p| \phi(n)$. Now look at the multiplicative group $(\mathbb{Z} / n \mathbb{Z})^{\star}$, this has $\phi(n)$ elements. A theorem of Cayley tells us that if $p\left||G|\right.$ then $G$ has an element of order $p \int^{2}$ Let $g$ be an element of order $p$ in $(\mathbb{Z} / n \mathbb{Z})^{\star}$.

What is the value of $g^{\frac{n-1}{2}}$ ? Can this be $\pm 1$ ? If it were $\pm 1$, then $g^{n-1}=1$. This means that the order of $g$ divides $n-1$, or $p \mid n-1$ which is impossible since $p \mid n$. And therefore, $g^{\frac{n-1}{2}} \neq \pm 1$ and therefore, certainly cannot be $\left(\frac{g}{n}\right)$ which takes values only $\pm 1$ for all $g$ coprime to $n$.

Thus $g$ is a witness that $\left(\frac{g}{n}\right) \neq g^{\frac{n-1}{2}}$.

## Case 2: $n$ is a product of distinct primes

Now $n$ will be square-free if and only if it is a product of distinct primes. Suppose $n=p_{1} p_{2} \cdots p_{k}$

Suppose there is some some $a$ such that $a^{\frac{n-1}{2}} \neq\left(\frac{a}{p_{1}}\right)$, are we done? Yes we are. We can use such a $a$ to find a $g$ such that $g^{\frac{n-1}{2}} \neq\left(\frac{g}{n}\right)$.

By the Chinese Remainder Theorem, we know that $(\mathbb{Z} / n \mathbb{Z})^{\star} \cong\left(\mathbb{Z} / p_{1} \mathbb{Z}\right)^{\star} \times$ $\cdots \times\left(\mathbb{Z} / p_{k} \mathbb{Z}\right)^{\star}$. Let $g$ be the element in $(\mathbb{Z} / n \mathbb{Z})^{\star}$ such that $g \mapsto(a, 1,1, \cdots, 1)$ by the CRT map. By the definition of the Jacobi Symbol,

$$
\left(\frac{g}{n}\right)=\prod_{i \in 1}^{k}\left(\frac{g}{p_{i}}\right)=\prod_{i=1}^{k}\left(\frac{g \bmod p_{i}}{p_{i}}\right)=\left(\frac{a}{p_{1}}\right)\left(\frac{1}{p_{2}}\right) \cdots\left(\frac{1}{p_{k}}\right)=\left(\frac{a}{p_{1}}\right)
$$

[^1]And $g^{\frac{n-1}{2}}=\left(a^{\frac{n-1}{2}}, 1, \cdots, 1\right)$. What we know is that $a^{\frac{n-1}{2}} \neq\left(\frac{a}{p_{1}}\right)$. Suppose $\left(\frac{a}{p_{1}}\right)=1$, then $\left(\frac{a}{p_{1}}\right)=\left(\frac{g}{n}\right)=1$. But $g^{\frac{n-1}{2}}$ on the other hand looks like $\left(a^{\frac{n-1}{2}}, 1, \cdots, 1\right)$ and we know that $\left(\frac{a}{p_{1}}\right)=1 \neq a^{\frac{n-1}{2}}$. Therefore, $g^{\frac{n-1}{2}}$ looks like $(*, 1, \cdots, 1)$ where the first coordinate is not 1 . And therefore, this is not 1 . Therefore $\left(\frac{g}{n}\right) \neq g^{\frac{n-1}{2}}$.

Suppose $\left(\frac{a}{p_{1}}\right)=-1$, then things are even simpler. $\left(\frac{g}{n}\right)=-1$ but $g^{\frac{n-1}{2}}$ looks like $(*, 1, \cdots, 1) \neq-1$. Therefore $\left(\frac{g}{n}\right) \neq g^{\frac{n-1}{2}}$.

And of course, it works for any prime factor $p$ of $n$. Thus, the bad case is when for all $a$ and for all prime factors $p_{i},\left(\frac{a}{p_{i}}\right)=a^{\frac{n-1}{2}}$. Since $n$ is composite, there are at least 2 distinct prime factors $p_{1}$ and $p_{2}$. Pick $a \in\left(\mathbb{Z} / p_{1} \mathbb{Z}\right)^{\star}$ which is a quadratic residue $\left(\left(\frac{a}{p_{1}}\right)=1\right)$ and a $b \in\left(\mathbb{Z} / p_{2} \mathbb{Z}\right)^{\star}$ that is a nonresidue $\left(\left(\frac{b}{p_{2}}\right)=-1\right)$. Now look at the element $g \in(\mathbb{Z} / n \mathbb{Z})^{\star}$ that maps to $(a, b, 1,1, \cdots, 1)$ by the chinese remainder theorem.

Now $g^{\frac{n-1}{2}}=\left(a^{\frac{n-1}{2}}, b^{\frac{n-1}{2}}, 1, \cdots, 1\right)=(1,-1,1, \cdots 1)$ which is not $\pm 1$. And hence clearly, $\left(\frac{g}{n}\right) \neq g^{\frac{n-1}{2}}$.

That completes the proof of correctness of the Solovay-Strassen primality test.


[^0]:    ${ }^{1}$ the $\mathrm{T}_{\mathrm{E}}$ Xsource file of this lecture note has them commented out. Uncomment them and recompile if needed

[^1]:    ${ }^{2}$ actually it is more. It says that for every prime power $p^{\alpha}| | G \mid$, there is a subgroup of order $p^{\alpha}$ in $G$.

