
CS681 Computational Number Theory

Lecture 20 and 21: Solovay Strassen Primality Testing
Instructor: Piyush P Kurur Scribe: Ramprasad Saptharishi

Overview

Last class we stated a similar reciprocity theorem for the Jacobi symbol. In
this class we shall do the proof of it, discuss the algorithm, and also do the
Solovay-Strassen primality testing.
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We shall just prove the second part here. The first part uses the same tech-
nique. Let us assume that the theorem is true for allm′ < m. Ifm is a prime,
we do induction on n.
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From now on, the work shall be happening on the exponent and let
us just denote n−1

2 E for the exponent of −1. We want to evaluate E mod
2 since we are looking at (−1) power the exponent and only the parity
matters.
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Let m1 = 4k1 + b1 and m2 = 4k2 + b2 where b1, b2 = ±1 since m is odd.

E =
4k1 + 4k2 + b1 + b2 − 2

2

=
b1 + b2 − 2

2
mod 2

m− 1
2

=
(4k1 + b1)(4k2 + b2)− 1

2

= 8k1k2 + 2k1b2 + 2k2b1 +
b1b2 − 1

2

=
b1b2 − 1

2
mod 2

And now it is easy to check that for b1, b2 = ±1,
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2
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and therefore, E = m−1
2 mod 2 and hence,(m
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2 Algorithm to compute
(
m
n

)
The reciprocity laws give a polynomial time algorithm to compute the Ja-
cobi symbol m

n . Note that
(

m
n

)
depends only on m mod n and therefore we

can reduce m modulo n and compute. When m < n, we use the reciprocity
to get

(
n
m

)
and we reduce again.

The bases cases (cases when either of them is 1 or gcd(m,n) > 1 or
m = 2km′ or n = 2km′ etc) are omitted1.

The running time of this algorithm is (logm log n)O(1).

3 Solovay Strassen Primality Testing

The general philosophy of primality testing is the following:

• Find a property that is satisfied by exactly the prime numbers.

1the TEXsource file of this lecture note has them commented out. Uncomment them and
recompile if needed
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Algorithm 1 JACOBI SYMBOL
(

m
n

)
1: //base cases omitted
2: if m > n then
3: return

(
m mod n

n

)
4: else
5: return (−1)

m−1
2

n−1
2

(
n
m

)
6: end if

• Find an efficient way to check if the property is satisfied by arbitrary
numbers.

• Show that for any composite number, one can “easily” find a witness
that the property fails.

In the Solovay-Strassen algorithm, the property used is the following.

Proposition 1. n is prime if and only if for all a ∈ (Z/nZ)?,(a
n

)
= a

n−1
2

And with the following claim, we have the algorithm immediately.

Claim 2. If n was composite, then for a randomly chosen from (Z/nZ)?,

Pr
a∈(Z/nZ)?

[(a
n

)
6= a

n−1
2

]
≥ 1

2

Thus, the algorithm is the following.
All that’s left to do is prove the claim. For that, let us look at a more

general theorem which would be very useful.

Theorem 3. Let ψ1 and ψ2 be two homomorphisms from a finite group G to a
group H. If ψ1 6= ψ2, that is there is atleast one g ∈ G such that ψ1(g) 6= ψ2(g),
then ψ1 and ψ2 differ at atleast |G|/2 points.

This intuitively means that two different homomorphisms can either be
the same or have to be very different.

Proof. Consider the set

H = {g ∈ G : ψ1(g) = ψ2(g)}
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Algorithm 2 SOLOVAY-STRASSEN: check if n is prime
1: Pick a random element a < n.
2: if gcd(a, n) > 1 then
3: return COMPOSITE

4: end if
5: Compute a

n−1
2 using repeated squaring and

(
a
n

)
using the earlier algo-

rithm.
6: if

(
a
n

)
6= a

n−1
2 then

7: return COMPOSITE

8: else
9: return PRIME

10: end if

Note that clearly 1 belongs to H and if a, b ∈ H , then so is ab as ψ1(ab) =
ψ1(a)ψ1(b) = ψ2(a)ψ2(b) = ψ2(ab). Inverses are inside as well and there-
fore, H is a subgroup of G. Also since ψ1 6= ψ2, they differ at atleast one
point say g0. Then g0 /∈ H and hence H is a proper subgroup of G.

By Lagrange’s theorem, |H| divides |G| and since |H| < |G|, |H| can
atmost be |G|/2. Since every element in G \ H is a point where ψ1 and ψ2

differ, it follows that ψ1 and ψ2 differ at atleast |G|/2 points.

The claim directly follows from the theorem since both the Jacobi sym-
bol and the map a 7→ a

n−1
2 are homomorphisms and hence will differ in

atleast half of the elements of (Z/nZ)?.

Thus, the Solovay-Strassen algorithm has the following error bounds:

• If n is a prime, the program outputs PRIME with probability 1.

• If n is not a prime, the program outputs COMPOSITE with probability
atleast 1

2 .

Of course, the confidence can be boosted by making checks on more such
a’s.

All that’s left to do is to prove the proposition.

4



4 Proof of the Proposition 1

We want to show that if n is not a prime, there the two homomorphisms
a 7→ a

n−1
2 and a 7→

(
a
n

)
are not the same. Thus, it suffices to find a single

a ∈ (Z/nZ)? such that
(

a
n

)
6= a

n−1
2 .

Case 1: n is not square free

Suppose n had a prime factor p such that p2 divides n. Recall that for all
n = pα1

1 pα2
2 · · · pαk

k , the Euler φ function evaluates to:

φ(n) =
k∏

i=1

pαi−1
i (pi − 1)

And hence, if p2 | n =⇒ p | φ(n). Now look at the multiplicative
group (Z/nZ)?, this has φ(n) elements. A theorem of Cayley tells us that if
p | |G| then G has an element of order p.2 Let g be an element of order p in
(Z/nZ)?.

What is the value of g
n−1

2 ? Can this be ±1? If it were ±1, then gn−1 = 1.
This means that the order of g divides n−1, or p | n−1 which is impossible
since p | n.And therefore, g

n−1
2 6= ±1 and therefore, certainly cannot be

( g
n

)
which takes values only ±1 for all g coprime to n.

Thus g is a witness that
( g

n

)
6= g

n−1
2 .

Case 2: n is a product of distinct primes

Now n will be square-free if and only if it is a product of distinct primes.
Suppose n = p1p2 · · · pk

Suppose there is some some a such that a
n−1

2 6=
(

a
p1

)
, are we done? Yes

we are. We can use such a a to find a g such that g
n−1

2 6=
( g

n

)
.

By the Chinese Remainder Theorem, we know that (Z/nZ)? ∼= (Z/p1Z)?×
· · ·×(Z/pkZ)?. Let g be the element in (Z/nZ)? such that g 7→ (a, 1, 1, · · · , 1)
by the CRT map. By the definition of the Jacobi Symbol,( g

n

)
=

k∏
i∈1

(
g

pi

)
=

k∏
i=1

(
g mod pi

pi

)
=

(
a

p1

) (
1
p2

)
· · ·

(
1
pk

)
=

(
a

p1

)
2actually it is more. It says that for every prime power pα | |G|, there is a subgroup of

order pα in G.
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And g
n−1

2 = (a
n−1

2 , 1, · · · , 1). What we know is that a
n−1

2 6=
(

a
p1

)
. Suppose(

a
p1

)
= 1, then

(
a
p1

)
=

( g
n

)
= 1. But g

n−1
2 on the other hand looks like

(a
n−1

2 , 1, · · · , 1) and we know that
(

a
p1

)
= 1 6= a

n−1
2 . Therefore, g

n−1
2 looks

like (∗, 1, · · · , 1) where the first coordinate is not 1. And therefore, this is
not 1. Therefore

( g
n

)
6= g

n−1
2 .

Suppose
(

a
p1

)
= −1, then things are even simpler.

( g
n

)
= −1 but g

n−1
2

looks like (∗, 1, · · · , 1) 6= −1. Therefore
( g

n

)
6= g

n−1
2 .

And of course, it works for any prime factor p of n. Thus, the bad case is
when for all a and for all prime factors pi,

(
a
pi

)
= a

n−1
2 . Since n is compos-

ite, there are at least 2 distinct prime factors p1 and p2. Pick a ∈ (Z/p1Z)?

which is a quadratic residue (
(

a
p1

)
= 1) and a b ∈ (Z/p2Z)? that is a non-

residue (
(

b
p2

)
= −1). Now look at the element g ∈ (Z/nZ)? that maps to

(a, b, 1, 1, · · · , 1) by the chinese remainder theorem.
Now g

n−1
2 = (a

n−1
2 , b

n−1
2 , 1, · · · , 1) = (1,−1, 1, · · · 1) which is not ±1.

And hence clearly,
( g

n

)
6= g

n−1
2 .

That completes the proof of correctness of the Solovay-Strassen primal-
ity test.
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