CS681	Computational Number Theory
	Lecture 18: Quadratic Reciprocity
Instructor: Piyush P Kurur	Scribe: Ramprasad Saptharishi

Overview

Polynomial factorization and randomized primality testing were one of the first examples of the power of randomization. Two standard algorithms for primality testing (randomized) are the Miller-Rabin test and the SolovayStrassen test.

We shall build some theory on quadratic reciprocity laws before we get into the Solovay Strassen test.

1 Quadratic Reciprocity

The reciprocity laws are closely related to how primes split over number fields. Let us first understand what these number fields are.

Definition 1. An algebraic integer over \mathbb{Q} is an element ζ such that it is a root of a monic polynomial in $\mathbb{Z}[X]$. For example, the number $\frac{1}{2}+i \frac{\sqrt{3}}{2}$ is an algebraic integer as it is a root of $x^{2}-x+1$.

A number field is a finite extension of \mathbb{Q}. One could think of this as just adjoining an algebraic number to \mathbb{Q}.

Note that number fields are strange objects. They may not even be UFDs. We saw the example when we consider $\mathbb{Q}(\sqrt{-5})$, the number 6 factors as both 3×2 and $(1+\sqrt{-5})(1-\sqrt{-5})$. However, if one were to consider factorization over ideals, they form unique factorizations.

1.1 The Legendre Symbol

Fix an odd prime p. We want to study equations of the form $X^{2}-a$ over \mathbb{F}_{p}. What does it mean to say that this has a solution in \mathbb{F}_{p} ? It means that a has a square-root in \mathbb{F}_{p} or a is a square in \mathbb{F}_{p}. The legendre symbol captures that.

Definition 2. For $a \in \mathbb{F}_{p}$, the legendre symbol $\left(\frac{a}{p}\right)$ is defined as follows:

$$
\left(\frac{a}{p}\right)= \begin{cases}0 & \text { if } p \mid a \\ -1 & \text { if a is not a square modulo } p \\ 1 & \text { if a is a square modulo } p\end{cases}
$$

Proposition 1.

$$
\left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)
$$

The proof is fairly straight forward; just consider them case by case when they are $-1,0,1$.

Thus, the above proposition tells us that the $(\dot{\bar{p}})$ is a homomorphism from $\mathbb{Z} / p \mathbb{Z}$ to $\{-1,0,1\}$.

Another observation is that since \mathbb{F}_{p}^{\star} is cyclic, there is a generator b. Then we can write $a=b^{t}$. We then have,

$$
a= \begin{cases}0 & \text { if } p \mid a \\ -1 & \text { if } a \text { is not a square modulo } p \\ 1 & \text { if } a \text { is a square modulo } p\end{cases}
$$

and therefore $\left(\frac{a}{p}\right)=a^{\frac{p-1}{2}}$.
Note that $x^{2}=y^{2} \Longrightarrow x=y$ or $x=-y$ and therefore, the number of squares in \mathbb{F}_{p}^{\star} is exactly $\frac{p-1}{2}$. And if the generator of the group is a quadratic non-residue (not a square), then any odd power of the generator is also a non-residue.

2 Quadratic Reciprocity Theorem

Theorem 2. Let p and q be odd primes (not equal to each other). Then

$$
\begin{aligned}
\left(\frac{2}{p}\right) & =(-1)^{\frac{p^{2}-1}{8}} \\
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) & =(-1)^{\frac{p-1}{2} \frac{q-1}{2}}
\end{aligned}
$$

Proof. We shall prove the part of $\left(\frac{2}{p}\right)$ in this class and do the other in the next. The idea is to go to a field extension (if necessary) and evaluate certain elements in two ways to get what we want. In the case of $\left(\frac{2}{p}\right)$ we shall go to the extension $\mathbb{F}_{p}(i)$ where i is a square root of -1 .

Firstly note that this needn't be a proper extension at all. For example, in \mathbb{F}_{5}, we already have a root of -1 which is 2 . Infact, for every prime of the form $1 \bmod 4$, we have a square root of -1 . So we will go to an extension if necessary.

Now set $\tau=1+i$. We know that $\tau^{2}=1-1+2 i=2 i$ and $\tau^{p}=1+i^{p}$ in \mathbb{F}_{p}. We could also evaluate τ^{p} as $\tau \cdot\left(\tau^{2}\right)^{\frac{p-1}{2}}$. Also $(1+i)^{-1}=\frac{1-i}{2}$.

$$
\begin{aligned}
1+i^{p} & =\tau^{p} \\
& =\tau(2 i)^{\frac{p-1}{2}} \\
& =(1+i) 2^{\frac{p-1}{2} i^{\frac{p-1}{2}}} \\
\Longrightarrow \frac{\left(1+i^{p}\right)(1-i)}{2} & =2^{\frac{p-1}{2} i^{\frac{p-1}{2}}} \\
\Longrightarrow \frac{1+i^{p}-i-i^{p+1}}{2} & =\left(\frac{2}{p}\right) i^{\frac{p-1}{2}}
\end{aligned}
$$

Case 1: When $p=1 \bmod 4$
Then $i \in \mathbb{F}_{p}$ and the above equation reduces to

$$
\begin{aligned}
\frac{1+i-i+1}{2} & =\left(\frac{2}{p}\right)(-1)^{\frac{p-1}{4}} \\
\Longrightarrow\left(\frac{2}{p}\right) & =(-1)^{\frac{p-1}{4}}
\end{aligned}
$$

Case 2: When $p=3 \bmod 4$

$$
\begin{aligned}
\frac{1-i-i-1}{2} & =\left(\frac{2}{p}\right) i^{\frac{p-1}{2}} \\
\Longrightarrow i^{3} & =\left(\frac{2}{p}\right) i^{\frac{p-1}{2}} \\
\Longrightarrow\left(\frac{2}{p}\right) & =i^{\frac{1-p}{2}+3}=i^{\frac{8-(1+p)}{4}} \\
& =(-1)^{\frac{p+1}{4}}
\end{aligned}
$$

Therefore,

$$
\left(\frac{2}{p}\right)= \begin{cases}(-1)^{\frac{p-1}{4}} & p=1 \bmod 4 \\ (-1)^{\frac{p+1}{4}} & p=3 \bmod 4\end{cases}
$$

and combining the two, we get

$$
\left(\frac{2}{p}\right)=(-1)^{\frac{p^{2}-1}{8}}
$$

The proof of the other part is very similar. We consider a similar τ and evaluate τ^{p} in two different ways to get to our answer. We shall do this in the next class.

