
CS681 Computational Number Theory

Lecture 18: Quadratic Reciprocity
Instructor: Piyush P Kurur Scribe: Ramprasad Saptharishi

Overview

Polynomial factorization and randomized primality testing were one of the
first examples of the power of randomization. Two standard algorithms for
primality testing (randomized) are the Miller-Rabin test and the Solovay-
Strassen test.

We shall build some theory on quadratic reciprocity laws before we get
into the Solovay Strassen test.

1 Quadratic Reciprocity

The reciprocity laws are closely related to how primes split over number
fields. Let us first understand what these number fields are.

Definition 1. An algebraic integer over Q is an element ζ such that it is a root
of a monic polynomial in Z[X]. For example, the number 1

2 + i
√

3
2 is an algebraic

integer as it is a root of x2 − x + 1.
A number field is a finite extension of Q. One could think of this as just ad-

joining an algebraic number to Q.

Note that number fields are strange objects. They may not even be
UFDs. We saw the example when we consider Q(

√
−5), the number 6 fac-

tors as both 3×2 and (1+
√
−5)(1−

√
−5). However, if one were to consider

factorization over ideals, they form unique factorizations.

1.1 The Legendre Symbol

Fix an odd prime p. We want to study equations of the form X2 − a over
Fp. What does it mean to say that this has a solution in Fp? It means that a
has a square-root in Fp or a is a square in Fp. The legendre symbol captures
that.
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Definition 2. For a ∈ Fp, the legendre symbol
(

a
p

)
is defined as follows:

(
a

p

)
=


0 if p | a
−1 if a is not a square modulo p

1 if a is a square modulo p

Proposition 1. (
ab

p

)
=

(
a

p

) (
b

p

)
The proof is fairly straight forward; just consider them case by case

when they are −1, 0, 1.

Thus, the above proposition tells us that the
(
·
p

)
is a homomorphism

from Z/pZ to {−1, 0, 1} .

Another observation is that since F?
p is cyclic, there is a generator b. Then

we can write a = bt. We then have,

a =


0 if p | a
−1 if a is not a square modulo p

1 if a is a square modulo p

and therefore
(

a
p

)
= a

p−1
2 .

Note that x2 = y2 =⇒ x = y or x = −y and therefore, the number of
squares in F?

p is exactly p−1
2 . And if the generator of the group is a quadratic

non-residue (not a square), then any odd power of the generator is also a
non-residue.

2 Quadratic Reciprocity Theorem

Theorem 2. Let p and q be odd primes (not equal to each other). Then(
2
p

)
= (−1)

p2−1
8(

p

q

) (
q

p

)
= (−1)

p−1
2

q−1
2
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Proof. We shall prove the part of
(

2
p

)
in this class and do the other in the

next. The idea is to go to a field extension (if necessary) and evaluate certain
elements in two ways to get what we want. In the case of

(
2
p

)
we shall go

to the extension Fp(i) where i is a square root of −1.
Firstly note that this needn’t be a proper extension at all. For example,

in F5, we already have a root of −1 which is 2. Infact, for every prime of the
form 1 mod 4, we have a square root of −1. So we will go to an extension if
necessary.

Now set τ = 1 + i. We know that τ2 = 1 − 1 + 2i = 2i and τp = 1 + ip

in Fp. We could also evaluate τp as τ · (τ2)
p−1
2 . Also (1 + i)−1 = 1−i

2 .

1 + ip = τp

= τ(2i)
p−1
2

= (1 + i)2
p−1
2 i

p−1
2

=⇒ (1 + ip)(1− i)
2

= 2
p−1
2 i

p−1
2

=⇒ 1 + ip − i− ip+1

2
=

(
2
p

)
i

p−1
2

Case 1: When p = 1 mod 4
Then i ∈ Fp and the above equation reduces to

1 + i− i + 1
2

=
(

2
p

)
(−1)

p−1
4

=⇒
(

2
p

)
= (−1)

p−1
4

Case 2: When p = 3 mod 4

1− i− i− 1
2

=
(

2
p

)
i

p−1
2

=⇒ i3 =
(

2
p

)
i

p−1
2

=⇒
(

2
p

)
= i

1−p
2

+3 = i
8−(1+p)

4

= (−1)
p+1
4

Therefore, (
2
p

)
=

{
(−1)

p−1
4 p = 1 mod 4

(−1)
p+1
4 p = 3 mod 4
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and combining the two, we get(
2
p

)
= (−1)

p2−1
8

The proof of the other part is very similar. We consider a similar τ and
evaluate τp in two different ways to get to our answer. We shall do this in
the next class.
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