CS681

Computational Number Theory

Lecture 18: Quadratic Reciprocity

Instructor: Piyush P Kurur

Scribe: Ramprasad Saptharishi

Overview

Polynomial factorization and randomized primality testing were one of the first examples of the power of randomization. Two standard algorithms for primality testing (randomized) are the Miller-Rabin test and the Solovay-Strassen test.

We shall build some theory on quadratic reciprocity laws before we get into the Solovay Strassen test.

1 Quadratic Reciprocity

The reciprocity laws are closely related to how primes split over *number fields*. Let us first understand what these number fields are.

Definition 1. An algebraic integer over \mathbb{Q} is an element ζ such that it is a root of a monic polynomial in $\mathbb{Z}[X]$. For example, the number $\frac{1}{2} + i\frac{\sqrt{3}}{2}$ is an algebraic integer as it is a root of $x^2 - x + 1$.

A number field is a finite extension of \mathbb{Q} . One could think of this as just adjoining an algebraic number to \mathbb{Q} .

Note that number fields are strange objects. They may not even be UFDs. We saw the example when we consider $\mathbb{Q}(\sqrt{-5})$, the number 6 factors as both 3×2 and $(1+\sqrt{-5})(1-\sqrt{-5})$. However, if one were to consider factorization over ideals, they form unique factorizations.

1.1 The Legendre Symbol

Fix an odd prime p. We want to study equations of the form $X^2 - a$ over \mathbb{F}_p . What does it mean to say that this has a solution in \mathbb{F}_p ? It means that a has a square-root in \mathbb{F}_p or a is a square in \mathbb{F}_p . The legendre symbol captures that.

Definition 2. For $a \in \mathbb{F}_p$, the legendre symbol $\left(\frac{a}{p}\right)$ is defined as follows:

$$\begin{pmatrix} \frac{a}{p} \end{pmatrix} = \begin{cases} 0 & \text{if } p \mid a \\ -1 & \text{if } a \text{ is not } a \text{ square modulo } p \\ 1 & \text{if } a \text{ is a square modulo } p \end{cases}$$

Proposition 1.

$$\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$$

The proof is fairly straight forward; just consider them case by case when they are -1, 0, 1.

Thus, the above proposition tells us that the $\left(\frac{\cdot}{p}\right)$ is a homomorphism from $\mathbb{Z}/p\mathbb{Z}$ to $\{-1, 0, 1\}$.

Another observation is that since \mathbb{F}_p^{\star} is cyclic, there is a generator b. Then we can write $a = b^t$. We then have,

$$a = \begin{cases} 0 & \text{if } p \mid a \\ -1 & \text{if } a \text{ is not a square modulo } p \\ 1 & \text{if } a \text{ is a square modulo } p \end{cases}$$

and therefore $\left(\frac{a}{p}\right) = a^{\frac{p-1}{2}}$.

Note that $x^2 = y^2 \implies x = y$ or x = -y and therefore, the number of squares in \mathbb{F}_p^{\star} is exactly $\frac{p-1}{2}$. And if the generator of the group is a quadratic non-residue (not a square), then any odd power of the generator is also a non-residue.

2 Quadratic Reciprocity Theorem

Theorem 2. Let *p* and *q* be odd primes (not equal to each other). Then

$$\left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}}$$
$$\left(\frac{p}{q}\right) \left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}}$$

Proof. We shall prove the part of $\begin{pmatrix} 2 \\ p \end{pmatrix}$ in this class and do the other in the next. The idea is to go to a field extension (if necessary) and evaluate certain elements in two ways to get what we want. In the case of $\begin{pmatrix} 2 \\ p \end{pmatrix}$ we shall go to the extension $\mathbb{F}_p(i)$ where *i* is a square root of -1.

Firstly note that this needn't be a proper extension at all. For example, in \mathbb{F}_5 , we already have a root of -1 which is 2. Infact, for every prime of the form $1 \mod 4$, we have a square root of -1. So we will go to an extension if necessary.

Now set $\tau = 1 + i$. We know that $\tau^2 = 1 - 1 + 2i = 2i$ and $\tau^p = 1 + i^p$ in \mathbb{F}_p . We could also evaluate τ^p as $\tau \cdot (\tau^2)^{\frac{p-1}{2}}$. Also $(1+i)^{-1} = \frac{1-i}{2}$.

$$\begin{array}{rcl} 1+i^p &=& \tau^p \\ &=& \tau(2i)^{\frac{p-1}{2}} \\ &=& (1+i)2^{\frac{p-1}{2}}i^{\frac{p-1}{2}} \\ &\implies& \frac{(1+i^p)(1-i)}{2} &=& 2^{\frac{p-1}{2}}i^{\frac{p-1}{2}} \\ &\implies& \frac{1+i^p-i-i^{p+1}}{2} &=& \left(\frac{2}{p}\right)i^{\frac{p-1}{2}} \end{array}$$

Case 1: When $p = 1 \mod 4$

Then $i \in \mathbb{F}_p$ and the above equation reduces to

$$\frac{1+i-i+1}{2} = \left(\frac{2}{p}\right)(-1)^{\frac{p-1}{4}}$$
$$\implies \left(\frac{2}{p}\right) = (-1)^{\frac{p-1}{4}}$$

Case 2: When $p = 3 \mod 4$

$$\frac{1-i-i-1}{2} = \left(\frac{2}{p}\right)i^{\frac{p-1}{2}}$$
$$\implies i^3 = \left(\frac{2}{p}\right)i^{\frac{p-1}{2}}$$
$$\implies \left(\frac{2}{p}\right) = i^{\frac{1-p}{2}+3} = i^{\frac{8-(1+p)}{4}}$$
$$= (-1)^{\frac{p+1}{4}}$$

Therefore,

$$\left(\frac{2}{p}\right) = \begin{cases} (-1)^{\frac{p-1}{4}} & p = 1 \mod 4\\ (-1)^{\frac{p+1}{4}} & p = 3 \mod 4 \end{cases}$$

and combining the two, we get

$$\left(\frac{2}{p}\right) = \left(-1\right)^{\frac{p^2 - 1}{8}}$$

The proof of the other part is very similar. We consider a similar τ and evaluate τ^p in two different ways to get to our answer. We shall do this in the next class.