CS681

Computational Number Theory

Lecture 12: Berlekamp's Algorithm

Instructor: Piyush P Kurur

Scribe: Ramprasad Saptharishi

Overview

Last class we say a randomized algorithm for factoring univariate polynomials over a finite field. This class we shall look at another algorithm for factoring. This was given by Berlekamp.

1 Berlekamp's Algorithm

We are given a polynomial $f(X) \in \mathbb{F}_p[X]$. As in all factoring algorithms, the first thing to do is make f square free. Once we have done this, the polynomial is of the form

$$f = f_1 f_2 \cdots f_m$$

where each f_i is a distinct irreducible factor of f. Then, chinese remaindering tells us that

$$R = \mathbb{F}_p[X]/(f) = (\mathbb{F}_p[X]/(f_1)) \times (\mathbb{F}_p[X]/(f_2)) \times \dots \times (\mathbb{F}_p[X]/(f_m))$$

Let the degree of f_i be d_i and the degree of f be n.

1.1 The Frobenius Map

Here enters the frobenius map again. Consider the following function from R to itself.

$$\begin{array}{rcccc} T:R & \longrightarrow & R \\ a & \mapsto & a^p \end{array}$$

The first thing to note here is that all elements of \mathbb{F}_p are fixed in this map because we know that elements \mathbb{F}_p satisfy $X^p - X = 0$. And further, we also saw the special case of binomial theorem that said $(X + Y)^p = X^p + Y^p$. To understand this map *T* better, let us understand *R*. We have defined $R = \mathbb{F}_p[X]/(f)$ which is basically polynomials over \mathbb{F}_p modulo *f*. And clearly, every element of *R* has degree atmost n - 1 and therefore a polynomial of the form $a_0 + a_1X + \cdots + a_{n-1}X^{n-1}$ can be thought of as the vector $(a_0, a_1, \cdots, a_{n-1})$. Thus, the ring *R* is a vector space of dimension *n* over \mathbb{F}_p .

Now, notice that the map *T* described above is \mathbb{F}_p -linear. By this, we mean that for all $\alpha, \beta \in \mathbb{F}_p$ and $u, v \in R$, we have $T(\alpha u + \beta v) = \alpha T(u) + \beta T(v)$. If we think of these elements of \mathbb{F}_p as scalars, they can be 'pulled out of' *T*.

Therefore, it's enough to know the image of each X^i by the map.

$$p(X) = a_0 + a_1 X + \dots + a_{n-1} X^{n-1}$$

$$T(p(X)) = a_0 + a_1 T(X) + \dots + a_{n-1} T(X^{n-1})$$

1.2 The Berlekamp Sub-algebra

Now let *B* be the map T - I where *I* is the identity map (maps everything to itself). Then *B* sends any element $a \in R$ to $a^p - a$. Now define $\mathcal{B} = \ker(B) = \ker(T - I)$. It is easy to check that the kernel of any linear map from one vector space into another (in this case *R* to *R*) forms a subspace of the vector space. Hence \mathcal{B} is a subspace of the vector space *R*.

This space \mathcal{B} is called the Berlekamp sub-algebra.

What does this space look like? Let *a* be any element in \mathcal{B} and therefore is an element of *R*. Let the chinese remainder theorem map this to the tuple (a_1, a_2, \dots, a_m) . And therefore $a^p - a = (a_1^p - a_1, \dots, a_m^p - a_m)$. And since $a \in \mathcal{B}$, each of the $a_i^p - a_i$ must be 0. Now, $a_i^p - a_i$ is an element of $\mathbb{F}_p[X]/(g_i) \cong \mathbb{F}_{p^{d_i}}$ and therefore $a_i^p - a_i = 0$ can happen only if $a_i \in \mathbb{F}_p$.¹

And therefore, each element of the tuple will infact be an element of \mathbb{F}_p and therefore

$$\mathcal{B} \cong \mathbb{F}_p \times \cdots \times \mathbb{F}_p$$

And since \mathcal{B} is a product of *m* copies of \mathbb{F}_p , \mathcal{B} is an *m* dimensional subspace of *R* over \mathbb{F}_p .

¹the elements of \mathbb{F}_{p^d} that satisfy $X^p - X = 0$ are precisely those elements of \mathbb{F}_p

1.3 Finding a Basis

A basis for *R* is obvious, $\{1, X, X^2, \dots, X^{n-1}\}$ but how do we find a basis for \mathcal{B} ? Let us say *T* acts on *R* as

$$T(X^i) = \sum_{j=0}^{n-1} \alpha_{ji} X^j$$

then we can think of *T* as a the matrix $(\alpha_{ji})_{i,j}$. Thus, thinking of polynomials in *R* as a tuple of coefficients described above, then the action of *T* is just left multiplication by this matrix.

Thus, the matrix for *B* would be $\hat{B} = (\alpha_{ji})_{i,j} - I$. Hence the kernel of this map is just asking for all vectors v such that $\hat{B}v = 0$. And therefore, a basis for \mathcal{B} can be obtained by gaussian elimination of \hat{B} .

Once we have a basis $\{b_1, b_2, \dots, b_m\}$, we can pick a random element of \mathcal{B} by just picking *m* random elements a_m from \mathbb{F}_p and $\sum a_i b_i$ would be our random element from \mathcal{B} .

Any element *a* in \mathcal{B} gets mapped to $\mathbb{F}_p \times \cdots \times \mathbb{F}_p$ by the Chinese remainder theorem. And therefore, we can use the Cantor-Zassenhaus idea there: $a^{\frac{p-1}{2}}$ corresponds to a vector of just 1s and -1s.

So here is the final algorithm.

Algorithm 1 BERLEKAMP FACTORIZATION

- **Input:** A polynomial $f \in \mathbb{F}_p[X]$ of degree n
- 1: Make *f* square-free.
- Let *R* be the ring 𝔽_p[X]/(*f*), considered as a *n* dimensional vector space over 𝔽_p.
- 3: Construct the matrix of transformation \hat{B} corresponding to the map $a \mapsto a^p a$.
- 4: Use gaussian elimination and find a basis $\{b_1, b_2, \dots, b_m\}$ for the berlekamp subalgebra \mathcal{B} .
- 5: Pick $\{a_1, \cdots, a_{m-1}\} \in_R \mathbb{F}_p$ and let $b = \sum a_i b_i$.
- 6: if $gcd(b^{\frac{p-1}{2}}+1, f)$ is non-trivial then
- 7: return $gcd(b^{\frac{p-1}{2}}+1, f)$ {Happens with probability at least $1-2^{m-1}$ } 8: end if
- 9: Repeat from step 5.