CS681	Computational Number Theory
	Lecture 12: Berlekamp's Algorithm
Instructor: Piyush P Kurur	Scribe: Ramprasad Saptharishi

Overview

Last class we say a randomized algorithm for factoring univariate polynomials over a finite field. This class we shall look at another algorithm for factoring. This was given by Berlekamp.

1 Berlekamp's Algorithm

We are given a polynomial $f(X) \in \mathbb{F}_{p}[X]$. As in all factoring algorithms, the first thing to do is make f square free. Once we have done this, the polynomial is of the form

$$
f=f_{1} f_{2} \cdots f_{m}
$$

where each f_{i} is a distinct irreducible factor of f. Then, chinese remaindering tells us that

$$
R=\mathbb{F}_{p}[X] /(f)=\left(\mathbb{F}_{p}[X] /\left(f_{1}\right)\right) \times\left(\mathbb{F}_{p}[X] /\left(f_{2}\right)\right) \times \cdots \times\left(\mathbb{F}_{p}[X] /\left(f_{m}\right)\right)
$$

Let the degree of f_{i} be d_{i} and the degree of f be n.

1.1 The Frobenius Map

Here enters the frobenius map again. Consider the following function from R to itself.

$$
\begin{array}{rlc}
T: R & \longrightarrow & R \\
a & \mapsto & a^{p}
\end{array}
$$

The first thing to note here is that all elements of \mathbb{F}_{p} are fixed in this map because we know that elements \mathbb{F}_{p} satisfy $X^{p}-X=0$. And further, we also saw the special case of binomial theorem that said $(X+Y)^{p}=X^{p}+Y^{p}$.

To understand this map T better, let us understand R. We have defined $R=\mathbb{F}_{p}[X] /(f)$ which is basically polynomials over \mathbb{F}_{p} modulo f. And clearly, every element of R has degree atmost $n-1$ and therefore a polynomial of the form $a_{0}+a_{1} X+\cdots a_{n-1} X^{n-1}$ can be thought of as the vector ($a_{0}, a_{1}, \cdots, a_{n-1}$). Thus, the ring R is a vector space of dimension n over \mathbb{F}_{p}.

Now, notice that the map T described above is \mathbb{F}_{p}-linear. By this, we mean that for all $\alpha, \beta \in \mathbb{F}_{p}$ and $u, v \in R$, we have $T(\alpha u+\beta v)=\alpha T(u)+$ $\beta T(v)$. If we think of these elements of \mathbb{F}_{p} as scalars, they can be 'pulled out of T.

Therefore, it's enough to know the image of each X^{i} by the map.

$$
\begin{aligned}
p(X) & =a_{0}+a_{1} X+\cdots+a_{n-1} X^{n-1} \\
T(p(X)) & =a_{0}+a_{1} T(X)+\cdots+a_{n-1} T\left(X^{n-1}\right)
\end{aligned}
$$

1.2 The Berlekamp Sub-algebra

Now let B be the map $T-I$ where I is the identity map (maps everything to itself). Then B sends any element $a \in R$ to $a^{p}-a$. Now define $\mathcal{B}=$ $\operatorname{ker}(B)=\operatorname{ker}(T-I)$. It is easy to check that the kernel of any linear map from one vector space into another (in this case R to R) forms a subspace of the vector space. Hence \mathcal{B} is a subspace of the vector space R.

This space \mathcal{B} is called the Berlekamp sub-algebra.
What does this space look like? Let a be any element in \mathcal{B} and therefore is an element of R. Let the chinese remainder theorem map this to the tuple $\left(a_{1}, a_{2}, \cdots, a_{m}\right)$. And therefore $a^{p}-a=\left(a_{1}^{p}-a_{1}, \cdots, a_{m}^{p}-a_{m}\right)$. And since $a \in \mathcal{B}$, each of the $a_{i}^{p}-a_{i}$ must be 0 . Now, $a_{i}^{p}-a_{i}$ is an element of $\mathbb{F}_{p}[X] /\left(g_{i}\right) \cong \mathbb{F}_{p^{d_{i}}}$ and therefore $a_{i}^{p}-a_{i}=0$ can happen only if $\left.a_{i} \in \mathbb{F}_{p}\right|^{1}$

And therefore, each element of the tuple will infact be an element of \mathbb{F}_{p} and therefore

$$
\mathcal{B} \cong \mathbb{F}_{p} \times \cdots \times \mathbb{F}_{p}
$$

And since \mathcal{B} is a product of m copies of $\mathbb{F}_{p}, \mathcal{B}$ is an m dimensional subspace of R over \mathbb{F}_{p}.

[^0]
1.3 Finding a Basis

A basis for R is obvious, $\left\{1, X, X^{2}, \cdots, X^{n-1}\right\}$ but how do we find a basis for \mathcal{B} ? Let us say T acts on R as

$$
T\left(X^{i}\right)=\sum_{j=0}^{n-1} \alpha_{j i} X^{j}
$$

then we can think of T as a the matrix $\left(\alpha_{j i}\right)_{i, j}$. Thus, thinking of polynomials in R as a tuple of coefficients described above, then the action of T is just left multiplication by this matrix.

Thus, the matrix for B would be $\hat{B}=\left(\alpha_{j i}\right)_{i, j}-I$. Hence the kernel of this map is just asking for all vectors v such that $\hat{B} v=0$. And therefore, a basis for \mathcal{B} can be obtained by gaussian elimination of \hat{B}.

Once we have a basis $\left\{b_{1}, b_{2}, \cdots, b_{m}\right\}$, we can pick a random element of \mathcal{B} by just picking m random elements a_{m} from \mathbb{F}_{p} and $\sum a_{i} b_{i}$ would be our random element from \mathcal{B}.

Any element a in \mathcal{B} gets mapped to $\mathbb{F}_{p} \times \cdots \times \mathbb{F}_{p}$ by the Chinese remainder theorem. And therefore, we can use the Cantor-Zassenhaus idea there: $a^{\frac{p-1}{2}}$ corresponds to a vector of just 1 s and -1 s.

> So here is the final algorithm.

```
Algorithm 1 BERLEKAMP FACTORIZATION
Input: A polynomial \(f \in \mathbb{F}_{p}[X]\) of degree \(n\)
    1: Make \(f\) square-free.
    2: Let \(R\) be the ring \(\mathbb{F}_{p}[X] /(f)\), considered as a \(n\) dimensional vector space
    over \(\mathbb{F}_{p}\).
    3: Construct the matrix of transformation \(\hat{B}\) corresponding to the map
    \(a \mapsto a^{p}-a\).
    4: Use gaussian elimination and find a basis \(\left\{b_{1}, b_{2}, \cdots, b_{m}\right\}\) for the
    berlekamp subalgebra \(\mathcal{B}\).
    Pick \(\left\{a_{1}, \cdots, a_{m-1}\right\} \in_{R} \mathbb{F}_{p}\) and let \(b=\sum a_{i} b_{i}\).
    if \(\operatorname{gcd}\left(b^{\frac{p-1}{2}}+1, f\right)\) is non-trivial then
        return \(\operatorname{gcd}\left(b^{\frac{p-1}{2}}+1, f\right)\) \{Happens with probability atleast \(\left.1-2^{m-1}\right\}\)
    end if
    Repeat from step 5.
```


[^0]: ${ }^{1}$ the elements of $\mathbb{F}_{p^{d}}$ that satisfy $X^{p}-X=0$ are precisely those elements of \mathbb{F}_{p}

