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31st August 2007

1. (10 marks) Let f(X) and g(X) be two irreducible polynomials over
F, of degree d. We know that the finite fields L = F,[X]/f(X) and
K = TF4[X]/g(X) are both isomorphic. Use factoring algorithms for
polynomials over I, to give an efficient algorithm to find the explicit
isomorphism. (i.e, choose appropriate basis for L and K and com-
pute the matrix that gives this isomorphism) Give key ideas for the
algorithm and brief but convincing argument for the correctness.

2. Let N be an integer given as a product of k distinct primes. Given a
monic (i.e leading coefficient is 1) polynomial f(X) in Z[X] of degree
d, give the best possible algorithms for teh following tasks. (the key
ideas are sufficient, not entire pseudo code)

(a) (5 marks) Check if f(X) has a root modulo N.
(b) (5 marks) If f(X) has a root modulo N, compute one such root.

Mentino waht the running time of the algorithm is (i.e say whether it
is polynomial in d and N, polynomial in d and log N, exponential in
both, randomized /deterministic)

3. An algebraically closed field is a field where every polynomial has a
root (e.g C). Say whether the following statements are true or false
(justify your answer by either giving a counter example or a short
proof). Answer with no justifications carry no marks.

(a) (5 marks) Any finite field cannot be algebraically closed. (Hint:
cardinality arguments)

(b) (5 marks) Any field of finite characteristic cannot be algebraically
closed.



Solutions

Problem 1

We know that Fy[X]/f(X) is isomorphic to Fy[X]/g(X). Suppose « is a
root of f and § a root of g, then the first field is just F,(«) and the second
field is just Fy(3). Therefore, to find an explicit isomorphism, we just need
to hunt for the § in Fy(a).

For this, look at the field F,[X]/f(X). We want the § here. Therefore,
factorize g(Y") thinking of it as a polynomial in (Fy[X]/f(X)) [Y]. Now we
know that ( is somewhere in this field. And therefore, that should isolate
as a linear factor Y — g(X) when we factorize.

Thus, we have the following isomorphism from F,[X]/g to F,[X]/f which
is just taking X to g(X).

The central idea is to take the root « from F,(«) to the corresponding
element in Fy(3). The trick is to just find the root a in Fy(3).

Problem 2

Suppose f(X) = 0 modulo N, then by the chinese remainder theorem, this
is equivalent to saying f(X) = 0 for each p;. Therefore, a root of f modulo
N is equivalent to saying you want a root of f modulo each of the p;s.

Now note that Z/p;Z is a field and we can factorize f over this field using
one of the algorithms we did in class. How will we know that f has a root
say «; in Z/p;Z? If o was a root, then (X — «) divides f(X) and therefore,
this would be one of the factors if we factorize f.

Therefore, the solution to the first subdivision (to check if there is a root
modulo N) doing distant degree factorization to get all the degree 1 factors.
If it outputs something other than 1 for each p;, then you know that there
is a linear factor modulo each p; and therefore has a solution modulo N.

The second subdivision is just a small extension: factorize them over
each p; and look for linear terms. Once we get linear terms (X — «;) for
each Z/p;Z, we have a vector (a1, as, -+ ,ax) where each «a; is a root of f
modulo p;. Just take the inverse map of the chinese remaindering, and we
get the root of f modulo N.

The first is deterministic and the second is randomized, both running in
time polynomial in log N and deg(f).



Problem 3
Subdivision 1

The statement is true. If K is a finite field, then K cannot be algebraically
closed. The proof of this fact is just the existence of irreducible polynomials.

Suppose K = F, was algebraically closed, then every polynomial f over
K has all its roots in K. Which means that for any polynomial f, since its
roots aq, g, - -+ ,aq lie in K, f should split as (X —a1)(X —ag) - (X —ayg)
in K. But the very definition of irreducible polynomials mean that they
don’t split.

Thus the existence of irreducible polynomials show that a finite field
cannot be algebraically closed.

Or for a more explicit example, consider the polynomial (X7 — X) + 1
over IF,. For ever a € I, we know that it satisfies X¢ — X = 0 and therefore
cannot be a root of the above polynomial. And therefore, this polynomials
has no roots in F,.

Subdivision 2

The earlier argument(s) don’t work when the size if the field is infinite.
Every field F' has something known as its algebraic closure. The algebraic
closure of F' is the smallest field K that contains F' and is algebraically
closed. For example, the algebraic closure of R is C. And also, note that the
algebraic closure of QQ is not C, it’s a much smaller subfield of all algebraic
numbers over Q.

Such an algebraic closure exists for every field F', and in particular for
F,. And since I, has characteristic p, so will teh algebraic closure. And
the algebraic closure is an example of a field with characteristic p that is
algebraically closed.

One can think of the algebraic closure of I, as the infinite union H

F=|JF,

d>1

!some work needs to be done before I can even write such an outrageous infinite union

without mathematical rigour, but for the moment just take it for granted that it can be
done. The proof involves a certain lemma called the Zorn’s Lemma or the axiom of choice.



