CS681 Computational Number Theory

Lecture 8: More on Finite Fields

Instructor: Piyush P Kurur Scribe: Ramprasad Saptharishi

We will be spending some time on understanding the structure of fields
of finitely many elements. In this class we shall some necessary properties
that finite fields (or any field in general) should hold.

1 Characteristic of Finite Fields

Looking at the examples of fields that we know of, we clearly see that Q
and Z/pZ are different. Apart from just the cardinality properties, Z/pZ
has this property of k£ and p — k cancelling off. Using this as a motivation,
let us define what a characteristic of a field is. First we shall state it formally
and then look at a better interpretation of it.

Definition 1. For any ring R, there exists the identity element 1. Consider the
homomorphism

¢:7Z — K

n +— n-1

where n - 1 simple means adding 1, in R, n times. And Z being a PID, the kernel
of this map will be of the form mZ. This number m is called the characteristic of
the field.

In other words, the characteristic is the smallest number m such that m
times the identity element is zero.

However, it is possible that m - 1 will never be zero. For example, take
the rings like Q, R, C, Q[z] etc. The corresponding map will hence have
a trivial kernel and that is the ideal 0Z. Hence the characteristics of these
rings is 0 and not infinity. This is just the language. Infact, we shall refer
characteristic 0 rings as rings of infinite characteristic.

Here is a trivial lemma.

Lemma 1. Let R be a ring (with identity) of characteristic m and S be a ring that
contains R. Then characteristic of S is also m.



Proof. R has characteristic m implies that ¢ : Z — R has the kernel as mZ.
The homomorphism works just on the identity element of R and hence
would be exactly the same on S (since S has to share its identity element
with R). Thus, since the homomorphism is the same, the kernel has to be
the same. O

1.1 Characteristic of Fields

Now, suppose m is the characteristic of any ring R. Then by definition the
kernel of the map ¢ is mZ. And by the isomorphism theorem, we know
that the following map is injective:

¢:7Z/mZ — R

And therefore, in a way, a copy of Z/mZ is sitting inside R. Thus, Z/mZ is
a subring of R.

Now let us look at the characteristic of fields instead of rings. Let us
take the identity element and just keep adding it. Either, for some m we
have m - 1 = 0 or it just keeps going on. If it becomes 0, we know that the
tield has characteristic m. The other case is the characteristic 0 case.

Now, can it be possible that m is composite? Suppose m = pg where
both p, ¢ < m. Since we know that m - 1 = 0, this means that (p-1)(¢- 1) =
pq - 1 = 0. And by our assumption, we know that neither p- 1 nor ¢ - 1 is
zero; we just showed the existence of zero divisors in a field! That is not
possible. Hence summarizing as a theorem:

Theorem 2. Any field F must either have O characteristic or a characteristic that
is a prime.

Let us pick any field F' whose characteristic is a prime p. We know that
if we let 1 ‘generate’ a subfield of its own by just adding itself, it would get
to Z/pZ. Thus for any field of prime characteristic, it should contain Z/pZ.
We shall refer to Z/pZ by F,,.

For a field of infinite characteristic (characteristic 0, just language), 1
would keep being added on without ever giving a 0. Thus it would gener-
ate the entire set of positive integers. And since additive inverses should
exist, the negative integers should also belong to the field. And further,
because of the multiplicative inverses, all rational numbers should exist.
Hence, every field either contains I, or Q.



Please keep in mind that finite characteristic does not mean finite cardi-
nality. As a counter example, look at the following set:

f(X)
F(X)=< "~ : f,geF,[X],g#0
) = {15 JIX]
that the set of rational functions over one variable. This field has infinite
cardinality and since it contains [F,, has characteristic p.

2 Order of Finite Fields

Now let us take any finite field K. Then this field must have characteristic
that is not zero. Why? Since if it did have characteristic zero, it would
contain Q and hence be infinite.

Since the characteristic of this field is finite, say p, it contains [F,,. Recall
that if K is a field that contains another field F' (in our case F)), then K is
an extension of F.

Thus, this tells us that any field of characteristic p is a vector space over
IF,,. Since we now have a vector space, we can talk of the dimension of this
vector space. The dimension cannot be infinite. Why? For it it was, then the
basis, which belongs to K, would be an infinite set. And this is an obvious
contradiction since we assumed that K was finite.

Thus, the dimension of K over F, is finite, say s. And since every ele-
ment of K can be written as a s-tuple of elements of IF;,, this means that the
number of elements of K is p®.

And, from our earlier theorem, we know that the characteristic of a fi-
nite field has to be a prime. Hence the order of any finite field has to be a
power of a prime.

Theorem 3. Any finite field has p°® elements where p is a prime and s a positive
integer.

The moment we make such a statement, we have two questions in
mind.

e Existence: For every prime p and positive integer s, do we have a field
of p® elements?

e Uniqueness: Can we have two different fields with p® elements?

We shall soon see that the answer to the first question is yes and the
second is no. There is exactly one field of size p°.
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2.1 Creating Extensions of I,

The general question is how to obtain extension fields of a given field. As
a motivation, let us look at R. How do we get an extension field of R? In a
sense, we need to increase our domain. Therefore, we need to find elements
that don’t belong to R. The way to do that is to look at roots of polynomials.
There is no root of the polynomial X2 + 1 in R. Hence, just add the root.
This is formally done by quotienting.

But there is a small catch before we do that. We now know that we
have the complex number i is a root of X2 + 1 but it is of course the root of
(X241)(X?1 - 3X127 + 897) as well. This is where the concept of minimal
polynomial comes in.

Definition 2. Let L be an extension of K. For any o € L, the mimimum polyno-
mial of a over K is the monic polynomial of smallest degree over K that has « as
a root.

Again, the questions of existence and uniqueness comes in. Does every
a have a minimum polynomial? The answer is no, and the example is 7
over Q. It doesn’t make sense to talk of a minimum polynomial when the
number is transcendental.

But suppose the number is not transcendental, that it is a root of some
polynomial. Then do we have a unique minimum polynomial? Yes. Since if
f and g are two polynomials of smallest degree that has « as a root, then so
does gcd(f, g) and the ged clearly has smaller degree. This then contradicts
that f and g had least degree. Thus the minimum polynomial is unique.

And by the same reason, the minimum polynomial must be irreducible.
For if f was the minimum polynomial of « and if f(X) = g(X)h(X) then «
must be a root of either g or h and their degree is strictly less than f. Thus
the minimum polynomial if indeed irreducible.

Another way is the following. We have some o € L and we want the
minimum polynomial of o. Consider the following homomorphism.

eval, : K[X] — L
fX) = fla)
The map is called the evaluation map since it just evaluates every poly-

nomial at a. The kernel of this map will be an ideal of K[X], a principle
ideal. The generator of this ideal is the minimum polynomial.



Here is a way to create extensions. Look at F,,[X] and take some irre-
ducible polynomial f of it. Then we know that F,[X]/(f) is a field since
the ideal (f) is maximal as f is irreducible. If the degree of f is d, then this
would give is a field of size p?.

We shall see this in more detail next time.
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