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Lecture 7: Towards Factorization over Finite Fields
Instructor: Piyush P Kurur Scribe: Ramprasad Saptharishi

Overview

We shall slowly move into factorization of univariate polynomials (polyno-
mials with just one variable) over finite fields. We are given a finite field K
and a polynomial over one variable X whose coefficients are from K. We
are to find the factorization of this polynomial into irreducible factors.

Before we get into this question, we need to first understand if it even
makes sense. How can we be sure that such a factorization exists? And
even if it did, how do we know if it is unique?

We shall first answer a lot of questions in the algebra related to it before
going to factorization as such.

1 Rings, Ideals, Factorization etc.

We know that integers can be uniquely factorized into product of prime
powers. However, not all rings are as well-behaved as the integers are.
We first need to ask if the algebraic structure has this property of unique
factorization. Let us look at an example where this fails.

Look at the set of integers modulo 8. This is called Z8 and we know
that this forms a ring. Suppose we look at polynomials over this ring, poly-
nomials of a single variable X whose coefficients come from Z8, does this
ring have the property of unique factorization? Here is a counter example
in Z8[X].

X2 − 1 = (X − 1)(X + 1) = (X − 3)(X + 3)

But Z8 is a bad ring, in the sense that non-zero elements can multiply to
give 0 (2×4 = 0 here). As for another example, look at the set of all number
of the form a + b

√
−5 where a, b ∈ Z. This forms a ring and over this ring

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5).

Hence it’s not always true that factorization is unique. However, for-
tunately for us, we have unique factorization over K[X] whenever K is a
field.
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Definition 1. A ring is said to be an integral domain if and only if there are no
non-trivial zero divisors. That is, if a, b ∈ R such that ab = R, then either a = 0
or b = 0.

The ring Z is an integral domain but the ring of integers modulo 6 is not
(since 2× 3 = 0 over the ring).

Inorder to define factorization, we need a notion of primes over arbi-
trary rings. Let us first look at the definition of primes over integers. Let us
first look at the wrong definition.

A number p is said to be prime if for all a that divides p, either a = 1 or
a = p.

This translates to the ring definition of a maximal ideal and not a prime
ideal.

This is the common definition in school but generalization based on this
is erraneous. Though it happens to correct over the set of integers, it is not
true in general. Here is the right definition.

Definition 2. A number p is said to be a prime if and only if for all a, b such that
p divides ab, either p divides a or p divides b.

Thus this gives the definition of prime ideals in the setting of rings.

Definition 3. An ideal a ⊆ R is said to be prime if and only if for all a, b ∈ R
such that ab ∈ a, either a ∈ a or b ∈ a.

Any element p ∈ R that generates a prime ideal is called a prime element of R.

Definition 4. An ideal a ⊆ R is said to be maximal if and only if for every ideal
a′ ⊇ a, either a′ = 1R = R or a′ = a.

This basically means that no proper ideal of R properly contains a. Note
that not all prime ideals are maximal. We were just lucky that this was true
on Z and hence both definitions of prime numbers were equivalent. This is
not true over arbitrary rings.

Definition 5. An ideal a ⊆ R is said to be a principle ideal if the ideal is generated
by a single element. That is, a = aR for some a ∈ R.

Definition 6. An integral domain R is said to be a

• principle ideal domain (PID) if every ideal in it is principle (every ideal is
generated by a single element).
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• unique factorization domain (UFD) if every element can be uniquely factor-
ized in to product of prime elements of the ring.

We already saw an example of a ring (and a domain) that was not a
UFD. Here is an example of a ring that is not a PID. Consider a field K and
look at the ring of polynomials on two variables X, Y over this field. This
is denoted by K[X, Y ].

In this field, look at the ideal generated by X and Y. That is, the set of
polynomials of the form Xf(X, Y ) + Y g(X, Y ), those polynomials that do
not have a constant term. This is clearly an ideal but this isn’t principle.

A similar example is over Z[X] and the ideal being (p, X) where p is any
prime number.

Fact 1. For any field K, K[X] is a PID.

Fact 2. Any PID is also a UFD

The two facts together tell us that we can indeed talk of factorization of
polynomials in K[X]. Another useful fact is the following, and this helps
us see that factorization makes sense even on multivariate polynomials.

Fact 3. If R is a UFD, so is R[X].

The following theorems are very useful.

Theorem 1. A ring R is a field if and only if the only ideals of R are the 0 ideal
and the whole ring R.

Proof. First we shall show that a field has no non-trivial ideals. Suppose
The field had some ideal I that contained some element x 6= 0. Since it is
a field, the inverse of x exists. Since I is an ideal and x ∈ I would mean
that xa ∈ I for all a ∈ R and in particular xx−1 = 1 ∈ I. But if 1 ∈ I , then
for every element a in the field, 1a ∈ I which would then force I to be the
entire field.

As for the other direction, suppose the ring R was not a field. We want
to show that there exists some non-trivial ideal in this ring. Since we as-
sumed that it isn’t a field, there must be some non-zero element a whose
inverse does not exist. Look at the ideal generated by it, aR. This ideal
certainly contains a and it cannot 1 since if it did, it would mean that a
is invertible. And hence this is an ideal that is non-zero and also not the
whole of R; a non-trivial ideal.
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Theorem 2. For any ring R

1. if an ideal a is prime, then R/a is an integral domain.

2. if an ideal a is maximal, then R/a is a field.

Proof. We have to show that if a is prime, then R/a is an integral domain.
Suppose not, then there exists two non-zero elements a, b such that ab = 0
in R/a. This means that a mod a 6= 0 and a mod a 6= 0 but ab mod a = 0 or
in other words ab ∈ a but neither a nor b belongs to a. This contradicts the
assumption that a and hence R has to be an integral domain.

As for the case when a is maximal, assume that R/a is not a field. Then
there exists some non-zero element that is not invertible. Look at the ideal
generated by this element. As in the earlier theorem, this is a non-trivial
ideal (neither 0 nor the entire ring). But in the map from R to R/a, ideals
of R/a corresponds to ideals in R that contain a. Since we just found a
non-trivial ideal in R/a, this would translate to a non-trivial ideal in R that
properly contains a thus contradicting the maximality of a. Thus R has to
be a field.

1.1 Some Insights

This is not completely a part of the course but it would be useful to know
this to understand factorization. In any ring, we can talk of a tower of prime
ideals. What this means is a series of the form 0 ⊆ I1 ⊆ I2 ⊆ · · · ⊆ In ⊆ R
such that each ideal Ij is a prime ideal. The number n is called the Krull
Dimension of the ring R.

The Krull Dimension is actually a local property but for it is well defined
for rings like K[X1, X2, · · · , Xn] (where K is a field) and Z[X].

If we were to look at K[X, Y ], we have the tower 0 ⊆ (X) ⊆ (X, Y ) ⊆
K[X, Y ]. The krull dimension of this ring is 2. Similarly the ring of polyno-
mials on n variables over a field K will have a krull dimension of n.

And the ring Z[X] has the tower 0 ≤ (p) ≤ (p, X) ≤ Z[X] and hence
has krull dimension 2. We shall see soon that factorization of polynomials
in Z[X] is so similar to factorization of polynomials in K[X, Y ].

We need to understand the concept of finite fields, extensions, etc before
we get into factorization. We shall first spend some time on this.
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2 Finite Fields

We shall be studying properties of fields that have finite number of ele-
ments in them. A few things to keep in mind, we shall prove them soon, is
that any finite field has its cardinality to be a power of prime. There can-
not exist a finite field whose cardinality is divisible by two distinct primes.
And infact, for any prime p and α, there is exactly one field of size pα. (and
note that this isn’t true on the infinite setting. R and C both have infinite
number of elements but are clearly different)

Definition 7. A field E is called an extension of a field K if E is a field that
contains K. This (also) is denoted by E/K.

There is a notion of a degree of a field extension but one needs to be
familiar with vector spaces to completely understand this. We shall dwell
a little on it.

2.1 Vector Spaces

Definition 8. A vector space V over a field K, with an additive structure and
multiplication by elements of K (scalars), satisfies the following conditions:

• (V,+) is an additive abelian (commutative) group (additive closure, inverse,
identity)

• For any vector v ∈ V and scalar α ∈ K, the element αv is also a vector.

• For any vectors u, v ∈ V and scalar α ∈ K, we have α(u + v) = αu + αv.

• For any vector u and scalars α, β ∈ K, we have (α + β)u = αu + βu and
α(βu) = (αβ)u.

Let us look at a few examples to get ourself familiar with this notion. C
forms a vector space over R. Clearly the above properties are satisfied.

Another example is the plane R2, set of point (x, y) where both coor-
dinates are from the reals. Scalar multiplication is defined as α(x, y) =
(αx, αy).

Another example is the ring of polynomials K[X] over K where K is
a field. Scalar multiplication is just multiplying every coefficient by the
scalar.

Next we need a notion of linear independance.
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Definition 9. A set {v1, v2, · · · , vk} is said to be linearly independant if the only
way

c1v1 + c2v2 + · · ·+ ckvk = 0

can happen for scalars ci is when all the ci’s are zero themselves. That is, no non-
trival linearl combination of these vectors is zero.

For example, let us look at each of our examples stated and find a lin-
early independant set. In C over R, look at the set {3, 2 + i} . Suppose
c1(3) + c2(2 + i) = 0, then (3c1 + 2c2) + c2i = 0 and this is possible only
when both c1 and c2 are zero. Hence the set is linearly independant.

And again, look at the set {(1, 0), (0, 1)} in R2. This again is linearly
independant since the only way c1(1, 0)+c2(0, 1) = (c1, c2) = (0, 0) is when
both c1 and c2 are zero.

In the third example, look at the set
{
1, X,X2

}
. c1 + c2X + c3X

2 can be
the zero polynomial if and only if all the ci’s are zero.

This is the notion of linear independance. With a little bit of thought,
any vector that can be represented as a linear sum from such a set is infact
uniquely represented so.

For example, let us assume that {v1, v2, · · · , vk} was a linearly indepen-
dant set. Let v = c1v1 + c2v2 + · · ·+ ckvk. Suppose this could be represented
as a linear sum in a different way, we shall obtain a contradiction.

v = c1v1 + c2v2 + · · ·+ ckvk

= c′1v1 + c′2v2 + · · ·+ c′kvk

=⇒ 0 = (c1 − c′1)v1 + · · ·+ (ck − c′k)vk

And if the two representations were indeed different, there is atleast one i
such that ci 6= c′i =⇒ (ci − c′i) 6= 0 but this would give a non-trivial linaer
combination of the vi’s to become zero. This contradicts our assumption
that they were linearly independant. Hence such linear representations are
unique.

An example is that every point (x, y) can be represented uniquely as a
linear sum of (1, 0) and (0, 1) (it is just x(1, 0) + y(0, 1)). The students are
encouraged to also check it for C with our linearly independant set being
{3, 2 + i} .

Let us look at our example of K[X]. We saw that
{
1, X,X2

}
was a

linearly independant subset but the term X5 can never be written as a linear
sum of 1, X,X2. Thus, the set

{
1, X,X2

}
doesn’t cover or span X5. Since X5
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is not spanned by the set
{
1, X,X2

}
, we can add it to the set and it would

still be linearly independant.
We can keep adding elements to our linearly independant set in this

way by picking up some vector that is not spanned by it and adding it.
This process can go on indefinitely as well. For the moment let us look at
the case where this process stops after finite number of steps. Now we have
a set that is linearly independant and it also spans the entire space.

An example would be to look at C over R. Start with 3. The linear span
of this is just elements of the form 3c where c is a real number. Hence it does
not span elements like 2+ i. Hence we can add 2+ i to this set and still have
a linearly independant set. Now this set {3, 2 + i} is linearly independant
and also spans the entire space. Any complex number a + ib is equal to
b(2 + i) + a−2b

3 3.
Such a set that spans the space and also is linearly independant is called

a basis of the vector space V over K. And every vector in the vector space
can be expressed as a linear combination of the basis elements, and uniquely
so.

The number of basis elements is called the dimension of the vector
space. But wait, how do we know that every basis will have the same num-
ber of elements? Is it possible that I can find three complex numbers that
are linearly independant over R and span C? The answer is no. It is not so
hard to see that all basis must have the same number of elements. Thus the
dimension of the vector space is independant of the choice of basis is hence
well-defined.

The vector space K[X] over K has infinite dimension and its basis could
be chosen as

{
1, X,X2, · · ·

}
. And a polynomial, say 80 + 2X + 0X3 + 3X4

can be represented by the tuple (80, 2, 0, 3, 0, 0, 0, · · · ) and every polynomial
has a corresponding tuple.

Suppose we choose {1, i} as a basis for C over R, then every element
a + bi can be expressed as a(1) + b(i). Now we can represent the number
a + bi as the tuple (a, b).

So essentially, a vector space V over K is one where each element in it
can be represented as a tuple, whose entries come from K. The arity of the
tuple is the dimension of the vector space.

Thus, in the finite setting, if V is a finite dimensional (say d-dimensional)
vector space over a finite field K, then the number of elements of V is |K|d.
This is clear since it is just the number of d-tuples whose entries come from
K.
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2.2 Field Extensions

Let E/K be a field extension. This just means that both E and K are fields
and that E contains K.

Now observe that for all α, β ∈ K and u, v ∈ E, α(u+ v) = αu+αv and
(α + β)u = αu + βu etc. Thus all the conditions to call this a vector space
hold. Thus, we can think of E as a vector space over K.

An example of this we have seen already. C is a field that contains R.
And C actually is a vector space over R. Another example would be to look
at

Q[
√

2] =
{

a + b
√

2 : a, b ∈ Q
}

It is easy to check that this is a field and this clearly contains Q. And this
also naturally forms a vector space over Q.

Definition 10. The dimension of E as a vector space over K is called the degree
of the extension E/K. This is denoted by [E : K].

C over R is a 2-dimensional extension. R over Q is an infinite dimen-
sional extension. Q[

√
2] over Q is a 2 dimensional extension.

Adjoining Elements: An informal discussion

The field C is just taking R and adding the element i to it. Once we add i to
R, we just take all possible linear combinations, products, inverses to make
it a field. We let the set R ∪ i grow into the smallest field containing R and
i. This is formally referred to as R(i), the field got by adjoining i to R.

It is easy to check that Q(
√

2) is infact Q[
√

2] =
{
a + b

√
2 : a, b ∈ Q

}
.

And similarly one can also check that Q( 3
√

2) =
{

a + b 3
√

2 + c
3
√

22 : a, b, c ∈ Q
}

.

From this is it easily seen that Q( 3
√

2) is a degree 3 extension over Q.
Given such an adjointed field extension, is it easy to find out the degree?

The answer is yes. All we need to do is choose an easy basis for the vector
space. For example, let us look again at Q( 3

√
2). Let α = 3

√
2. We want the

degree of the extension Q(α)/Q. Now consider the set
{
1, α, α2, α3, · · · ...

}
.

When does this fail to be a linearly independant subset? We know that
α3−2 = 0 and hence it loses its linear independance after α3. This is because
α was a root of X3 − 2, a degree 3 polynomial over the Q.

Instead if we were to look any α, any equation of linear dependance
would look like a0 + a1α + a2α

2 + · · · akα
k = 0 and this would just mean

that α is a root of the polynomial a0 + a1X + a2X
2 + · · · akX

k = 0. Thus,
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the degree of such an extension Q(α)/Q is just the degree of the smallest
degree polynomial of which α is a root.

C = R(i) and i has X2 + 1 as its minimum polynomial and thus [C :
R] = 2. If we were to look at Q(π), π is not a root of any polynomial with
coefficients in Q (this is also referred as ’π is transcendental’). Thus the set{
1, π, π2, · · ·

}
would be an infinite linearly independant subset. And hence

the extension Q(π) over Q is of infinite degree.

We shall look at more properties of finite fields and extensions next
time.
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