
CS681: Computational Number Theory

Midsem 1

31st August 2007

1. (10 marks) Let f(X) and g(X) be two irreducible polynomials over
Fq of degree d. We know that the finite fields L = Fq[X]/f(X) and
K = Fq[X]/g(X) are both isomorphic. Use factoring algorithms for
polynomials over Fq to give an efficient algorithm to find the explicit
isomorphism. (i.e, choose appropriate basis for L and K and com-
pute the matrix that gives this isomorphism) Give key ideas for the
algorithm and brief but convincing argument for the correctness.

2. Let N be an integer given as a product of k distinct primes. Given a
monic (i.e leading coefficient is 1) polynomial f(X) in Z[X] of degree
d, give the best possible algorithms for teh following tasks. (the key
ideas are sufficient, not entire pseudo code)

(a) (5 marks) Check if f(X) has a root modulo N.

(b) (5 marks) If f(X) has a root modulo N , compute one such root.

Mentino waht the running time of the algorithm is (i.e say whether it
is polynomial in d and N , polynomial in d and log N , exponential in
both, randomized/deterministic)

3. An algebraically closed field is a field where every polynomial has a
root (e.g C). Say whether the following statements are true or false
(justify your answer by either giving a counter example or a short
proof). Answer with no justifications carry no marks.

(a) (5 marks) Any finite field cannot be algebraically closed. (Hint:
cardinality arguments)

(b) (5 marks) Any field of finite characteristic cannot be algebraically
closed.
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Solutions

Problem 1

We know that Fq[X]/f(X) is isomorphic to Fq[X]/g(X). Suppose α is a
root of f and β a root of g, then the first field is just Fq(α) and the second
field is just Fq(β). Therefore, to find an explicit isomorphism, we just need
to hunt for the β in Fq(α).

For this, look at the field Fq[X]/f(X). We want the β here. Therefore,
factorize g(Y ) thinking of it as a polynomial in (Fq[X]/f(X)) [Y ]. Now we
know that β is somewhere in this field. And therefore, that should isolate
as a linear factor Y − ĝ(X) when we factorize.

Thus, we have the following isomorphism from Fq[X]/g to Fq[X]/f which
is just taking X to ĝ(X).

The central idea is to take the root α from Fq(α) to the corresponding
element in Fq(β). The trick is to just find the root α in Fq(β).

Problem 2

Suppose f(X) = 0 modulo N , then by the chinese remainder theorem, this
is equivalent to saying f(X) = 0 for each pi. Therefore, a root of f modulo
N is equivalent to saying you want a root of f modulo each of the pis.

Now note that Z/piZ is a field and we can factorize f over this field using
one of the algorithms we did in class. How will we know that f has a root
say αi in Z/piZ? If α was a root, then (X − α) divides f(X) and therefore,
this would be one of the factors if we factorize f.

Therefore, the solution to the first subdivision (to check if there is a root
modulo N) doing distant degree factorization to get all the degree 1 factors.
If it outputs something other than 1 for each pi, then you know that there
is a linear factor modulo each pi and therefore has a solution modulo N.

The second subdivision is just a small extension: factorize them over
each pi and look for linear terms. Once we get linear terms (X − αi) for
each Z/piZ, we have a vector (α1, α2, · · · , αk) where each αi is a root of f
modulo pi. Just take the inverse map of the chinese remaindering, and we
get the root of f modulo N.

The first is deterministic and the second is randomized, both running in
time polynomial in log N and deg(f).
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Problem 3

Subdivision 1

The statement is true. If K is a finite field, then K cannot be algebraically
closed. The proof of this fact is just the existence of irreducible polynomials.

Suppose K = Fq was algebraically closed, then every polynomial f over
K has all its roots in K. Which means that for any polynomial f , since its
roots α1, α2, · · · , αd lie in K, f should split as (X−α1)(X−α2) · · · (X−αd)
in K. But the very definition of irreducible polynomials mean that they
don’t split.

Thus the existence of irreducible polynomials show that a finite field
cannot be algebraically closed.

Or for a more explicit example, consider the polynomial (Xq − X) + 1
over Fq. For ever a ∈ Fq, we know that it satisfies Xq −X = 0 and therefore
cannot be a root of the above polynomial. And therefore, this polynomials
has no roots in Fq.

Subdivision 2

The earlier argument(s) don’t work when the size if the field is infinite.
Every field F has something known as its algebraic closure. The algebraic
closure of F is the smallest field K that contains F and is algebraically
closed. For example, the algebraic closure of R is C. And also, note that the
algebraic closure of Q is not C, it’s a much smaller subfield of all algebraic
numbers over Q.

Such an algebraic closure exists for every field F , and in particular for
Fp. And since Fp has characteristic p, so will teh algebraic closure. And
the algebraic closure is an example of a field with characteristic p that is
algebraically closed.

One can think of the algebraic closure of Fp as the infinite union 1.

F =
⋃
d≥1

Fpd

1some work needs to be done before I can even write such an outrageous infinite union
without mathematical rigour, but for the moment just take it for granted that it can be
done. The proof involves a certain lemma called the Zorn’s Lemma or the axiom of choice.
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