Topics in Topology (Homework 6) February 16, 2015

- Due date March 2, 2015.
- 1. Let π denote the finite group of order 2, denote by \mathbb{Z}_+ the trivial π -module and by \mathbb{Z}_- the non-trivial π -module (i.e., the generator acts by multiplication by -1). Suppose A is a finitely generated left π -module which is finitely generated and torsion free as an abelian group. Then prove that A is direct sum of modules of the form $\mathbb{Z}_+, \mathbb{Z}_-$ and $\mathbb{Z}[\pi]$. [10 points]
- 2. Compute the abelian group $\mathbb{Z}_+ \otimes_{\mathbb{Z}/2} \mathbb{Z}_-$. [10 points]
- 3. Let X be a connected space with the fundamental group π and X' be a cover corresponding to the subgroup π' of π . Then prove that

$$C_n(X') \cong C_n(X) \otimes_{\pi} \mathbb{Z}[\pi/\pi']$$

as abelian groups, here \widetilde{X} is the universal cover. Make sure that you justify every argument used to prove this. [10 points]