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Abstract

Consider n-robots moving on a terrain modelled by a topological space X. The robots are modelled

as points in X. It is natural to assume that the robots move continuously and without collisions. A

configuration of the robots can be thought of as an element of Xn, no two entries of which are equal.

The set of all the configurations is called the configuration space. Therefore, asking whether the robots

can move from one configuration to the other is equivalent to asking if there is a path between the

corresponding elements of the configuration space. This scenario occurs frequently in industries which

implement automated guided vehicles (AGVs) which move on the factory floor and carry load from one

point to the other. AGVs which can move freely in any direction of the two dimensional floor are difficult

to build and maintain. For this reason, many industries make use of ‘line-following’ AGVs which are

constrained to move on a network of guidepath wires marked on the floor. Thus we can think of the

AGVs as robots moving on a graph. Understanding the topology of the configuration spaces of graphs

is therefore important for the motion-planning of the AGVs. The main aim of the thesis is to study the

homotopy type of the configuration spaces of points on a graph.

One way to compute the homotopy type of a space is by constructing a finite cellular model for the

space. A classical theorem states that the geometric realization of the face poset of a regular CW complex

X is homeomorphic to X. Thus if one can impart a regular CW complex structure on a space then the

topology of the space can be combinatorially captured. Since the configuration spaces of n points on a

Hausdorff space is not compact whenever n > 1, this technique cannot be used to study configuration

spaces of graphs because a finite CW complex structure cannot be given to such spaces.

Recently, by relaxing the definition of a CW complex, Dai Tamaki has come with the concept of

totally normal cellular stratified spaces and proved an analogous result which combinatorially captures

the homotopy type of a possibly non-compact space X. In this thesis we will discuss the main theorem

of Tamaki and see the applications of his theorem in finding the homotopy type of configuration spaces

of points of graphs.
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Introduction

In many industrial settings, the following situation arises. There are a number of automated guided

vehicles (AGVs) moving on the factory floor which carry load from one point to the other. AGVs which

enjoy two degrees of freedom are challenging to manufacture and are costly to build and maintain. Many

industries therefore invest in AGVs which are constrained to move on a network of guidepath wires

etched on the factory floor or hanging from the ceiling. An attempt to describe the above situation

mathematically naturally leads to the notion of configuration space of points on a topological space. Each

AGV can be though of as a point moving on a topological space which models the space accessible to

the robots. The motion of n AGVs on X can be thought of as a path in Xn. Since we do not want the

AGVs to collide at any point of time, we cannot let a path in Xn pass through a point in which two

coordinates are equal. The collection of all the forbidden points in Xn is termed as the n-diagonal of X

and the collection of all the accessible points is called the configuration space of n points on X.

As noted by R. Ghrist in [5], the problem of motion planning AGVs having a full two degree of

freedom on a factory floor is a local problem, for two AGVs may avoid collision at the last moment. On

the other hand, the situation when the AGVs are constrained to move on a set of guidepath wires calls for

a global analysis. Therefore, using topological tools in order to study the configuration spaces of points

on a graph is useful in motion planning such AGVs. We refer the interested reader to [5] for a survey of

results concerning configuration spaces of trees and graphs in general. Many results about braid groups

of trees can be found in [2] and in [8]. Investigation on general graphs have been done in [1].

In [3], Tamaki et al. have come up with a cellular model which combinatorially describes the homotopy

type of configuration spaces of graphs. The authors start by first defining the concept of a cellular stratified

space, which roughly is a CW complex in which we are allowed to have non-closed cells to act as domains

of characteristic maps. By a non-closed cell we mean a subset of a closed unit disk in some Euclidean

space which contains the open n-ball. Thus a non-closed cell is a closed unit disk with some parts of its

boundary missing. Then, the authors define the notion of total normality for a cellular stratified space,

by adding some conditions in the definition of the latter.

A classical precursor of the main theorem in [3] is the following. The geometric realization of the face

poset of a regular CW complex X is homeomorphic to X. This result is not true for non regular CW

complexes. To see this, consider the minimal CW complex structure on S1 which has a single 0-cell and

a single 1-cell. The face poset is then just a total order on two elements and therefore the geometric

realization is homeomorphic to the closed interval. The homotopy type of the geometric realization is

therefore not the same as that of S1. The reason for this is that the face poset fails to capture how many

ways does the 0-cell sit inside the 1-cell. Roughly speaking, since the characteristic map of the 1-cell
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identifies the two endpoints of the closed interval, there are two ways in which the 0 cell can sit inside the

1-cell. This leads to the notion of a face category, which is a generalization of the face poset. What the

authors have shown in [3] is that the geometric realization of the face category of a totally normal cellular

stratified space embeds in X as a strong deformation retract, and therefore has the same homotopy type

as that of X. The authors then show that the configuration space of points on a graph always admits a

totally normal cellular stratified structure, making their technique ideal for dealing with graphs.

Chapter-wise Organization

The thesis is divided into four chapters.

Chapter 1. In this chapter we discuss some of the background material required for the remainder of

the thesis. In section 1.1 we define posets, poset maps, products of posets, and the Alexandroff topology.

In Section 1.2 we define abstract and geometric simplicial complexes, geometric realization of an abstract

simplicial complex, and cones. Section 1.3 is dedicated to regular CW complexes. The main item here is

the classical theorem in combinatorial algebraic topology which states that the geometric realization of

the face poset of a regular CW complex X is homeomorphic to X. Lastly, in Section 1.4 we discuss face

categories and their geometric realizations.

Chapter 2. We define the main object of interest, namely the configuration space of points on a

topological space, especially graphs. In Section 2.2 we give some examples of configuration spaces on

graphs.

Chapter 3. This chapter discusses the central concept of totally normal cellular stratified spaces. In

Section 3.1, we define the notion of a stratification on a topological space and give several examples of

stratified spaces, including stratification of Euclidean spaces via hyperplane arrangements. Section 3.3

discusses the important concept of cellular stratified spaces which allow us to see non-compact spaces as

finite cell complexes. The main concept of totally normal cellular stratified spaces is discussed in Section

3.4. The chapter ends with Section 3.5 in which we formally define face categories and state the main

theorem of [3].

Chapter 4 In this chapter we discuss two applications of the main theorem on configuration spaces of

graphs.

iv



Chapter 1

Preliminaries

1.1 Posets

Definition 1.1.1. A poset is a set P along with a reflexive, transitive, and anti-symmetric relation ‘≤’.

In other words, we have

1. Reflexivity. x ≤ x for all x ∈ P .

2. Anti-Symmetry. For x, y ∈ P with x 6= y, we do not have both x ≤ y and y ≤ x.

3. Tansitivity. For x, y, z ∈ P , if x ≤ y and y ≤ z then x ≤ z.
q

Definition 1.1.2. Let P be a poset. Declare a subset D of P closed if and only if D satisfies the

following condition

λ, µ ∈ Λ, λ ∈ D
µ ≤ λ

}
⇒ µ ∈ D

It can be easily checked that this declaration gives a topology on P . This topology is referred to as the

Alexandroff topology on P . q

Definition 1.1.3. Let P and Q be two posets. We say that f : P → Q is a poset map if whenever

x ≤ y in P , we have f(x) ≤ f(y) in Q. Note that a poset map f : P → Q is continuous when P and Q

are given the Alexandroff topology. q

Taking posets as objects and posets maps as morphisms, we get a category called the category of

posets.

Definition 1.1.4. Let P and Q be two posets. For two elements (a, b) and (x, y) of P × Q, write

(a, b) ≤ (x, y) if and only if a ≤ x in P and b ≤ y in Q. This gives a poset structure to P ×Q. Under this

poset structure, we call P ×Q as the product of P and Q. q

It can be easily checked the product of two posets P and Q is the product in the category of posets.1

Also, the Alexandroff topology on P × Q under the product poset structure is same as the product

topology on P ×Q when P and Q are given the Alexandroff topology.

1 More precisely, if P and Q are two posets, then (P ×Q, πP : P ×Q→ P, πQ : P ×Q→ Q) is a product of P and Q in
the category of posets. Here πP : P ×Q→ P is the map which takes (x, y) to x for all x ∈ P and y ∈ Q. Similarly for πQ.
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1.2 Simplicial Complexes

Definition 1.2.1. An abstract simplicial complex is a pair (V,S), where V is a finite set and S is

a collection of subsets of V such that whenever a subset A of V is in S, then all subsets of A are also in

S. The elements of V are called vertices and the elements of S are called simplices. q

Example 1.2.2. Any simple graph can be thought of as an abstract simplicial complex. If (V, E) is a

simple graph, then we define a set S which contains E as well the end points of all the edges in E along

with the empty set. This set S gives an abstract simplicial complex structure to the set of all the vertices

V .

Example 1.2.3. Let P be a poset. Let A = (P,S) be an abstract simplicial complex defined as follows:

The vertex set of A is P , and a subset S of P is a simplex in A if and only if S is a chain in P . We call

A the order complex of P .

Definition 1.2.4. A geometric k-simplex in Rn is a subset K of Rn such that there exist k+1 affinely

independent points in Rn whose convex hull is K. q

Theorem 1.2.5. Let K be a geometric n-simplex in Rn+1. Let v1, . . . ,vn+1 and v′1, . . . ,v
′
n+1 be two

sets of n+ 1 points in Rn+1 such that

conv(v1, . . . ,vn+1) = conv(v′1, . . . ,v
′
n+1) = K

where ‘conv’ stands for ‘convex hull’. Then {v1, . . . ,vn+1} = {v′1, . . . ,v′n+1}.
Proof. Since K is affinely isomorphic to the standard n-simplex ∆n in Rn+1, we may assume, without

loss of generality, that K = ∆n. It is clear that any vertex set of ∆n has size exactly n + 1. We prove

the theorem by induction on n. The result clearly holds for n = 1, 2. Let n > 2 and assume that the

theorem is true for all smaller values. Clearly, E = {e1, . . . , en+1} is a vertex set of ∆n, where ei is the

i-th basis vector in Rn+1. Suppose V = {v1, . . . ,vn+1} is another vertex set of ∆n. Write ∆n
k to denote

conv(E \ {ek}) and let Vk be the set of all the members of V which lie in ∆n
k .

We claim that conv(Vk) = ∆n
k . It is obvious that conv(Vk) ⊆ ∆n

k simply because the latter is a convex

set. For the reverse containment, pick any point p ∈ ∆n
k . Since conv(V ) = ∆n ⊇ ∆n

k , we have

p = a1v1 + · · ·+ an+1vn+1 (1)

for some a1, . . . , an+1 ≥ 0 with a1 + · · ·+ an+1 = 1. Let πk : Rn+1 → R be the k-th coordinate projection

map. Noting that πk(∆
n
k) = {0}, we have from (1) that

0 =
∑

i: vi /∈Vk

aiπk(vi)

Again, note that each πk(vi) above is strictly greater than 0. This forces ai = 0 for each i satisfying

vi /∈ Vk, whence from (1) it follows that p ∈ conv(Vk). Now since ∆n
k can be thought of as ∆n−1, by

induction, and by possibly renumbering the vi’s, we have Vk = E \ {vk}. �
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The above theorem leads to the following definition.

Definition 1.2.6. Let K be a geometric k-simplex in Rn. The vertex set of K is the set of k+1 points

in Rn whose convex hull is K. A face of K is the convex hull of a subset of the vertex set of K. q

Definition 1.2.7. Let A1 = (V1,S1) and A2 = (V2,S2) be abstract simplicial complexes. A map

f : V1 → V2 is said to be a simplicial map if f(S1) ∈ S2 for all S1 ∈ S1, that is, if f maps simplices

to simplices. We say that f is an isomorphism if f is a bijective simplicial map whose inverse is also

simplicial. q

Definition 1.2.8. A geometric simplicial complex in Rn is a collection K of geometric simplices in

Rn such that

1. If a geomeFtric simplex K is in K, then all faces of K are also in K.

2. If K and T are two geometric simplices in K which share a point in common, then K ∩ T is a

common face of both K and T .
q

Given a geometric simplicial complex K, we can construct an abstract simplicial complex A = (V,S)

in the following way. For each member K of K, let SK denote the set of all the vertices of K. Let

V =
⋃
K∈K SK and S = {SK}K∈K ∪ {∅}. It can be easily seen that this indeed defines an abstract

simplicial complex A. We refer to A as the abstract simplicial complex underlying K.

Definition 1.2.9. Let A be an abstract simplicial complex. A geometric realization of A is a

geometric simplicial complex whose underlying abstract simplicial complex is isomorphic to A. We denote

a geometric realization of A by |A|. q

Every abstract simplicial complex A = (V,S) admits a geometric realization. Let n = |V | − 1 and

identify the points in V to the vertex set of a geometric n-simplex ∆. Then for each simplex S in

A we define a face FS of ∆ as the convex hull of the vertices of ∆ corresponding to the points in S.

The collection K = {FS}S∈S gives a geometric simplicial complex whose underlying abstract simplicial

complex is isomorphic to A.

Definition 1.2.10. Let A = (V,S) be an abstract simplicial complex and ‘x’ be a formal symbol. We

define an abstract simplicial complex x ∗ A, whose vertex set is V ∪ {x}, and whose simplices are, in

addition to all the simplices in S, all sets of the form {x} ∪ S where S ∈ S. One can check that x ∗ A is

indeed an abstract simplicial complex and is called the cone on A. q

Recall that given a topological space X, we define the (topological) cone on X as the space X ×
I/X ×{0} and denote it by CX. It is straightforward to see that the geometric realization of the cone on

an abstract simplicial complex A is homeomorphic to the topological cone on the geometric realization of

A.

1.3 Regular CW Complexes

We closely follow the material in Section 5.3 of [4].
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Definition 1.3.1. A CW complex structure on a topological space X is said to be regular if each cell

in X admits a characteristic map which is a homeomorphism. q

Definition 1.3.2. Given a subset S of a CW complex X, we define the carrier of S as the intersection

of all the subcomplexes of X which contain S. q

Since an arbitrary intersection of subcomplexes is again a subcomplex, the carrier of a subset S of a

CW complex X is the smallest subcomplex of X which contains S.

Theorem 1.3.3 (Borsuk-Ulam Theorem). Let f : Sn → Rn be a continuous map. Then there exists a

point x ∈ Sn such that f(x) = f(−x).

Proof. See Corollary 2B.7 in [6]. �

Corollary 1.3.4. There is no embedding of Sn in Rn.

Proof. By the Borsuk-Ulam theorem, any continuous map Sn → Rn admits a pair of antipodal points

in Sn which have the same image. Thus there does not exist an injective continuous map Sn → Rn,

proving the theorem. �

Theorem 1.3.5 (Invariance of Domain). Let f : U → Rn be an injective continuous map from an open

subset U of Rn into Rn. Then f(U) is open in Rn and f maps U homeomorphically onto f(U).

Proof. See Theorem 2B.3 in [6]. �

Definition 1.3.6. Let eα and eβ be cells in a CW complex. We say that eα is a face of eβ if eα ⊆ ēβ. q

Theorem 1.3.7. Let en−1
α and enβ be (n−1) and n-cells respectively in a regular CW complex. Assume

that en−1
α ∩ ∂enβ 6= ∅. Then en−1

α ⊆ ∂enβ. In other words, en−1
α is a face of enβ.

Proof. Since ∂enβ ⊆ Xn−1 and en−1
α is open in Xn−1, we have en−1

α ∩ ∂enβ is open in ∂enβ. Note that

en−1
α ∩ ∂enβ 6= ∂enβ. For otherwise we would have an embedding of Sn−1 ∼= ∂enβ into Rn−1 ∼= en−1

α , contrary

to Theorem 1.3.4. This helps us invoke Theorem 1.3.5 to conclude that en−1
α ∩ ∂enβ is open in en−1

α . But

since ∂enβ is compact, we also know that ∂enβ ∩ en−1
α is closed in en−1

α . Therefore if en−1
α ∩ ∂enβ 6= ∅, the

connectedness of en−1
α forces en−1

α ⊆ ∂enβ. �

Theorem 1.3.8. Let e be a cell in a regular CW complex X. Then the carrier of a cell e in X is the

closure of e.

Proof. We prove by induction on the dimension of e. The base case is dim e = 0, in which case the

proof is trivial. Let n > 0 and inductively assume that the theorem is true whenever dim e < n. Let en

be an n cell in a regular CW complex X. We need to show that C(en) = ēn. Since X is a regular CW

complex, we can choose an attaching map ϕ : Sn−1 → Xn−1 for en such that ϕ is an embedding. Let

en−1
1 , . . . , en−1

k be all the (n−1)-cells in X which intersect ∂en and define F =
⋃k
i=1 ē

n−1
i . Since each ēn−1

i

is contained in ∂en, we have F ⊆ ∂en.

We claim that F = ∂en. Suppose not. Then O := ∂en−F is open in ∂en and is nonempty. Therefore

ϕ : ϕ−1(O) → Xn−1 is an embedding of a nonempty open subset of Sn−1 into Xn−1, contradicting

Theorem 1.3.5. �
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Corollary 1.3.9. Let X be a regular CW complex and enβ be an n-cell in X. If ekα ∩ ∂enβ 6= ∅ for some

k-cell ekα in X, where k < n, then ekα ⊆ ∂enβ. In other words, ekα is a face of enβ.

Definition 1.3.10. Let X be a regular CW complex. We define a poset structure on the set of all the

cells in X by writing

eα ≤ eβ

if and only if two cells eα and eβ in X satisfy eα ∩ ēβ 6= ∅. This poset is called the face poset of X and

is written as FP(X). q

Corollary 1.3.9 implies that the above definition makes sense, that is, writing eα ≤ eβ if and only if

eα intersects the boundary of eβ actually gives a poset structure to the set of all the cells.

Definition 1.3.11. Let X be a regular CW complex. The order complex of the face poset of X is called

the barycentric subdivision of X and is written as sd(X). q

Definition 1.3.12. Given a convex subset C of Rn, we define the relative interior of C as the

topological interior of C in the affine subspace spanned by C. We denote the relative interior of C as

RelInt(C). q

Theorem 1.3.13. Let X be a finite regular CW complex. Then the geometric realization of the

barycentric subdivision of X is homeomorphic to X. In fact there is a homeomorphism h : | sd(X)| → X

such that for each k-simplex {e0, . . . , ek} in sd(X) with e0 < · · · < en, we have h(RelInt(|{e0, . . . , ek}|)) ⊆
ek.

Proof. We prove by induction on the dimension of X, the base case being dimX = 0, in which case

the theorem clearly holds. Suppose n > 0 and we have a homeomorphism hn−1 : | sd(Xn−1)| → Xn−1

satisfying the property in the theorem, where Xk denotes the k-skeleton of X. We will extend this map

to Xn.

Note that, by the property in the theorem, for each n-cell e in X we have | sd(∂e)| is mapped homeo-

morphically onto ∂e by hn−1. Therefore, there is a homeomorphism cone(| sd(∂e)|) → cone(∂e) induced

by the restriction of hn−1 on | sd(∂e)|. But cone(sd(∂e)) is homeomorphic to |e ∗ sd(∂e)|. Further, since

∂e is homeomorphic to Sn−1, cone(∂e) is homeomorphic to Dn, and hence to ē too. So we get an home-

omorphism |e ∗ sd(∂e)| → ē which extends the restriction of hn−1 on sd(∂e). Doing this for all the n-cells

in X, we get a map hn : | sdXn| → Xn which extends hn−1 and satisfies the property in the statement

of the theorem. The only thing left to check is that hn is continuous, but that is obvious by using the

pasting lemma (See Theorem 18.3 in [7]). �

1.4 Acyclic Categories

Definition 1.4.1. A category C is said to be an acyclic category if

1. For all objects A in C, we have End(A) = {idA}, and

2. For any two distinct objects A and B in C, we have either Mor(A,B) is empty or Mor(B,A) is

empty. q
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Every poset can be naturally thought of as an acyclic category. If P is a poset, then we get a category

C whose objects are all the elements of P , and for two objects x and y in Ob(C), we have a morphism

from x to y if and only if x ≤ y.

Definition 1.4.2. Given a category C and n ≥ 1. An n-chain in C is an n-tuple (un, . . . , u1) of

morphisms u1, . . . , un in C such that for each 1 ≤ i < n the composition ui+1 ◦ ui makes sense. A

non-degenerate n-chain is an n-chain having no entry as the identity morphism. Also, a 0-chain in C

is same as an object in C. We denote the set of all the n-chains in C by Nn(C) and the set of all the

non-degenerate n-chain in C by N̄n(C). q

Definition 1.4.3. Let C be a category and n > 1. For each 0 ≤ i ≤ n we define a map di : Nn(C) →
Nn−1(C) as

di(un, . . . , u1) =


(un, . . . , u2) if i = 0

(un, . . . , ui+1 ◦ ui, . . . , u1) if 1 ≤ i ≤ n1

(un−1, . . . , u1) if i = n

Also, define maps d0, d1 : N1(C)→ N0(C) by declaring, for each morphism u in C, d0(u) as the source of

the morphism u and d1(u) as the target of the morphism u. The maps di defined in this way are called

the face operators. q

Note that if C is an acyclic category, then we may restrict the face operators to get maps di : N̄n(C)→
N̄n−1(C).

Definition 1.4.4 (Lemma 2.10 in [3]). Let C be a finite acyclic category. We define the geometric

realization of C as ( ∞⊔
n=0

N̄n(C)×∆n

)
/ ∼

where ∼ is an equivalence relation on
⊔∞
n=0 N̄n(C)×∆n defined by declaring

(di(un, . . . , u1), (t0, . . . , tn−1)) ∼ ((un, . . . , u1), (t0, . . . , ti−1, 0, ti, . . . , tn−1))

Here ∆n is the standard n-simplex in Rn+1. q

6



Chapter 2

Configuration Spaces of Points

2.1 Motivation

An automated guided vehicle (AGV) is a robot which can move on the floor and carry load from one

point to other. Some AGVs are designed to move freely in any direction of the two dimensional floor.

But such AGVs are costly to build and maintain. Therefore, many industries use ‘line following’ AGVs

which are constrained to move on a network of guidepath wires etched on the factory floor or hanging

from the ceiling.

Consider n distinct robots moving on a terrain modelled by a topological space X such that the robots

move continuously and no two robots collide. The motion of n robots on X can be equivalently thought

of as the motion of a single point on Xn. The i-th entry at any point of time gives the position of the i-th

robot. Since we do not want the robots to collide, a particular subset of Xn is forbidden. This forbidden

subset, called the n-diagonal of X, is the set of all the points in Xn which have at least two distinct

entries equal. The complement of the n-diagonal is called the configuration space of n points on X. This

leads to the following definition.

Definition 2.1.1. Let X be a topological space. The n-diagonal of X is defined as

Diagn(X) = {(x1, . . . , xn) : xi = xj for some i 6= j}

The configuration space of n points on X is defined as

Confn(X) = Xn −Diagn(X)
q

A network of guidepath wires on a factory floor can be modelled by a graph. Therefore we are mainly

interested in the case when X is a graph.

2.2 Examples

Example 2.2.1. Let X be the closed interval I = [0, 1]. Then Conf2(X) can be pictured as follows:

7



Figure 2.1: Conf2(I)

Example 2.2.2. Let X = S1. The configuration space of two points on X is a cylinder. To see this,

first think of the torus S1 × S1 as formed by identifying opposite edges of a rectangle. Then it can be

seen that removing the four endpoints of the rectangle as well as the diagonal, and then identifying the

opposite edges gives Conf2(S1). The rest is clear from the following diagram:

Figure 2.2: Conf2(S1)
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Chapter 3

Stratified Spaces

3.1 Stratified Spaces

Definition 3.1.1 (Definition 2.23 in [3]). Let X be a topological space and Λ be a poset. A stratifi-

cation of X is a map π : X → Λ such that

1. For each λ ∈ Im(π), π−1(λ) is locally closed1 and connected.

2. For λ, µ ∈ Im(π), π−1(λ) ⊆ π−1(µ) if and only if λ ≤ µ. This is same as demanding that π is

continuous when Λ is given the Alexandroff topology.

For each λ ∈ Λ, we write eλ to denote π−1(λ) and call it a stratum indexed by λ. A stratified space

is a pair (X,π), where π : X → Λ is a stratification of X. The image of π is called the face poset of X

and is denoted by P (X,π) or simply by P (X). q

A stratification of a topological space X can be thought of as a partition E of X such that if we write

eα ≤ eβ for two members eα and eβ of E if and only if eα intersects ēβ, then this makes E into a poset.

We further insist that the elements of E be connected and locally closed.

Example 3.1.2. Any Hausdorff space admits a trivial stratification. For let X be any Hausdorff space

and Λ be a poset which as a set is in bijection with X and no two distinct elements in Λ are comparable.

Then any bijection π : X → Λ gives a stratification on X.

Example 3.1.3. Any normal CW complex2 structure on a Hausdorff topological space X induces a

stratification on X in the following way. Let {eλ}λ∈Λ be all the cells in the CW complex. We give a

poset structure to Λ by declaring λ ≤ µ for two elements λ and µ in Λ if and only if eλ ⊆ ēµ. Define

π : X → Λ as π(eλ) = λ for all λ ∈ Λ. Then π is a stratification on X. This makes use of the fact

that a characteristic map Φ : Dn → ēλ for an n-cell eλ is a quotient map which maps the interior of Dn

homeomorphically onto eλ.

Notation Let e be a stratum in a stratification of a space X. Then we write ∂e to denote ē − e. Note

that this may be different from the topological boundary of e in X.

1A subset A of a topological space X is said to be locally closed if A is open in Ā.
2A CW complex is said to be normal if whenever a cell eα intersects the closure of a cell eβ , then eα ⊆ ēβ . Note that all

regular CW complexes are normal.
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Definition 3.1.4. Let π : X → Λ be a stratification of a topological space X. A stratum eµ is said to

be normal if eλ ⊆ ēµ whenever eλ ∩ ēµ is non-empty. This is equivalent to saying that ∂eµ is a union of

strata in X. We say that a stratification on X is a normal stratification if each stratum is normal. q

Example 3.1.5. We give an example of a stratification which is not normal. Let A and B be subspaces

of R2 defined as A = {(−1, y) : −1 < y < 1} and B = {(x, y) : x2 + y2 < 1}. Let X ⊆ R2 be the union

of A and B.

Figure 3.1: A non-normal stratification.

Let P = {a, b} be the poset where neither a < b nor b < a. Then π : X → P defined as π(A) = {a} and

π(B) = {b} gives a stratification on X which is not normal.

Example 3.1.6. Let P = {−1, 0, 1} be a poset with 0 < ±1. Define a map sgn : R → P which takes

positive numbers to 1, 0 to 0, and negative numbers to −1. This defines a normal stratification on R
which we call the sign stratification of R.

e0 e1
+e1

−

Figure 3.2: The sign stratification on R.

Lemma 3.1.7. Let ρ : Y → Γ be a stratification of a topological space Y and let f : X → Y be an

open continuous map which pulls back connected subspaces of Y to connected subspaces of X. Then

ρ ◦ f : X → Γ gives a stratification of X. Further, if (Y, ρ) is normal, then so is (X, ρ ◦ f).

Proof. Write π = ρ ◦ f . For each γ ∈ Γ, write aγ to denote π−1(γ) and bγ to denote ρ−1(γ). To settle

the first assertion of the proposition we only need to check that if γ ∈ Γ is in the image of π, then aγ is

locally closed. Since f is open, we have f−1(B̄) = f−1(B) for all B ⊆ Y .3 Now let γ ∈ Γ be in the image

of π. Since bγ is open in b̄γ , we have f−1(bγ) open in f−1(bγ). Using aγ = f−1(bγ), we are done.

To prove the second part, let γ, θ ∈ Γ be such that aγ ∩ āθ 6= ∅. We need to show that aγ ⊆ āθ. Let

x ∈ aγ ∩ āθ. Then since the openness of f gives f−1(b̄θ) = f−1(bθ), we have f(x) ∈ bγ ∩ b̄θ. By normality

of (Y, ρ), we have bγ ⊆ b̄θ, giving aγ ⊆ āθ. �

Example 3.1.8. Let ` : Rn → R be a surjective affine map and let H = `−1(0). Then H is a hyperplane

in Rn. Let P = {−1, 0, 1} be the poset given by 0 < ±1. Define π : Rn → P as π = sgn ◦`. Since ` is an

open map, by Lemma 3.1.7 we know that π gives a normal stratification on Rn. This stratification on Rn

is called the stratification induced by the hyperplane H.4

3This is not true if f is not open. For consider the identity map id : R → R, where the domain R has the discrete
topology and the target R has the cofinite topology. Then Z is dense in the target R but not in the domain R. Therefore

R = id−1(Z̄) 6= id−1(Z) = Z. I am indebted to my graduate colleague Gautam Aishwarya for this example.
4Rather, we should call is the stratification induced by the affine map ` : Rn → R.
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H

e2
+

e1

e2
−

Figure 3.3: Stratification of R2 via a line.

Example 3.1.9 (Example 2.11 in [9]). Let ∆n = {(x0, . . . , xn) ∈ Rn+1 : x0+· · ·+xn = 1, xi ≥ 0 for all i}
be the standard n-simplex in Rn+1. Let P be the partial order given by inclusion on the power set of

{0, . . . , n}. Define a map πn : ∆n → P as

πn(x0, . . . , xn) = {i : xi 6= 0}

Then π defines a normal stratification on ∆n whose strata are the faces ∆n.

Example 3.1.10 (Lemma 2.14 in [9]). Let π : X → Λ and ρ : Y → Γ be stratifications of X and Y .

We claim that π× ρ : X × Y → Λ× Γ is a stratification of X × Y , called the product stratification on

X × Y . Let λ ∈ P (X) and γ ∈ P (Y ). We check that (π × ρ)−1(λ, γ) = eλ × eγ is connected and locally

closed in X × Y . The connectedness is clear since product of two connected spaces is again connected.

The local closure follows from observing that eλ × eγ is open in eλ × eγ = ēλ × ēγ since eλ is open in ēλ

and eγ is open in ēγ .

To check the second condition we need only check that π × ρ is continuous when Λ × Γ has the

Alexandroff topology. But this is clear since the product topology on Λ × Γ is same as the Alexandroff

topology on the product poset Λ× Γ.

It is easily checked that the product of two normal stratified spaces is again a normal stratified space.

Lemma 3.1.11. Let C be a convex subset of Rn. Let x0 be a point in the relative interior of C and x

be a point in C̄. Then the relative interior of the line segment joining x and x0 is contained in C.

Proof. Let y be a point in the relative interior of the line segment joining x and x0. We need to show

that y ∈ C. Let (xn) be a sequence of points in C which converge to x. Without loss of generality we

may assume that the affine span of C is whole of Rn, for otherwise we may pass to the affine span of C.

So x ∈ Int(C), and we can choose an open ball B around x such that B is contained in C. For sufficiently

large N , the line passing through xN and y also passes through a point b in B. Since both xN and b lie

in C, the convexity of C forces that y ∈ C and we are done. �

Lemma 3.1.12. Let L = {`1, . . . , `k} be a set of surjective affine maps Rn → R. For each 1 ≤ i ≤ k, let

Si be one of the three subsets `−1
i ((−∞, 0)), `−1

i (0), and `−1
i ((0,∞)) of Rn. Assume that S1∩· · ·∩Sk 6= ∅.

Then we have

S̄1 ∩ · · · ∩ S̄k = S1 ∩ · · · ∩ Sk
Proof. Write S = S1 ∩ · · · ∩ Sk. Since S̄1 ∩ · · · ∩ S̄k is a closed subset of Rn which contains S, we have
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S̄ ⊆ S̄1 ∩ · · · ∩ S̄k. So we need to show that reverse containment. Since S is non-empty, we can choose a

point x0 in S. Now let x be chosen arbitrarily in S̄1 ∩ · · · ∩ S̄k. We will show that x ∈ S̄.

Note that the relative interior of each Si is all of Si. Let (x0,x) denote the set of all the points in

the relative interior of the line segment joining x0 and x. By Lemma 3.1.11, (x0,x) is contained in each

Si. Therefore we have (x0,x) ⊆ S. Now since x is in the closure of (x0,x), we have x ∈ S̄ and we are

done. �

Example 3.1.13 (Example 2.10 in [9]). Let L = {`1, . . . , `k} be a set of surjective affine maps Rn → R
and Hi be the hyperplane in Rn defined as Hi = `−1

i (0). The set A := {H1, . . . ,Hk} is called the

hyperplane arrangement determined by the affine maps in L. Let P = {−1, 0, 1} be the poset given

by 0 < ±1. Define maps πi : Rn → P as πi = sgn ◦`i and define π : Rn → P k as π(x) = (π1(x), . . . , πk(x)).

We claim that π is a stratification of Rn, where P k has the product poset structure.

Define H+
i = π−1

i (1) and H−i = π−1
i (−1). Note that each fibre of π is of the form S1 ∩ · · · ∩Sk, where

for each i, Si is one of H−i , Hi, or H+
i . Let A and A′ be two fibres of π, and say A = S1 ∩ · · · ∩ Sk and

A′ = S′1 ∩ · · · ∩ S′k. Suppose A ∩ Ā′ is non-empty. We proceed to show that A ⊆ Ā′. To see this, we use

Lemma 3.1.12 to write Ā′ = S̄′1 ∩ · · · ∩ S̄′k. Thus from A ∩ Ā′ 6= ∅ we get for each i that Si ∩ S̄′i 6= ∅. But

it is clear that if Si ∩ S̄′i 6= ∅, then Si ⊆ S̄′i. So we have Si ⊆ S̄′i for each i, and thus

S1 ∩ · · · ∩ Sk ⊆ S̄′1 ∩ · · · ∩ S̄′k

giving A ⊆ Ā′. This shows that if for two members λ, µ ∈ P k, we write π−1(λ) ≤ π−1(µ) if and only if

π−1(λ)∩π−1(µ) 6= ∅, then we get a poset structure on the set of all the fibres of π. Also, each fibre of π is

an intersection of open half-spaces and hyperplanes. Therefore, the fibres of π are all convex sets which

are open in their affine hulls, and are hence connected and locally closed in Rn.

Now all that remains is to show that π is continuous when P k is given the Alexandroff topology. For

each i, choose a point pi ∈ Hi and a unit vector vi ∈ Rn perpendicular to Hi such that pi + vi ∈ H+
i .

Let Ki denote the affine subspace {pi + tvi : t ∈ R}. Let ρi : Rn → Ki be the projection on Ki

with respect to the hyperplane Hi. Just like the sign stratification on R, the map τi : Ki → P defined as

τi(pi+tvi) = sgn(t) defines a stratification of Ki. Therefore, the map τ = τ1×· · ·×τk : K1×· · ·×Kk → P k

gives a stratification of K := K1 × · · · ×Kk. Now consider the following diagram

Rn K1 × · · · ×Kk

P k

π

ρ=ρ1×···×ρk

τ=τ1×···×τk

This shows that π is continuous when P k has the Alexandroff topology since π = τ ◦ ρ, finishing the

proof that π is a stratification of Rn. The stratification of Rn so obtained is called the stratification of

Rn determined by A. From the work done above it is clear that this stratification is normal.

Definition 3.1.14. Let n be a positive integer and for each 1 ≤ i, j ≤ n define Hi,j = {(x1, . . . , xn) ∈
Rn : xi = xj}. The hyperplane arrangement {Hi,j : 1 ≤ i, j ≤ n} is called the braid arrangement of

rank n− 1 and is denoted by An−1. The stratification on Rn obtained by the braid arrangement is called
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the braid stratification. q

Example 3.1.15. The following figure depicts a normal stratification of the punctured torus.

e0

e1

f0

e0 e1

f0

Figure 3.4: The Punctured Torus and its Face Poset.

Definition 3.1.16 (Definition 2.15 in [9]). Let π : X → Λ and ρ : Y → Γ be stratifications of topological

spaces X and Y indexed by the posets Λ and Γ. A morphism of stratified spaces is a pair (F, f) of a

continuous map F : X → Y and a poset map f : P (X)→ P (Y ) making the following diagram commute:

X Y

P (X) P (Y )

F

π ρ

f

We say that (F, f) is a strict morphism if F (eλ) = ef(λ) for all λ ∈ P (X). q

It can be seen that the identity map (id, id) from a stratified space to itself is a morphism and

that composition of two morphisms of stratified spaces is again a morphism. The associativity of the

compositions of morphisms is clear. Thus we have a category of stratified spaces.

Example 3.1.17. Following gives an example of a morphism of stratified spaces. We have a map

f : S1 → S1 which sends z to z2, when S1 is thought of as a subset of the complex plane. The

stratifications on the domain and the target S1’s are depicted in the diagram. The map f sends +1 and

−1 to 1 and +0 and −0 to 0.
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e0
+

e1
+

e1
−

e0
−

F
e0

e1

−0 +0

−1 +1

0

1

f

Figure 3.5: A strict morphism between two stratification of S1.

Definition 3.1.18 (Definition 2.18 in [9]). Let π : X → Λ be a stratification of a space X. Let A be

a subspace of X and the restriction π|A : A → Λ be a stratification of A. Then we say that (A, π|A)

is a stratified subspace of (X,π). Note that the pair (i, id) is a morphism from (A, π|A) into (X,π),

where i : A ↪→ X is the inclusion map. When (i, id) is a strict morphism, we say that (A, π|A) is a strict

stratified subspace of (X,π). q

Theorem 3.1.19. Let π : X → Λ be a stratification on a topological space X and A be a subspace of

X. Then A is a strict stratified subspace of X if and only if A is a union of strata.

Proof. First suppose that A is a strict stratified subspace of X. Then π|A : A→ Λ is a stratification on

A. Let x ∈ A be arbitrary and eλ be the strata of X which contains x. Since (i, id) is a strict morphism

between (A, π|A) and (X,π), we have i(π|−1
A (λ)) = eλ, showing that A ∩ eλ = eλ. Therefore eλ ⊆ A and

we see that A is a union of strata of X.

Now suppose that A is a union of strata of X. Since π : X → Λ is continuous when Λ is given the

Alexandroff topology, so is π|A : A→ Λ. Also, if λ ∈ ImπA, then π|−1
A (λ) = π−1(λ), and therefore π|−1

A (λ)

is connected. So we only need to show that for λ ∈ Imπ|A, eλ = π−1(λ) is open in the closure of eλ in A.

To this end, let x ∈ eλ be arbitrary. Since eλ is open in ēλ, we know that there is a neighborhood U of x

in X such that U ∩ ēλ ⊆ eλ. Therefore U ∩ clA(eλ) ⊆ eλ and we are done. �

3.2 CW Stratifications

Definition 3.2.1 (Definition 2.19 in [9]). A stratification π : X → Λ on a space X is said to be a CW

stratification if the following conditions are satisfied:

(CF) For each λ ∈ P (X), ēλ is covered by a finite number of strata.
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(WT) X has the weak topology with respect to the covering {ēλ}λ∈P (X), that is, the topology on X is

final with respect to the collection of maps {iλ : ēλ ↪→ X}λ∈P (X). q

Definition 3.2.2. A stratification of a topological space X is said to be finite if the face poset of the

stratification is finite. q

Theorem 3.2.3 (Lemma 2.20 in [9]). A finite stratification is always CW.

Proof. Let π : X → Λ be a finite stratification of a topological space X. The closure finiteness is

obvious. We show that the (WT) condition holds. Let A ⊆ X be such that A ∩ ēλ is closed in ēλ for

all λ ∈ Λ. We need to show that A is closed in X. Let e1, . . . , ek be all the strata in X and x ∈ X \ A.

For each i we can find a neighborhood Ui of x such that Ui ∩ (A ∩ ēi) = ∅. Thus U := U1 ∩ · · · ∩ Uk is a

neighborhood of x which does not intersect A, showing that A is closed and we are done. �

3.3 Cellular Stratifications

Definition 3.3.1. A globular n-cell is a subsetD of the closed n-ballDn such that Int(Dn) is contained

in D. The boundary of a globular n-cell D is defined as D ∩ ∂Dn and is denoted by ∂D. The interior

of D is simply defined as Int(Dn) and is denoted by Int(D). q

Definition 3.3.2 (Definition 2.24 in [3]). Let X be a topological space and e be a subspace of X. An

n-cell structure on e is a pair (D,ϕ) of a globular n-cell D and a continuous map ϕ : D → X satisfying

the following two conditions:

1. ϕ|Int(D) : Int(D)→ e is a homeomorphism.

2. ϕ : D → ē is a quotient map.

The number n is called the dimension of e. The map ϕ will be called the cell structure map. An n-cell

structure (D,ϕ) on e is said to be closed if D = Dn and regular if ϕ : D → ē is a homeomorphism. q

Notation For a stratum eλ in a stratified space (X,π), we use ∂eλ to denote ēλ − eλ.

A cellular stratified space is crudely a CW complex in when we have globular cells as domains of

characteristic maps. The following definition makes this idea precise.

Definition 3.3.3 (Definition 2.24 in [3]). Let X be a Hausdorff space. A cellular stratification of X

is a pair (π,Φ) of a stratification π : X → Λ and a collection Φ = {ϕλ : Dλ → X}λ∈π(X) of cell structures

on the strata eλ of X such that for each n-cell eλ, ∂eλ is covered by cells of dimension no more than n−1.

A cellular stratified space is a triple (X,π,Φ), where (π,Φ) is a cellular stratification on X. q

Note that a cell structure map separates the boundary and interior of the globular cell. More precisely,

if ϕλ : Dλ → ēλ is a cell structure map for a stratum eλ of a stratified space, then ϕλ(Int(Dλ))∩ϕλ(∂Dλ) =

∅. Therefore ϕλ(∂Dλ) = ēλ − eλ. This uses the fact that each stratum is locally closed.

An important difference between a CW complex and a cellular stratified space is that a CW complex

does not come with the data of characteristic maps. We only insist that each cell of a CW complex

‘admits’ a characteristic map. On the other hand, a cellular stratified space comes with the information

of cell structure maps.
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Theorem 3.3.4. Let (X,π,Φ) be a finite cellular stratified space. Then top dimensional5 cells in X are

open in X.

Proof. Let n be the highest dimension of any stratum in X and let enα be an n-cell in X. By definition

of a stratification, we know that enα is open in ēnα. If ekβ is any other stratum, then ēkβ does not intersect enα

because ∂ekβ is covered by cells of dimension no more that k−1. Since a finite stratification is automatically

CW, we know that the topology on X is finial with respect to the closure of all the cells in X. As observed

above, enα is open in the closure of each cell in X and is hence open in X. �

Definition 3.3.5. A cellular stratified space (X,π,Φ) is said to be regular if each cell structure map

in Φ is regular and is said to be closed if each cell structure map in Φ is closed. q

As Theorem 1.3.8 shows, each regular CW complex is a normally stratified space. But it not true that

each regular cellular stratified space is normal since the stratified space in Example 3.1.5 is not normal

but admits a regular cellular stratification.

Example 3.3.6. A finite closed cellular stratification on a topological space X is nothing but a finite

normal CW complex structure on X for each cell of which we have chosen a cell structure map.

Example 3.3.7 (Example 2.42 in [9]). Not all stratified spaces admit a cellular stratification. Let

S = {(x, sin(1/x)) : 0 < x ≤ 1} and X = S̄. The space X is known as the topologist’s sine curve.

Consider the poset P given by the following Hasse diagram:

e0
1 e0

2 e0
3

e1
1

e1
2

Figure 3.6

Let E0
1 = {(0, 1)}, E0

2 = {(0,−1)}, E0
2 = {(1, sin(1))}, E1

1 = {(0, t) : −1 < t < 1}, and E1
2 =

{(x, sin(1/x)) : 0 < x < 1}. Define a map π : X → P which maps all points in Eij to eij . Then π is

a normal stratification on X. We show that (X,π) does not admit a cellular stratification. The reason

for this is that the stratum E1
2 does not admit a cell structure map. For there is no way to extend a

homeomorphism Int(D1) = (−1, 1)→ E1
2 to a continuous map [−1, 1]→ X.

Definition 3.3.8. Let (X,π,Φ) be a cellular stratified space. Let Φ = {ϕλ : Dλ → ēλ}λ∈P (X). We

say that a strict stratified subspace A of X is a strict cellular stratified subspace if for each cell eλ

contained in A, the restriction ϕλ|DAλ : DA
λ = ϕ−1

λ (ēλ ∩A)→ ēλ ∩A = clA(eλ) is a quotient map. q

Example 3.3.9. Let X be a topological space and E be a cell decomposition on X which makes X into

a CW complex. By choosing a characteristic map ϕλ : Dλ → ēλ for each cell eλ in X, we can give a

cellular stratification on X. We show that under such a chosen cellular stratification of X, each (strict)

5By a top-dimensional cell we mean a cell of the largest dimension.
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stratified subspace of X is also a (strict) cellular stratified subspace of X. This is clear from the definition

and the following lemma.

Lemma 3.3.10. Let f : X → Y be a surjective continuous map from a compact space to a Hausdorff

space. Then f |A : A→ f(A) is a quotient map whenever A is a saturated subspace of X.6

Proof. Let A be a saturated subspace of X and write B = f(A). We need to show that f |A : A → B

is a quotient map. To this end, let V ⊆ B be such that f |−1
A (V ) = f−1(V ) ∩ A be open in A. Since A is

saturated, f−1(V ) is contained in A, and therefore f |−1
A (V ) = f−1(V ).

We need to prove that V is open in B. Now there is U open in X such that U ∩ A = f−1(V ). Since

X is compact, X −U is a compact space. Therefore f(X −U) is a closed subspace of Y . Note that since

A is saturated, f(X − U) does not intersect V . Further, f(X − U) contains Y − V . Therefore Y − V is

closed in Y , proving that V is open in B. �

Example 3.3.11 (Example 2.35 in [9]). Let A = {H1, . . . ,Hm} be a collection of hyperplanes in Rn.

We will show that the stratification of Rn by A admits a regular cellular stratification. Without loss of

generality we may assume that A is essential7. So we can choose a closed ball B which contains all the

bounded strata. Each stratum in Rn is a convex set and hence has an affine dimension. Suppose e is a

stratum with affine dimension k. Then we can choose a homeomorphism ϕ : Dk → e ∩B such that ϕ

restricted to Int(Dk) is a homeomorphism onto e∩ Int(B). Define D = ϕ−1(ē∩ Int(B)). Further, we can

also find a homeomorphism ψ : ē→ ē ∩ Int(B). Now the composition ψ−1 ◦ ϕ|D : D → ē gives a regular

cell structure on e.

Example 3.3.12. The following figure illustrates that the stratification of the punctured torus discussed

in Example 3.1.15 admits a cellular stratification.

6We say that A ⊆ X is a saturated subspace of X if there is B ⊆ Y such that A = f−1(B).
7We say that a collection of hyperplanes in Rn is essential if the normal vectors to the hyperplanes span the whole of Rn.
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Figure 3.7: The punctured torus admits a cellular stratification.

Definition 3.3.13. A graph is a 1-dimensional cellular stratified space. q

Theorem 3.3.14. All graphs are normal.

Proof. Let (X,π,Φ) be a graph. Let eλ and eµ be cells in X such that eµ ∩ ēλ 6= ∅. It is clear that

dim eλ = 1. We claim that dim eµ = 0. Assume on the contrary that dim eµ = 1 and let p ∈ ∂eλ be in eµ.

By Theorem 3.3.4, we know that eµ is open in X. Since p is in the closure of eλ, we must have eµ∩eλ 6= ∅,
which is a contradiction. Therefore dim eµ = 0. This means eµ is a singleton so we have eµ ⊆ ēλ and we

are done. �

Lemma 3.3.15. Let X be a locally compact8 Hausdorff space. Let x be a point in X and U be a

neighborhood of x. Then there is a compact subset C of X contained in U which contains a neighborhood

of x.

Proof. Since X is locally compact, there is a compact subset K of X which contains a neighborhood

V of X. Now K ∩ (X − U) = K − U is a closed subspace of K, and therefore it is compact. Using the

fact that X, is Hausdorff, we can find an neighborhood W of x which is disjoint from an open set O

containing K − U . Now C := K −O is a closed, and hence compact, subspace of K, which contains the

neighborhood W of x. Since C is contained in U , we are done. �

Lemma 3.3.16. Let C be a compact space and X be any topological space. Then the projection map

X × C → X is a closed map.

Proof. Let p : X × C → X denote the projection map. Let A be a closed subset of X × C and x be

8We say that a topological space X is locally compact if for all points x ∈ X, there is a compact subspace of X which
contains a neighborhood of x.
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point in X not in p(A). We need to show that there exists a neighborhood x in X disjoint from p(A).

Since x is not in p(A), the set x × C is disjoint with A. For each y ∈ C, we can choose neighborhoods

Uy of x in X and Vy of y in C such that Uy × Vy is disjoint with A. Now {Vy}y∈C is an open cover of C

and therefore it admits a finite subcover. Let y1, . . . , yn be in C such that Vy1 , . . . , Vyn cover C. Then it

is easily seen that
⋂n
i=1 Uxi is a neighborhood of x in X disjoint from p(A) and we are done. �

Lemma 3.3.17. Let f : X → Y be a quotient map and Z be a locally compact Hausdorff space. Then

f × idZ : X × Z → Y × Z is also a quotient map.

Proof. Write g = f × idZ . Let B be a subset of Y × Z such that A := g−1(B) is open in X × Z.

We need to show that B is open in Y × Z. Let (y0, z0) be arbitrary in B and let x0 ∈ X be such that

f(x0) = y0. By Lemma 3.3.15, we can find a compact subset C of Z which contains a neighborhood

of z such that x0 × C ⊆ A. Since A is saturated, we can in fact write f−1(y0) × C ⊆ A. Define

V = {y ∈ Y : f−1(y) × C ⊆ A}. We show that V is open in Y . By Lemma 3.3.16, the projection map

p : X × C → X is a closed map. Now

f−1(V ) = {x ∈ X : f(x) ∈ V }
= {x ∈ X : f−1(f(x))× C ⊆ A}
= {x ∈ X : x× C ⊆ A}
= X − p(X × C −A)

which shows that f−1(V ) is open in X, and thus V is open in Y . Noting that (y0, z0) ∈ V × C ⊆ B so

we conclude that B is open in Y × Z and we are done. �

Theorem 3.3.18 (Whitehead, See Lemma 4 in [10]). Let f : A→ B and g : C → D be quotient maps.

Suppose B and C are locally compact Hausdorff. Then the map f × g : A×C → B×D is also a quotient

map.

Proof. Consider the following diagram

A× C B × C

B ×D

f×idC

f×g
idB ×g

Applying Lemma 3.3.17 twice immediately leads to the desired result. �

Theorem 3.3.19 (Lemma 2.29 in [3]). Let (X,πX ,ΦX) and (Y, πY ,ΦY ) be cellular stratified spaces

and consider the product stratification πX × πY : X × Y → P (X)×P (Y ). For each pair of strata eλ and

eµ in X and Y respectively, define a map

ϕλ,µ : Dλ,µ
∼= Dλ ×Dµ

ϕλ×ϕµ−−−−→ ēλ × ēµ = eλ × eµ ⊆ X × Y 9

9Here Dλ,µ is the subspace of Ddim eλ+dim eµ defined by pulling back Dλ ×Dµ via the homeomorphism Ddim eλ+dim eµ ∼=
Ddim eλ ×Ddim eµ . In fact, there is no loss in thinking of Dλ,µ as Dλ ×Dµ itself and this will be particulalry useful if both
X and Y are 1-dimensional cellular stratified spaces.
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If ϕλ,µ is a quotient map for each λ ∈ P (X) an µ ∈ P (Y ), then Φ := {ϕλ,µ}λ∈P (X),µ∈P (Y ) gives a cellular

stratification on X × Y and is called the product cellular stratification on X × Y .

Proof. Immediate from the definitions. �

Corollary 3.3.20. Let Γ1, . . . ,Γk be graphs. Then the space Γ = Γ1 × · · · × Γk is a normal cellular

stratified space under the product cellular stratification.

Proof. The domain globular cell of each stratum as well as the closure of each strata in each Γi is locally

compact Hausdorff, and therefore, by Theorem 3.3.18, Γ is a cellular stratified space under the product

stratification. The normality of Γ follows from the fact that the product of two normally stratified spaces

is also a normally stratified space. �

3.4 Totally Normal Cellular Stratified Spaces

The following definition is a stronger version of Definition 2.35 in [3].

Definition 3.4.1. Let (X,π,Φ) be a normal cellular stratified space. We say that X is totally normal

if for each n-cell eλ in X there exists a structure of a regular CW complex on Sn−1 which contains ∂Dλ

as a strict stratified subspace of Sn−1 such that for each cell e in the stratification of ∂Dλ, there exists a

cell eµ in X, and a homeomorphism b : Dµ → ē with b(Int(Dµ)) = e and ϕλ ◦ b = ϕµ.

e ∂Dλ X

Int(Dµ) Dµ

ϕλ|∂Dλ

b|Int(Dµ) b
ϕµ

Such a map b is called a lift from Dµ to Dλ. The partition induced on ∂Dλ by a regular CW complex

structure on Sn−1 such that the above holds is called a lifting structure on ∂Dλ. q

Example 3.4.2. All closed finite regular cellular stratifications are totally normal. In other words,

every finite regular CW complex can be thought of as a totally normal cellular stratified space once we

choose a regular characteristic map for each cell.

Example 3.4.3 (Example 3.19 in [9]). A regular normal cellular stratified space may not be totally

normal. Let X = R × R≥0. For each n ∈ Z, let e0
n = {(n, 0)}, and e1

n = (n, n + 1) × {0}. Also define

e2 = R × R>0. Then e0
n’s, e1

n’s and e2 form a partition of X and determine a stratification of X. This

admits a cellular stratification. The cell structure maps for the e0
n’s and e1

n’s are trivial. The cell structure

map for e2 is given by extending the stereographic projection S1 − {(0, 1)} → R. The domain of this

cell structure map is D = D2 − {(0, 1)}. This gives a regular cellular stratification of X. But this is not

totally normal since the lifting structure on D would then have infinitely many cells in it. This is not

possible since a CW complex structure on S1 cannot have infinitely many cells because S1 is compact.

Example 3.4.4. The minimal CW complex structure on S1 is totally normal. Consider the stratification

π : S1 → {0, 1} of S1 which sends the point (1, 0) to 0 and all other points to 1. Write e0 = π−1(0) and
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e1 = π−1(1). The poset structure on {0, 1} is given by 0 < 1. We can choose cell structure maps

ϕ0 : D0 → ē0 and ϕ1 : D1 → ē1 = S1. This clearly gives a normal cellular stratification on (X,π). The

following diagram shows that this stratification is in fact totally normal, where D0 admits two different

lifts into ∂D1.

e0

e1

D0

ϕ1|∂D1

ϕ0

Figure 3.8: A totally normal cellular stratification of S1.

Note that there is no regular CW complex structure on S1 with just two cells.

Example 3.4.5. The following figure illustrates that the cellular stratification of the punctured torus

discussed in Example 3.3.12 is totally normal.

Figure 3.9: The Punctured Torus is Totally Normal.

Theorem 3.4.6. All graphs are totally normal.

Proof. Let (X,π,Φ) be a graph. By Theorem 3.3.14 we know that X is normal. A one dimensional

globular cell is one of the four intervals [0, 1], [0, 1), (0, 1] and (0, 1). Therefore the boundary is a strict

stratified subspace of the (only) regular CW complex structure on S0. So it remains to only show the
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lifting property. Let us show that the lifting condition holds for the globular cell [0, 1]. The proof for other

globular cells is similar. Let ϕ : [0, 1]→ ē be a cell structure map for a stratum e in X. By normality of

X, we must have ϕ(0) is a 0-dimensional cell say v in X. Therefore, we get a lift from the characteristic

of v which satisfies the lifting condition. Similarly for ϕ(1). �

Theorem 3.4.7 (Remark 2.44 in [3]). Let Γ1, . . . ,Γk be graphs. Then the product Γ1 × · · · × Γk is a

totally normal cellular stratified space.

Proof. We follow the proof of Lemma 2.43 in [3] to prove the statement for the case k = 2. The general

case is similar. So let Γ1 and Γ2 be two graphs. We have seen that the product Γ1 × Γ2 is cellular

stratified by the product cellular stratification. We show that this cellular stratification is totally normal.

The possible domains for the cell structure maps for 1-cells and 2-cells are shown in the following diagrams

Figure 3.10

Figure 3.11

Here we think of globular cells not as discs but as rectangles. From the diagram above it is clear that the

boundary of each globular rectangle is a strict stratified subspace of the regular CW complex structure

on the rectangle in which each edge is a 1-cell and each vertex is a 0-cell. The lifting property of the cell

structure maps is also clearly satisfied. �

Theorem 3.4.8. Let X be a totally normal cellular stratified space. Then there is a lift from a cell

ϕµ : Dµ → ēµ to a cell ϕλ : Dλ → ēλ if and only if eµ ⊆ ēλ
Proof. It is clear that if there is a lift from a cell eµ to a cell eλ, then eµ ⊆ ēλ. Conversely, assume that

eµ ⊆ ēλ. In case eλ = eµ, the theorem is trivial. So assume eµ 6= eλ. So we must have eµ ⊆ ∂eλ. Let e be

a cell in the regular CW complex structure on Dλ whose image under ϕλ intersects eµ. By definition of

a totally normal cellular stratified space, there is a stratum eθ in X and a continuous map b : Dθ → ∂Dλ

such that b(Int(Dθ)) = e and ϕλ ◦ e = ϕθ. From this we see that eθ ∩ eµ 6= ∅ and thus we must in fact

have eµ = eθ. We have the following diagram

e ∂Dλ X

Int(Dµ) Dµ

ϕλ|∂Dλ

b|Int(Dµ) b
ϕµ

The diagram shows that ϕλ(e) = eµ and we see that b is a required lift. �
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Lemma 3.4.9. Let (X,π,Φ) be a totally normal cellular stratified space and ϕλ : Dλ → ēλ be an n-cell

structure map for a stratum eλ in X. Let e be a cell in the lifting structure of ∂Dλ. Then ϕλ(e) is a

stratum in X and ϕλ|e : e→ ϕλ(e) is a homeomorphism.

Proof. By total normality, there is a stratum eµ in X along with a homeomorphism b : Dµ → ē such

that b(Int(Dµ)) = e and ϕλ ◦ b = ϕµ, whence the desired result follows. �

Lemma 3.4.10. Let (X,π,Φ) be a totally normal cellular stratified space. Let λ, µ ∈ P (X) be such

that eµ ⊆ ēλ. Then there are only finitely many lifts of ϕµ : Dµ → ēµ to ϕλ : Dλ → ēλ.

Proof. Let e be a cell in the lifting structure of ∂Dλ such that there is a lift Dµ → Dλ whose image

is ē. Now let b1, b2 : Dµ → Dλ be two such lifts. It is clear that b1 and b2 agree on Int(Dµ). Let

x ∈ ∂Dµ and (xn) be a sequence in Int(Dµ) such that xn → x. Since bi(xn)→ bi(x), i = 1, 2, we see that

b1(x) = b2(x). So b1 and b2 agree on Dµ. Now since there are only finitely many cells e in ∂Dλ, and there

is at most one lift corresponding to any given cell in ∂Dλ, we deduce that there are only finitely many

lifts of ϕµ : Dµ → ēµ to ϕλ : Dλ → ēλ. �

Example 3.4.11. A normal cellular stratification may not be totally normal. Let π : S2 → {0, 1} be

the map which sends (1, 0, 0) to 0 and all other points of S2 to 1. This gives a stratification of S2 with

strata e0 = π−1(0) and e1 = π−1(1), where the poset structure of {0, 1} is given by 0 < 1. Choose cell

structure maps ϕ0 : D0 → ē0 and ϕ2 : D2 → ē2 = S2. This gives a normal cellular stratification. We

show that this cellular stratification, however, is not totally normal. For suppose it were. Then there

exists a lifting structure on ∂D2 = S1. But any regular CW complex structure on S1 is bound to contain

a 1-cell. As seen from Lemma 3.4.9, ϕ2 must be injective on this 1-cell. But this is not the case, for ϕ2

maps all points of ∂D2 to (1, 0, 0). In fact, the only cell structure map available to provide a lift for this

1-cell in ϕ0 : D0 → ē0. This of course cannot work because dimD0 < 1.

A cellular stratified space is totally normal if each domain globular cell admits a lifting structure.

Thus, given a cellular stratified space, it is natural to ask if there are two different ways in which it can be

totally normal, that is, if some domain globular cells possess multiple lifting structures. We now proceed

to show that the lifting structures on the domain globular cells of a totally normal cellular stratified space

are unique.

Lemma 3.4.12. Let X be a topological space and E and E ′ are two finite CW complex structures on

X. Let L ⊆ E and L′ ⊆ E ′ be such that ⋃
e∈L

e =
⋃
e′∈L′

e′ = A (say)

Assume that whenever two cells e ∈ L and e′ ∈ L′ intersect, we have dim e = dim e′. Then L = L′.
Proof. It is clear by hypothesis that dimL = dimL′.10 Say this dimension is n. We prove the result

by induction on n. The base case is n = 0, whence the proof is trivial. So let n ≥ 1 and assume that the

theorem holds for all smaller values. Let Ln and L′n be the collection of all the n-dimensional cells in L
and L′ respectively. We show that Ln = L′n. Let e ∈ Ln and e′ ∈ L′n be such that e ∩ e′ 6= ∅. Note that

10By dimension of a cell decomposition we mean the largest dimension of all the cells.
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e and e′ are top dimensional cells in the n-skeleton of (X, E) and (X, E ′) respectively, and therefore are

open in the respective n-skeletons. Thus e and e′ are open in A since A is contained in the n-skeleton of

both (X, E) and (X, E ′). We want to show that e = e′, for which by symmetry it suffices to establish that

e ⊆ e′. Assume on the contrary that e is not contained in e′.

Case 1: e ∩ (clX(e′)− e′) 6= ∅.

Let x ∈ e ∩ (clX(e′)− e′). Let u′ be a cell in E ′ which contains x. Then u′ ∈ L′ and dimu′ < n. By

hypothesis, then, dim e = dimu′ < dim e′ = dim e, which is absurd. So this case is not possible.

Case 2: e ∩ (clX(e′)− e′) = ∅.

Since we have assumed that e is not contained in e′, we are forced to have e ∩ (X − clX(e′)) 6= ∅.
Write U = e ∩ e′ and V = e ∩ (X − clX(e′)). Since clX(e′) is compact in X, it is in particular a

closed subset of X, giving X − clX(e′) is open in X. Thus V is open in e. As noted earlier, e and

e′ are both open in A, and therefore U too is open in e. So we have e = U ∪ V , where U and V are

disjoint open subsets of e, implying e is not connected, giving a contradiction.

Since the above two are the only cases possible, and in both cases we arrive at a contradiction, we deduce

that our assumption that e is not contained in e′ must be wrong. So we conclude that e ⊆ e′. Similarly,

e′ ⊆ e and we have e = e′. Therefore, whenever a cell e ∈ Ln intersects with a cell e′ ∈ L′n, we have

e = e′. By the dimension condition in the hypothesis, a cell in Ln cannot intersect a cell in L′ − L′n. So

we conclude that Ln = L′n. Now by induction it follows that L−Ln = L′−L′n. Therefore L = L′ and we

are done. �

Theorem 3.4.13. Let (X,π,Φ) be a totally normal cellular stratified space and ϕλ : Dλ → ēλ be a

n-cell structure map. Then there is a unique lifting structure on ∂Dλ.

Proof. Let E and E ′ be two regular CW complex structures on Sn−1 and L ⊆ E and L′ ⊆ E ′ be two

lifting structures on ∂Dλ. Let e ∈ L and e′ ∈ L′ be such that e ∩ e′ 6= ∅. By Lemma 3.4.9 we know that

both ϕλ(e) and ϕλ(e′) are strata in X. Since two strata intersect if and only if they are same, we deduce

that ϕλ(e) = ϕλ(e′). This forces by Lemma 3.4.9 that dim e = dim e′. So what we have shown is that

if e ∈ L intersects a cell e′ ∈ L′ then dim e = dim e′. By Lemma 3.4.12 we see that L = L′ and we are

done. �

Theorem 3.4.14. Let (X,π,Φ) be a totally normal cellular stratified space. Let ϕλ : Dλ → ēλ be an

n-cell structure map, e be a cell in the lifting structure of ∂Dλ, and b : Dµ → ē be a lift of ϕµ : Dµ → ēµ.

Then the cellular stratification induced on ∂Dµ by pulling back the cellular stratification on ∂e via b is

the lifting stratification on ∂Dµ.

Proof. Let E be the lifting structure on ∂Dµ. Let v be an arbitrary cell in the lifting structure of ∂Dλ

contained in ∂e, and define u′ = b−1(v). Let u be a cell in E which intersects u′.

We show that dimu = dimu′. Since b maps u′ homeomorphically onto v and, by Lemma 3.4.9,

ϕλ maps v homeomorphically onto the stratum ϕλ(v), we see that b maps u′ homeomorphically onto

ϕλ(v). Therefore dimu′ = dimϕλ(v). Again, by Lemma 3.4.9 we have ϕµ(u) is also a stratum and that

ϕµ|u : u → ϕµ(u) is a homeomorphism. This gives dimu = dimϕµ(u). Since u and u′ intersect, so do

ϕµ(u) and ϕµ(u′). This yields ϕµ(u) = ϕµ(u′) and therefore dimu′ = dimu. So we conclude that if u′

intersects a cell in E then the dimension of u′ is same as that of the cell in E .
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Now we show that u′ ⊆ u. If u′ is not contained in u, then u′ intersects a cell in the boundary of

u, as argued in the proof of Lemma 3.4.12. Since ∂u is a union of cells having dimension strictly lower

than that of u, this means that the dimension of u′ is smaller than that of u, giving a contradiction. So

we must have u′ ⊆ u. The containment cannot be proper since ϕµ is injective on u and both ϕµ(u′) and

ϕµ(u) are strata in X. We must have u = u′.

So we have shown that for each cell v in the lifting structure of ∂Dλ contained in ∂e, b−1(v) is in

E . But ∂Dµ is the union of inverse images of cells in the lifting structure of ∂Dλ contained in ∂e and

therefore we have our result. �

3.5 Face Categories

Definition 3.5.1. Let X be a totally normal cellular stratified space. We define a category C(X) whose

objects are all the cells in X. A morphism from a cell ϕµ : Dµ → ēµ to a cell ϕλ : Dλ → ēλ is the identity

map if eµ = eλ, and is a lift (as described in Definition 3.4.1) b : Dµ → ∂Dλ if dim(eµ) < dim(eλ).

∂Dλ ēλ X

Dµ ēµ

ϕλ

ϕµ

b

The composition of two morphisms is simply the composition of maps. The category thus obtained is

called the face category of X. q

By Lemma 3.4.10 we know that there are only finitely many morphisms between any two objects in

the face category of a totally normal cellular stratified space. Thus the face category of a finite totally

normal cellular stratified space is finite. Also note that Theorem 1.3.5 implies that the face category of

a totally normal cellular stratified space is acyclic. Lastly, note that if X is a totally normal cellular

stratified space, then the underlying poset of C(X) is isomorphic to the face poset of X.

Example 3.5.2. The face category of a regular CW complex is same as the face poset, where of course,

we think of the face poset as a category.

Following is the main theorem that we will use to find the homotopy type of configuration spaces of

graphs.

Theorem 3.5.3 (Theorem 2.50 in [3]). Let X be a totally normal cellular stratified space. Then the

geometric realization of the face category of X embeds in X as a strong deformation retract.

Example 3.5.4. The following figures shows that face category and the geometric realization of the

totally normal cellular stratification of the punctured torus discussed in Example 3.3.12 and 3.4.5.

Figure 3.12: Face Category and its Geometric Realization
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This shows, by using Theorem 3.5.3, that the homotopy type of the punctured torus is same as that

of the wedge sum of two circles.
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Chapter 4

Applications to Configuration Spaces of

Points on a Graph

4.1 Braid Stratification of Product of Graphs

In this section we discuss how configuration spaces of graphs are naturally totally normal cellular stratified.

Given a graph Γ, we know that Γn is a totally normal cellular stratified space under the product cellular

stratification. What we want to achieve is a finer cellular stratification of Γn which has the diagonal as

a strict stratified subspace. This is achieved by transferring the braid stratification on Euclidean spaces,

allowing us to remove the diagonal from Γn and be left with a totally normal cellular stratified space.

Definition 4.1.1. Let X be a finite graph. Let {e0
λ}λ∈Λ0 and {e1

λ}λ∈Λ1 . Fix a homeomorphism ψ : R→
Int(D1). Choose total orders in Λ0 and Λ1. For a cell eε1λ1 × · · · × e

εk
λk

, choose a permutation σ ∈ Sk1 such

that

σ(eε1λ1 × · · · × e
εk
λk

) = (a product of 0-cells)× (e1
µ1)m1 × · · · × (e1

µ`
)m`

where µ1 < · · · < µ`. Now using the cell structure map ϕµj : Int(D1)→ e1
µj , we get a homeomorphism

Rmj Int(D1)mj (e1
µj )

mj
ψmj

∼=

ϕ
mj
µj

Using this homeomorphism, transfer the braid stratification of Rmk to stratify (e1
µj )

mj . The refined

stratification on Xk achieved by this procedure is called the braid stratification on Xk. q

Theorem 4.1.2 (Prop. 3.7 in [3]). Let X be a finite graph. Then, the braid stratification on Xk is

totally normal and contains Diagk(X) as a strict stratified subspace. Therefore, Confk(X) is also a totally

normal cellular stratified space.

1For a permutation σ in Sk, we get a map Xk → Xk which maps (x1, . . . , xk) to (xσ(1), . . . , xσ(k)).
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4.2 Examples

Example 4.2.1. We use Theorem 3.5.3 to find the homotopy type of Conf2(S1).

f2

f1

e1

e2

e1 e2

f1 f2

Figure 4.1: Conf2(S1) and its face category.

The geometric realization of the face category shown above is

Therefore the homotopy type of Conf2(S1) is same as that of S1. We already saw this in Example 2.2.

Example 4.2.2. Let X = S1 ∨ S1. We find the homotopy type of Conf2(X).

v v v

v
v

v

v v v

e1 e2

e3

e4
e5

e6 f1
f2

f3

f4f5

f6

Figure 4.2: Braid Stratification of (S1 ∨ S1)× (S1 ∨ S1).

f1 f2 f3 f4 f5 f6

e1 e2 e3e4e5 e6

e1 e2

e3

e4

f1
f2

f3

f4f5

f6

Figure 4.3: Conf2(S1 ∨ S1) and its Face Category.
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Figure 4.4: Geometric Realization

From the geometric realization of the face category, it can be seen that the homotopy type of Conf2(S1∨
S1) is same as that of the wedge sum of seven circles.
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