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Abstract

This is an introduction to the theory of finite Weyl groupoids,
crystallographic arrangements, and their classification.

1 Introduction

Reflections appear in many areas of mathematics. For instance, certain
groups generated by involutions may be investigated by representing
them as reflection groups. In particular, the Weyl groups belong to
this class. They and are fundamental for the classification semisimple
Lie groups and semisimple algebraic groups. The Weyl groups are in
fact subgroups of GL(Zr) for some r. This integrality is a very strong
and important restriction; reflection groups with this property are also
called crystallographic.

Closely related to a Lie group or an algebraic group is another
important structure, the Lie algebra. Lie algebras arise in nature
as vector spaces of linear transformations, for example differential
operators. It turns out that finite dimensional semisimple complex Lie
algebras decompose into a direct sum labeled by roots and a Cartan
subalgebra. These roots are (up to signs) the normal vectors defining the
reflection hyperplanes of a Weyl group. Again, we have an integrality
property for the roots: Let A be the real hyperplane arrangement given
by the orthogonal complements of the roots. Then this is a simplicial
arrangement and for each chamber K, the roots labeling the walls of
K form a simple system ∆, and in particular all other roots are integer
linear combinations of the roots in ∆.

So apparently the combinatorics of root systems and Weyl groups
play an important role in mathematics and moreover, a certain inte-
grality is an essential feature of these structures. In the last decades,
the concept of a Lie algebra has been generalized in many directions.
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For example, deformations of Lie algebras called quantum groups have
proved to be useful in physics. More generally the theory of Hopf alge-
bras seems to be a further natural direction. Recent results on pointed
Hopf algebras have led to yet another symmetry structure, the Weyl
groupoid. Again one has vectors called roots, but this time the object
acting on the roots is in general a groupoid and not a group anymore.
A remarkable fact is that even in this much more general setting, the
above integrality still plays a crucial role.

The Weyl groupoid historically appeared as an invariant needed
to classify Nichols algebras. Recent observations have considerably
increased the importance of the Weyl groupoid.

2 Weyl Groupoids

Generalized Cartan matrix:An integer matrix Cr×r is called a Gen-
eralized Cartan matrix if :
1 cii = 2, cjk ≤ 0
2.cjk = 0⇒ cjk = 0.

Cartan Scheme: Let A be a nonempty finite set.I any finite set. Sup-
pose for all i in I we have maps ρi : A→ A and for any a in A we have
a Generalized Cartan matrix Ca .A tuple C = C(I, A, (ρi)i∈I , (Ca)a∈A)
is called a Cartan Scheme if :
1. ρ2i = id for all i in I

2. caij = c
ρi(a)
ij for all i,j in I,for all a in A.

Let αi(i ∈ I) be the standard basis for ZI .Define σai ∈ Aut(ZI) by
σai (αj) = αj − caijαi (extend by linearity). Then σai is a reflection.

Weyl Groupoid: The Weyl groupoid of a Cartan Scheme C is a cate-
gory W(C) such that Ob(W(C))=A . Morphisms are compositions of
maps σai ∈ Hom(a, ρi(a)) (compositions are induced by group structure
of Aut(ZI)). W(C) is a groupoid since it is a small category and every
morphism is an isomorphism.
Example Weyl groups:Let (W,S) be a Coxeter system with Cartan
matrix C. The Cartan scheme C({1, ..., |S|}, {a}, (id)i∈I , C) has Weyl
groupoid W(C)=Hom(a,a)=< σi|i ∈ S >=W. Thus Weyl groups are
Weyl groupoids.

We say a Cartan Scheme is connected if its Weyl groupoid is con-
nected, that is if for all a,b∈A there exists w∈Hom(a,b).
We say a Cartan Scheme is simply connected if its Weyl groupoid is
simply connected ,that is if Hom(a,a)={id} for all a ∈ A.

C(I, A, (ρi)i∈I , (Ca)a∈A) and C′(I ′ , A′ , (ρi′ )i′∈I′ , (Ca
′

)a′∈A′ ) are said

to be equivalent if there exist bijections :φ0 : I → I
′

and φ1 : A→ A
′

such that φ1(ρi(a)) = ρφ0(i)(φ1(a)) and caij = c
φ1(a)
φ0(i)φ0(j)

.

Let C be a Cartan scheme. For all a ∈ A let

(Rre)a = {idaσi1 ...σii(αj)|k ∈ N0, i1, ..., ik, j ∈ I}
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The elements of this set are called real roots (at a).
If the real roots of a Weyl groupoid form a finite root system (that is if
each (Rre)a is a finite set), then we will say that the Weyl groupoid is
finite.

3 Crystallographic arrangements

Let r ∈ N,V=Rr.For α ∈ V ∗ write α⊥=Ker(α)
An arrangement of hyperplanes A is a finite set of hyperplanes in V. Let
K(A) denote the set of chambers.If every chamber is a open simplicial
cone , we say that A is a simplicial arrangement.
Suppose A = {H1, ...,Hn} be simplicial.For each 1 ≤ i ≤ n, chose
xi ∈ V ∗ such that Hi = x⊥i ;let R = {±xi}.For any chamber K ∈ K(A)
we define BK = { normal vectors in R of the walls of K pointing inside }

Crystallographic arrangements Let A be a simplicial arrangement,
R ⊂ V ∗ is a finite set such that A = {α⊥|α ∈ R} and Rα ∩R = {±α}
for all α ∈ R.We say (A, R) is crystallographic if for all K ∈ K(A) we
have R ⊂

∑
α∈BK Zα

Two crystallographic arrangements (A, R) and (A′ , R′) are said to be
equivalent if there exist ψ ∈ Aut(V ∗) with ψ(R) = R

′
.

Examples1.Suppose R is set of roots of a crystallographic root sys-
tem.Then ({α⊥|α ∈ R}, R) is a crystallographic arrangement.
2.Let R=±{(1, 0), (3, 1), (2, 1), (5, 3), (3, 2), (1, 1), (0, 1)}.Then ({α⊥|α ∈
R}, R) is a crystallographic arrangement.

4 From arrangements to groupoids

Lemma:Let (A, R) be a crystallographic arrangement.Let K0,K be
adjacent chambers. Let BK0 = {α1, α2, ..., αr} ,then we have BK =
{−α1, β2, ..., βr}.Then there exists a permutation τ ∈ Sr with τ(1) = 1
and such that βi = cτ(i)α1 +ατ(i) , i = 2,...,r for certain c2, ..., cr ∈ N0.
Proof :Let σ be the linear map:

σ : V → V, α1 7→ −α1, αi 7→ βi for 2 ≤ i ≤ r

With respect to the basis BK0 , σ is a matrix of the form
−1 c2 . . . cr
0
... A
0


for some c2, ..., cr ∈ N0, A is a matrix with entries in N0.By interchang-
ing the roles of K0 and K ,we will have A−1 has entries in N0, and
hence A has to be a permutation matrix.
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Let K,K
′

be adjacent chambers and BK ∩ −BK′ = {α}.By lemma
there exist unique cβ ∈ N0 ,β ∈ BK \ {α} such that

φK,K′ : BK → BK
′
α 7→ −α, β 7→ β + cβα

is a bijection.
Fix a chamber K0 and fix an ordering BK0 = {α1, α2, ..., αr} For any
sequence µ1, ..., µm ∈ {1, ..., r} we get a unique chain of chambers
K0, ...,Km such that Ki and Ki+1 are adjacent and BKi ∩ −BKi+1 =
{φKi,Ki−1

...φK0,K1
(αµ1

)} for all i ∈ {1, 2, ...,m}. Define σKi
µi+1

: BKi →
BKi+1α 7→ φKi,Ki+1(α)
By lemma σKi

µi+1
∈ Aut(V ∗); (σKi

µi+1
)2 = id

We denote by σµm
...σµ2

σK0
µ1

= σ
Km−1
µm ...σK1

µ2
σK0
µ1

.
We construct a Weyl Groupoid for a crystallographic arrangement
(A, R) of rank r.
Let I = {1, ..., r}.Fix a chamber K0 and fix an ordering BK0 =
{α1, α2, ..., αr}.
Consider Â={(µ1, ..., µm)|m ∈ N, µi ∈ I ∀i}. We write a· ν for (µ1, ..., µm, ν)
where a = (µ1, ..., µm)
Have a map π :Â→ End(V ∗)(µ1, ..., µm) 7→ σµm

...σµ2
σK0
µ1

This yields an equivalence relation ∼ on Â via v ∼ w ⇐⇒ π(v) = π(w)
Define A=Â/∼.Each a ∈ A defines a unique map φa by φa = φKm,Km−1

...φK0,K1

where K0, ...,Km is the sequence corresponding to a = (µ1, ..., µm).We
write Ka = Km.
We define a generalized cartan matrix Ca as follows: Let i, j ∈ I, let
K ′ be the chamber adjacent to Ka with BK

a ∩ −BK′ = {φa(αi)} By
lemma there exist integers cij such that

φa·i(αj) = −cijφa(αi) + φa(αj)

We set Ca = (cij)1≤i,j≤r. We note that Ca = Cb if a ∼ b for

a, b ∈Â.Hence we get a well defined matrix for each element a of
A,which we denote by Ca.One can check that this is a generalized
cartan matrix.
We define maps ρ̂i : Â→ Â, a 7→ a· i
Since π(a) = π(b) implies φa = φb so this induces a well defined map

ρi : A→ A, a 7→ a· i

Theorem1:Let (A, R) be a crystallographic arrangement of rank r.
Then I, A, (ρi)i∈I , (C

a)a∈A defined as above forms a Cartan scheme C
which we denote by C(A, R,K0) ,which gives rise to a Weyl groupoid
W(A, R,K0).

As one would expect, choosing a different chamber or a different order-
ing of BK gives rise to equivalent Cartan schemes.In fact one has:
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Theorem2:Let U denote the set of all crystallographic arrangements
and C denote the set of all connected simply connected Cartan schemes
for which the real roots form a finite root system.Then the map

U/ ∼→ C/ ∼, (A, R) 7→ C(A, R,K)

where K is any chamber of A is a bijection.

We say a crystallographic arrangement is irreducible if the corre-
sponding Cartan scheme is irreducible ,that is if the real roots form a
irreducible root system.

5 Classification

Theorem3: There are exactly three families of connected simply con-
nected Cartan schemes for which the real roots form a finite irreducible
root system:
(1) The family of Cartan schemes of rank two parametrized by triangu-
lations of a convex n-gon by non-intersecting diagonals.
(2) For each rank r > 2, the standard Cartan schemes of type Ar, Br, Cr
and Dr , and a series of r − 1 further Cartan schemes.
(3) A family consisting of 74 further sporadic Cartan schemes (including
those of type F4, E6, E7 and E8 )of rank r, 3 ≤ r ≤ 8

Because of the bijection given in Theorem2 and the classification of The-
orem3, one obtains a classification for crystallographic arrangements:

Theorem4:There are exactly three families of irreducible crystallo-
graphic arrangements:
(1) The family of rank two parametrized by triangulations of a convex
n-gons by non-intersecting diagonals.
(2) For each rank r > 2, arrangements of type Ar, Br, Cr and Dr , and
a further series of r − 1 arrangements.
(3) Further 74 sporadic arrangements of rank r, 3 ≤ r ≤ 8.
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