
Course Project
(Introduction to Reflection Groups)

Three reflection theorem on hyperbolic plane

Ayan Maiti

22nd April,2013

Abstract

It is well known that an isometry of an n-dimensional Euclidean space is a product of at most n+ 1 reflections. Aim
of my talk is to show that a similar statement is true in the context of hyperbolic plane. I will explain the upper-half
plane model and the required concepts from hyperbolic geometry. Finally, conclude that a hyperbolic isometry is a
product of at most 3 hyperbolic reflections..

Introduction

We’ve proved in the class isometry of Sn and Rn can be written as at most n+ 1 reflections. In this project we’ll prove
this theorem for Hn where n = 2.

Theorem 1:

Any isometry in H2 can be written as at most 3 reflections.

Definition of H2 :

H2 is the upper half plane. (y > 0)

• Here the H2 lines are circles and semi-circles.

• Two parallel lines meet at ∞.

As in euclidean and spherical geometry, isometry of H2 are most simply expressed as complex functions. (i.e. functions
of Z = x+ iy)
Here the infinitesimal distance is defined as dS = |dZ|/ImZ.
Now we define isometries of H2 as functions from H2 7−→ H2, listed as below:

(a) tα(Z) = α+ Z for any α ∈ R.

(b) dρ(Z) = ρZ for any positive ρ ∈ R.

(c) r̄OY (Z) = −Z̄(reflection in the Y -axis).

Here we seem to be lacking rotations. H2- rotations are best grasped by mapping H2 onto the open unit disk D2 ,
where some rotations materialize as euclidean rotations about the origin.
we can define the H2 -rotations as J−1rθJ , where J : H2 7−→ D2 can be defined as J(Z) = iZ+1

Z+i and rθ is a D2

rotations. All these isometries preserves dS.



Now we are going to discuss an important proposition, which depends on moving an arbitrary H2- line segment PQ
in H2 to the Y -axis by H2 -isometries. This can be done by moving P onto the Y -axis by a suitable tα, then rotating
about P , until Q is on the Y -axis. As these H2 -isometries preserve circles and angles, the H2-line segment between P
and Q must be a part of a circle orthogonal to the real axis and passing through P and Q. This ”Circle” is the Y -axis
itself.

Proposition :

The H2- line segment between P and Q is the curve of shortest H2- length between P and Q.

Proof :

we can assume that the H2 -line segment PQ is a segment of the Y -axis. Now if C is any other curve from P to Q.

H2-length of C =
∫
C

√
dx2+dy2

y >
∫ Q
P

dy
y = H2- length of PQ.

Corollary :

If P,Q,R ∈ H2 ( H2 -length PR ) + (H2 -length RQ ) > ( H2 -length of PQ).

Proof :

We will take PR ∪RQ as the C.
If R is not on the H2- line through P, Q, which we again
take to be on the Y- axis.
Assume the situation in the following picture
Where K > sec(RPQ).
∴ K > 1.
∴ PR > PS. Similarly QR > SQ.
∴ PR+QR > PQ.

Now we want to prove a important lemma. To prove this lemma we want to move arbitrary P, Ṕ ∈ H2 to positions
which are mirror images of each other in the Y - axis. This can be done by first rotating about P until Ṕ has the same
Y -coordinate as P . Then one applies a suitable tα to make P and Ṕ equidistant from the Y -axis.

Lemma :

The set of points H2 -equidistant from two points P , Ṕ ∈ H2 is an H2 - line L, and H2 - reflection in L exchanges P
and Ṕ .

Proof :

By remarks above we can choose P , Ṕ to be mirror
images in the Y -axis , so that reflection r̄OY in the Y -axis
exchanges P and Ṕ . Since r̄OY is an H2 -isometry. Which
fixes each point Q on the Y -axis, it follows that any such Q
is H2 - equidistant from P , Ṕ . Thus, the H2 -equidistant
set of P and Ṕ includes Y -axis which is an H2-line.

Now suppose that H2 - equidistant set of P , Ṕ includes
a point R not on the Y -axis. Then the mirror image Ŕ of
R is also H2 -equidistant from P , Ṕ .

H2 -length of Ṕ Ŕ = H2 length of PR (by reflection
on the Y -axis).
= H2 length of ṔR (by hypothesis)
= H2 length of ṔQ + H2 length of QR
= H2 length of ṔQ + H2 length of QŔ
which proves a contradiction due to triangle inequality.

Note :

we can define a line by a set of equidistant points from two given points.
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Theorem 2:

Any isometry f of H2 is the product of one, two or three reflections.

Proof :

Choose three points A, B, C not in a line and consider their f -images f(A),f(B),f(C).
� If two of A, B, C coincide with their f -images, say A = f(A) and B = f(B), then reflection in the line L through

A and B must send C to f(c). As C and f(C) are equidistant from A = f(A) and B = f(B). This reflection, therefore
sends A, B, C to f(A), f(B), f(C) respectively, and hence coincides with f .
� If one of A, B, C coincide with its f -image, say A = f(A), first perform the reflection ḡ in the line M of points

equidistant from B and f(B), hence on M , it is fixed by ḡ, so ḡ sends A, B to f(A), f(B). If ḡ also sends C to f(C),
we are finished. If not, perform another reflection h̄ in the line through f(A), f(B) and conclude as above h̄ ḡ (c) =
f(C). Then h̄ ḡ sends A, B, C to f(A), f(B), f(C).
� Finally if none of A, B, C coincides with their f -images then we perform up to 3 reflections, in the lines L, M ,

N equidistant from A = f(A), B = f(B), C = f(C) respectively. Then one can easily see similarly the product of
these reflections sends A to f(A), B to f(B) and C to f(C).
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