Three reflection theorem on hyperbolic plane

Ayan Maiti

22nd April,2013

Abstract

It is well known that an isometry of an n-dimensional Euclidean space is a product of at most $n+1$ reflections. Aim of my talk is to show that a similar statement is true in the context of hyperbolic plane. I will explain the upper-half plane model and the required concepts from hyperbolic geometry. Finally, conclude that a hyperbolic isometry is a product of at most 3 hyperbolic reflections..

Introduction

We've proved in the class isometry of S^{n} and \mathbb{R}^{n} can be written as at most $n+1$ reflections. In this project we'll prove this theorem for H^{n} where $n=2$.

Theorem 1:

Any isometry in H^{2} can be written as at most 3 reflections.

Definition of H^{2} :

H^{2} is the upper half plane. $(y>0)$

- Here the H^{2} lines are circles and semi-circles.
- Two parallel lines meet at ∞.

As in euclidean and spherical geometry, isometry of H^{2} are most simply expressed as complex functions. (i.e. functions of $Z=x+i y$)
Here the infinitesimal distance is defined as $d S=|d Z| / \operatorname{Im} Z$.
Now we define isometries of H^{2} as functions from $H^{2} \longmapsto H^{2}$, listed as below:
(a) $t_{\alpha}(Z)=\alpha+Z$ for any $\alpha \in \mathbb{R}$.
(b) $d_{\rho}(Z)=\rho Z$ for any positive $\rho \in \mathbb{R}$.
(c) $\bar{r}_{O Y}(Z)=-\bar{Z}$ (reflection in the Y-axis).

Here we seem to be lacking rotations. H^{2} - rotations are best grasped by mapping H^{2} onto the open unit disk D^{2}, where some rotations materialize as euclidean rotations about the origin. we can define the H^{2}-rotations as $J^{-1} r_{\theta} J$, where $J: H^{2} \longmapsto D^{2}$ can be defined as $J(Z)=\frac{i Z+1}{Z+i}$ and r_{θ} is a D^{2} rotations. All these isometries preserves $d S$.

Now we are going to discuss an important proposition, which depends on moving an arbitrary H^{2} - line segment $P Q$ in H^{2} to the Y-axis by H^{2}-isometries. This can be done by moving P onto the Y-axis by a suitable t_{α}, then rotating about P, until Q is on the Y-axis. As these H^{2}-isometries preserve circles and angles, the H^{2}-line segment between P and Q must be a part of a circle orthogonal to the real axis and passing through P and Q. This "Circle" is the Y-axis itself.

Proposition :

The H^{2} - line segment between P and Q is the curve of shortest H^{2} - length between P and Q.

Proof :

we can assume that the H^{2}-line segment $P Q$ is a segment of the Y-axis. Now if C is any other curve from P to Q. H^{2}-length of $C=\int_{C} \frac{\sqrt{d x^{2}+d y^{2}}}{y} \geqslant \int_{P}^{Q} \frac{d y}{y}=H^{2}$ - length of $P Q$.

Corollary :

If $P, Q, R \in H^{2}\left(H^{2}\right.$-length PR $)+\left(H^{2}\right.$-length $\left.R Q\right) \geqslant\left(H^{2}\right.$-length of $\left.P Q\right)$.

Proof :

We will take $P R \cup R Q$ as the C.
If R is not on the H^{2} - line through P, Q, which we again take to be on the Y- axis.
Assume the situation in the following picture
Where $\mathrm{K} \geqslant \sec (R P Q)$.
$\therefore K>1$.
$\therefore P R>P S$. Similarly $Q R>S Q$.
$\therefore P R+Q R>P Q$.

Now we want to prove a important lemma. To prove this lemma we want to move arbitrary $P, \dot{P} \in H^{2}$ to positions which are mirror images of each other in the Y - axis. This can be done by first rotating about P until \dot{P} has the same Y-coordinate as P. Then one applies a suitable t_{α} to make P and P equidistant from the Y-axis.

Lemma:

The set of points H^{2}-equidistant from two points $P, \dot{P} \in H^{2}$ is an H^{2} - line L, and H^{2} - reflection in L exchanges P and P.

Proof :

By remarks above we can choose P, \dot{P} to be mirror images in the Y-axis, so that reflection $\bar{r}_{O Y}$ in the Y-axis exchanges P and \dot{P}. Since $\bar{r}_{O Y}$ is an H^{2}-isometry. Which fixes each point Q on the Y-axis, it follows that any such Q is H^{2} - equidistant from P, \dot{P}. Thus, the H^{2}-equidistant set of P and \dot{P} includes Y-axis which is an H^{2}-line.

Now suppose that H^{2} - equidistant set of P, \dot{P} includes a point R not on the Y-axis. Then the mirror image \dot{R} of R is also H^{2}-equidistant from P, \dot{P}.
H^{2}-length of $\dot{P} \dot{R}=H^{2}$ length of $P R$ (by reflection on the Y-axis).
$=H^{2}$ length of $\dot{P} R$ (by hypothesis)
$=H^{2}$ length of $P Q+H^{2}$ length of $Q R$
$=H^{2}$ length of $\dot{P} Q+H^{2}$ length of $Q \dot{R}$
which proves a contradiction due to triangle inequality.

Note :

we can define a line by a set of equidistant points from two given points.

Theorem 2:

Any isometry f of H^{2} is the product of one, two or three reflections.

Proof :

Choose three points A, B, C not in a line and consider their f-images $f(A), f(B), f(C)$.
\odot If two of A, B, C coincide with their f-images, say $A=f(A)$ and $B=f(B)$, then reflection in the line L through A and B must send C to $f(c)$. As C and $f(C)$ are equidistant from $A=f(A)$ and $B=f(B)$. This reflection, therefore sends A, B, C to $f(A), f(B), f(C)$ respectively, and hence coincides with f.
\odot If one of A, B, C coincide with its f-image, say $A=f(A)$, first perform the reflection \bar{g} in the line M of points equidistant from B and $f(B)$, hence on M, it is fixed by \bar{g}, so \bar{g} sends A, B to $f(A), f(B)$. If \bar{g} also sends C to $f(C)$, we are finished. If not, perform another reflection \bar{h} in the line through $f(A), f(B)$ and conclude as above $\bar{h} \bar{g}(c)=$ $f(C)$. Then $\bar{h} \bar{g}$ sends A, B, C to $f(A), f(B), f(C)$.
\odot Finally if none of A, B, C coincides with their f-images then we perform up to 3 reflections, in the lines L, M, N equidistant from $A=f(A), B=f(B), C=f(C)$ respectively. Then one can easily see similarly the product of these reflections sends A to $f(A), B$ to $f(B)$ and C to $f(C)$.

References

[1] Alexandre V. Borovik, Anna Borovik , Mirrors and Reflections: The Geometry of Finite Reflection Groups (Universitext)
[2] John Ratcliffe (Graduate Texts in Mathematics) Foundations of Hyperbolic Manifolds [2nd ed.] (9780387331973, 0387331972)
[3] tur-www1.massey.ac.nz/ ctuffley/slides/threereflections.pdf.

