Three reflection theorem on hyperbolic plane

Ayan Maiti

22nd April,2013

Abstract

It is well known that an isometry of an *n*-dimensional Euclidean space is a product of at most n + 1 reflections. Aim of my talk is to show that a similar statement is true in the context of hyperbolic plane. I will explain the upper-half plane model and the required concepts from hyperbolic geometry. Finally, conclude that a hyperbolic isometry is a product of at most 3 hyperbolic reflections.

Introduction

We've proved in the class isometry of S^n and \mathbb{R}^n can be written as at most n+1 reflections. In this project we'll prove this theorem for H^n where n = 2.

Theorem 1:

Any isometry in H^2 can be written as at most 3 reflections.

Definition of H^2 :

 H^2 is the upper half plane. (y > 0)

- Here the H^2 lines are circles and semi-circles.
- Two parallel lines meet at ∞ .

As in euclidean and spherical geometry, isometry of H^2 are most simply expressed as complex functions. (i.e. functions of Z = x + iy)

Here the infinitesimal distance is defined as dS = |dZ|/ImZ.

Now we define isometries of H^2 as functions from $H^2 \mapsto H^2$, listed as below:

- (a) $t_{\alpha}(Z) = \alpha + Z$ for any $\alpha \in \mathbb{R}$.
- (b) $d_{\rho}(Z) = \rho Z$ for any positive $\rho \in \mathbb{R}$.
- (c) $\bar{r}_{OY}(Z) = -\bar{Z}$ (reflection in the Y-axis).

Here we seem to be lacking rotations. H^2 - rotations are best grasped by mapping H^2 onto the open unit disk D^2 , where some rotations materialize as euclidean rotations about the origin.

we can define the H^2 -rotations as $J^{-1}r_{\theta}J$, where $J: H^2 \mapsto D^2$ can be defined as $J(Z) = \frac{iZ+1}{Z+i}$ and r_{θ} is a D^2 rotations. All these isometries preserves dS.

Now we are going to discuss an important proposition, which depends on moving an arbitrary H^2 - line segment PQin H^2 to the Y -axis by H^2 -isometries. This can be done by moving P onto the Y -axis by a suitable t_{α} , then rotating about P, until Q is on the Y-axis. As these H^2 -isometries preserve circles and angles, the H^2 -line segment between P and Q must be a part of a circle orthogonal to the real axis and passing through P and Q. This "Circle" is the Y-axis itself.

Proposition :

The H^2 - line segment between P and Q is the curve of shortest H^2 - length between P and Q.

Proof:

we can assume that the H^2 -line segment PQ is a segment of the Y-axis. Now if C is any other curve from P to Q. H^2 -length of $C = \int_C \frac{\sqrt{dx^2 + dy^2}}{y} \ge \int_P^Q \frac{dy}{y} = H^2$ - length of PQ.

Corollary :

If $P, Q, R \in H^2$ (H^2 -length PR) + (H^2 -length RQ) \geq (H^2 -length of PQ).

Proof:

Now we want to prove a important lemma. To prove this lemma we want to move arbitrary $P, \dot{P} \in H^2$ to positions which are mirror images of each other in the Y- axis. This can be done by first rotating about P until \dot{P} has the same Y-coordinate as P. Then one applies a suitable t_{α} to make P and \dot{P} equidistant from the Y -axis.

Lemma :

The set of points H^2 -equidistant from two points $P, \acute{P} \in H^2$ is an H^2 - line L, and H^2 - reflection in L exchanges P and \acute{P} .

Proof:

By remarks above we can choose P, \acute{P} to be mirror images in the Y -axis, so that reflection \bar{r}_{OY} in the Y-axis exchanges P and \acute{P} . Since \bar{r}_{OY} is an H^2 -isometry. Which fixes each point Q on the Y -axis, it follows that any such Qis H^2 - equidistant from P, \acute{P} . Thus, the H^2 -equidistant set of P and \acute{P} includes Y-axis which is an H^2 -line.

Now suppose that H^2 - equidistant set of P, \acute{P} includes a point R not on the Y -axis. Then the mirror image \acute{R} of R is also H^2 -equidistant from P, \acute{P} .

 H^2 -length of \acute{P} $\acute{R} = H^2$ length of PR (by reflection on the Y-axis).

 $= H^2$ length of $\hat{P}R$ (by hypothesis)

 $= H^2$ length of $\dot{P}Q + H^2$ length of QR

 $= H^2$ length of $\dot{P}Q + H^2$ length of $Q\dot{R}$

which proves a contradiction due to triangle inequality.

Note :

we can define a line by a set of equidistant points from two given points.

Theorem 2:

Any isometry f of H^2 is the product of one, two or three reflections.

Proof :

Choose three points A, B, C not in a line and consider their f -images f(A), f(B), f(C).

 \odot If two of A, B, C coincide with their f-images, say A = f(A) and B = f(B), then reflection in the line L through A and B must send C to f(c). As C and f(C) are equidistant from A = f(A) and B = f(B). This reflection, therefore sends A, B, C to f(A), f(B), f(C) respectively, and hence coincides with f.

⊙ If one of A, B, C coincide with its f-image, say A = f(A), first perform the reflection \bar{g} in the line M of points equidistant from B and f(B), hence on M, it is fixed by \bar{g} , so \bar{g} sends A, B to f(A), f(B). If \bar{g} also sends C to f(C), we are finished. If not, perform another reflection \bar{h} in the line through f(A), f(B) and conclude as above $\bar{h} \bar{g}(c) = f(C)$. Then $\bar{h} \bar{g}$ sends A, B, C to f(A), f(B), f(C).

 \odot Finally if none of A, B, C coincides with their f-images then we perform up to 3 reflections, in the lines L, M, N equidistant from A = f(A), B = f(B), C = f(C) respectively. Then one can easily see similarly the product of these reflections sends A to f(A), B to f(B) and C to f(C).

References

- [1] Alexandre V. Borovik, Anna Borovik , Mirrors and Reflections: The Geometry of Finite Reflection Groups (Universitext)
- [2] John Ratcliffe (Graduate Texts in Mathematics) Foundations of Hyperbolic Manifolds [2nd ed.] (9780387331973, 0387331972)
- [3] tur-www1.massey.ac.nz/ ctuffley/slides/threereflections.pdf.