Reflections on Manifold

Ayan Sengupta

22nd April 2013

Abstract

Here I will consider the group of diffeomorphisms (see page 4 of ref. 4) generated by separating reflections on a connected differentiable manifold(see page 2 of ref. 4). We call them reflection group for brevity. Later I will define the analogous definition of hyperplane arrangement, walls, chambers, galleries for a manifold with a beautiful example. I'll also show that the reflection group on manifolds have exactly similar properties with that of a reflection group on Affine n-space.

Introduction

A n-dimensional manifold is a topological space whose each point has a neighborhood which is homeomorphic to an open subset of \mathbb{R}^{n}. A differentiable manifold is a manifold with a global differential structure(intuitively a structure where we can use differential calculus). A reflection s on M is a diffeomorphism $s: M \rightarrow M$ such that $s^{2}=1$.
$M_{s}=\{x \in M \mid s(x)=1\} . M_{s}$ has co-dimension 1 in $M . s$ is called separating if $M-M_{s}$ is disconnected. A reflection group W acting on M is a discrete group of diffeomorphism of M generated by separating reflections.

Geometry of manifolds

Proposition 1 :

Let s be a reflection of M. Then $M-M_{s}$ has at most two connected components.
Proof : Let x_{0} and x_{1} in $M-M_{s}$ and let $x(t)$ be a piecewise path from x_{0} and x_{1} that intersects M_{s} transversally. Let $x\left(t_{1}\right), \ldots x\left(t_{N}\right)$ be the points of intersection. Consider the new path $\widetilde{x}(t)$ such that $\widetilde{x}(t)=x(t)$ for $0 \leq t \leq t_{1}$; $\widetilde{x}(t)=s x(t)$ for $t_{1} \leq t \leq t_{2} ; \widetilde{x}(t)=x(t)$ for $t_{2} \leq t \leq t_{3}$
Deform the path $\widetilde{x}(t)$ such that in a small neighborhoods of $x\left(t_{1}\right), \ldots, x\left(t_{N}\right)$ to make it come off M_{s}.(see fig. 1)

Figure 1

The resulting path $\widetilde{x}(t)$ does not intersect M_{s} at all if N is even and intersects once if N is odd. Thus any $x, y \in M_{s}$ can be joined by a continuous path intersecting M_{s} at most once. Assume $M-M_{s}$ has three connected components X, Y, Z and choose three points x, y, z in X, Y, Z respectively. Then there are paths $\gamma, \widetilde{\gamma}$ from x to y and from y to z respectively intersecting M_{s} once. The composite path $\gamma \widetilde{\gamma}$ from x to z intersects M_{s} twice. This leads to a contradiction.
From this proposition we can easily conclude that any continuous path between any two points in M intersects with M_{s} even number of times if and only if they lie in the same component.

Example 1:

(a) Let $M=S^{1} \times S^{1}$ be the two dimensional torus. Then the reflection about it's diagonal is not separating.
(b) Let $M=S^{1}$ be the unit circle at origin. Then any reflection about it's diameter is separating.

Fact 1 :

If M is simply connected ${ }^{1}$ then any reflection of M is separating.

Analog of hyperplane arrangement in manifolds

In the rest of the paper I'll consider only separating reflections and groups generated by them. By Fact 1 , if M is simply connected then the assumption is automatically satisfied.

Now I'll establish some terminology.

- Half space : The closures $M_{s}{ }^{\varepsilon}, \varepsilon= \pm 1$, of connected components of $M-M_{s}$ are the two closed half-spaces. If $A \subset M$ intersects only one component of $M-M_{s}$ then we denote the corresponding half-space by $M_{s}(A)^{+}$and the other by $M_{s}(A)^{-}$
- Wall and Chamber : The sets $M_{s}, s \in R$ are called the (reflecting)walls of M and the closure of the connected components of $M-\cup_{s \in R} M_{s}$ are the chambers of M. Since a wall M_{s} defines s uniquely so one can identify elements of R with the corresponding walls.
- Face : Faces of a chamber C are the elements of the set $C \cap \cup_{s \in R} M_{s}$
- Adjacent chamber : Two chambers $C \neq D$ are adjacent if they have a common face. Let M_{r} be the unique wall containing this face then $D=r C$.
- Gallery and minimal gallery : A sequence of chambers $C_{0}, C_{1}, \ldots, C_{N}$ of chambers is a gallery of length N going from C_{0} to C_{N} if for $i=1,2, \ldots, N$ the chambers C_{i-1}, C_{i} are adjacent. If $C_{i}=r_{i} C_{i-1}$ for all i then the corresponding sequence of reflections is $r_{1}, r_{2}, \ldots, r_{N}$. The distance between C and D denoted by $d(C, D)$ is the length of the minimal sequence of reflections $r_{1}, r_{2}, \ldots, r_{N}$. A minimal gallery from C to D is the minimal gallery $C_{0}, C_{1}, \ldots, C_{N}$ such that $C=C_{0}$ and $D=C_{N}$. A wall M_{s} separates C and D if $C \subset M_{s}{ }^{\varepsilon}$ and $D \subset M_{s}{ }^{-\varepsilon}$. The set of reflections separating C and D is denoted by $R(C, D)$.

Example 2 :

In this figure $\{\{(1,0),(-1,0)\}, \quad\{(1 / 2, \sqrt{3} / 2)$, $(-1 / 2,-\sqrt{3} / 2)\}, \quad\{(-1 / 2, \sqrt{3} / 2),(1 / 2,-\sqrt{3} / 2)\}\}$ is the hyperplane arrangement. $\left\{C_{0}, C_{1}, C_{2}, C_{3}, C_{4}, C_{5}\right\}$ is the set of chambers. Faces of C_{0} are $(1 / 2,-\sqrt{3} / 2)$ and $(-1 / 2,-\sqrt{3} / 2)$. Here $C_{0}, C_{1}, C_{2}, C_{3}, C_{4}$ is gallery from C_{0} to C_{4}. But the minimal gallery from C_{0} to C_{4} is C_{0}, C_{5}, C_{4}. So, $d\left(C_{0}, C_{4}\right)=2$

Figure 2

[^0]
Properties of reflection groups

Proposition 2 :

$C=C_{0}, C_{1}, \ldots, C_{N}=D$ is a minimal gallery from C to D if and only if $\left\{r_{1}, r_{2}, \ldots, r_{N}\right\}=R(C, D)$
Proof : I'll prove this proposition by showing $\left\{r_{1}, r_{2}, \ldots, r_{N}\right\} \subseteq R(C, D)$ and $\left\{r_{1}, r_{2}, \ldots, r_{N}\right\} \supseteq R(C, D)$ by an intuitive idea.
Let $r \in R(C, D)$. So, $C \subset M_{r}{ }^{\varepsilon}$ and $D \subset M_{r}{ }^{-\varepsilon}$. A gallery from a chamber C to another chamber D can be visualized as a path from C to D. As, C and D lies in the different half-space so, the path must cuts M_{r}. So, there are two chambers C_{i} and C_{i+1} such that $C_{i} \subset M_{r}{ }^{\varepsilon}$ and $C_{i+1} \subset M_{r}{ }^{-\varepsilon}$ and $C_{i+1}=r C_{i}$. Then $r \in\left\{r_{1}, r_{2}, \ldots, r_{N}\right\}$. So, $\left\{r_{1}, r_{2}, \ldots, r_{N}\right\} \supseteq R(C, D)$
If $r \in\left\{r_{1}, r_{2}, \ldots, r_{N}\right\}$ and $r \notin R(C, D)$ then C and D lies in the same half-space of $M-M_{r}$. So, the path from C to D cuts M_{r} even number of times.
By a similar construction as I did in proposition 1 I can construct a new path which does not intersect with M_{r}. This new path is equivalent to a new gallery from C to D. It is obvious from the following figure(see figure 3) that the length of the new gallery is less than the length of the previous gallery. This contradicts with the assumption that $C=C_{0}, C_{1}, \ldots, C_{N}=D$ is a minimal gallery from C to D.
So, $\left\{r_{1}, r_{2}, \ldots, r_{N}\right\} \subseteq R(C, D)$

Figure 3
We've a gallery G from C to $D C_{0}=C, C_{1}, C_{2}, C_{3}, C_{4}, C_{5}=D$. We construct new gallery \dot{G} from C to $D C_{0}=$ $C, \dot{C}_{1}, \dot{C}_{2}, \dot{C}_{3}=D$. length of $\dot{G}=$ length of $G-2$.

Corollary 1 :

Let $D \neq C$ be two chambers, let M_{s} (resp. M_{r}) be a wall of C (resp. D) such that $r, s \in R(C, D)$. Then there exists a minimal gallery $C=C_{0}, C_{1}, \ldots, C_{N}=D$ such that $C_{1}=s C$ and $C_{N-1}=r D$.

Proof:
I'll apply induction to $d(C, D)$. If $d(C, D)=1$ then obviously $r=s$. So, the assertion is trivial. If $t \in R$ and $t \neq s$ then t can not separate $s C$ from C. Moreover, if $t \in R(C, D)$ then $C, s C \subseteq M_{t}(D)^{-}$and if $t \notin R(C, D)$ then $C, s C \subseteq M_{t}(D)^{+}$. Therefore $R(s C, D)=R(C, D) \backslash\{s\}$ and $d(s C, D)=d(C, D)-1$.
This proves the corollary.
Let W be the reflection group acting on M and let $R \subset W$ be the set of reflections in W. The group W acts on the set R by conjugations $r \rightarrow g r g^{-1}$ which I'll denote $g . r$ for my convenience. The group W acts on the set of chambers of M. As in a manifold there is no analogue of root system, then without loss of generality we can choose any chamber C_{+}to be fundamental chamber. We denote the set of reflections in the walls of C_{+}by $S_{C_{+}} . s \in S_{C_{+}}$are called simple reflections of M.

Proposition 3 :

(i) Any $r \in R$ is conjugate to some $s \in S$.
(ii) S generates W.

Proof:

Let $r \in R$ and let C be such that M_{r} is a wall of C. Let \widetilde{W} be the subgroup of W generated by S. There is a $w \in \widetilde{W}$ such that $w^{-1} C=C_{+}$(as C_{+}is the fundamental chamber). Thus $w^{-1} M_{r}$ is a wall of C_{+}.
So, $w^{-1} M_{r}=M_{s}$ for some $s \in S$, therefore $r=w s w^{-1}$. This proves (i). From (i) we get that $R \subseteq \widetilde{W}$. The group W is generated by R and $R \subseteq \widetilde{W}$. Thus $W=\widetilde{W}$. This proves $(i i)$.

Proposition 4 :

(i) W acts simply transitively on the set of chambers. i.e. for any two chambers C_{i} and C_{j} there exists an unique $g \in W$ such that $C_{i}=g C_{j}$.
(ii) Let $g \in W$ and let $g=s_{1} s_{2} \ldots s_{N}$ be a decomposition of g into simple reflections. Then the sequence $C_{0}=$ $C_{+}, C_{1}=s_{1} C_{+}, \ldots, C_{i}=s_{1} s_{2} \ldots s_{i} C_{+}, \ldots, C_{N}=s_{1} s_{2} \ldots s_{N} C_{+}$is a gallery. This establishes a one to one correspondence between the word in s_{i} and galleries starting from C_{+}.

Proof :
This prove is exactly same as that we've done in our course for hyperplane arrangement in Affine n-space.(see page 86,87 of ref. 1.)

Choose a fundamental chamber C_{+}from the set of chambers and let S be the corresponding set of simple reflections. S generate W. A decomposition of $g=s_{1} s_{2} \ldots s_{N}, s_{i} \in S$ of $g \in W$ is called minimal if it is the shortest possible decomposition. Then we denote the length of g to be $d(g)=N$. The distance $d(g, h)$ is defined by $d(g, h)=d\left(g^{-1} h\right)$. We denote $M_{r}\left(C_{+}\right)^{\varepsilon}$ by just $M_{r}{ }^{\varepsilon}$ and $R\left(C_{+}, g C_{+}\right)$by $R(g)$.

Corollary 2 :

(i) For any $g, h \in W, d(g, h)=d\left(g C_{+}, h C_{+}\right)$and $d(g)=|R(g)|$.
(ii) $R(g)=\left\{r \in R \mid g^{-1} M_{r}{ }^{\varepsilon}=M_{g^{-1} . r}{ }^{-\varepsilon}\right\}$

Proof:
(i) follows immediately from Proposition 2 and 4.
$R(g)=\left\{r \in R \mid g C_{+} \subset M_{r}^{-}\right\}$.
Since $g^{-1} g C_{+}=C_{+}$we have $g^{-1} M_{r}^{-}=M_{g^{-1} r}^{+}$. On the other hand if $r \notin R(g)$ then $g C_{+} \subset M_{r}^{+}$therefore $g^{-1} M_{r}^{+}=M_{g^{-1} r}{ }^{+}$. This proves (ii).

For $x \in M$ define isotropy subgroup W_{x} of W by $W_{x}=\{g \in W \mid g(x)=x\}$ and $R_{x}=\{r \in R \mid r(x)=x\}$

Proposition 4 :

(i) Let $x, y \in C, g \in W$ and let $g x=y$. Then $x=y$ and $g \in W_{x}$.
(ii) For any $x \in M$ the group W_{x} is generated by reflections $r \in R_{x}$.

Proof :
Let C, D be such chambers such that $C \cap D \neq \Phi$. Since any wall that separates C and D, contains $C \cap D$. A minimal gallery $C=C_{0}, C_{1}, \ldots, C_{N}=D$ going from C to D crosses only the walls $M_{r} \in R(C, D)$, so every chamber C_{1}, \ldots, C_{N-1} contains $C \cap D$.
So the corresponding sequence on reflections $\left\{r_{1}, r_{2}, \ldots, r_{N}\right\}$ leave $C \cap D$ fixed point-wise. Now $g=r_{N} r_{N-1} \ldots r_{1}$. As $\left\{r_{1}, r_{2}, \ldots, r_{N}\right\}$ leave $C \cap D$ fixed so is g.
So, $x=g \cdot g x=g y=y$. Hence (i) holds.
For $x \in M$ let C be the chamber containing it. By the same argument as before any $g \in W_{x}$ is a product of $r_{i} \in R_{x}$ which proves (ii).

Corollary 3 :

The natural mapping $\varphi: C_{+} \rightarrow M / W$ is an isomorphism. ${ }^{2}$

Main Theorem

Coxeter group :

Definition:
A coxeter group is a group W with a finite set S of generators and a presentation $W=\left\langle S \mid(s r)^{m(s, r)}=1 \forall r, s \in S\right\rangle$.
Where the function $m: S \times S \rightarrow\{1,2, \ldots, \infty\}$
Example :
(a) Coxeter group of type A_{n-1} is $W=\langle S|\left(s_{i}\right)^{2}=1 \forall 0 \leq i \leq n-1 ; s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1} \forall 1 \leq i \leq n-2 ; s_{i} s_{j}=$ $\left.s_{j} s_{i} \forall|i-j|=1\right\rangle \cong S_{n}$.
(b) Coxeter group of type B_{n} is $W=\langle S|\left(s_{i}\right)^{2}=1 \forall 0 \leq i \leq n-1 ; s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1} \forall 1 \leq i \leq n-2 ; s_{i} s_{j}=$ $\left.s_{j} s_{i} \forall|i-j|>1 ;\left(s_{0} s_{1}\right)^{2}=\left(s_{1} s_{0}\right)^{2}\right\rangle \cong S_{n}{ }^{B}$ the group of signed permutation.

Main Theorem on representation of reflection groups :

Let W be a reflection group acting on M, let C_{+}be a fundamental chamber, let $S \subset R$ be the corresponding set of simple reflections and for $s, r \in S$ let $m(s, r)$ be the order of $s r$. Then W is a coxeter group with the presentation

$$
W=\left\langle S:(s r)^{m(s, r)}=1\right\rangle
$$

[^1]
Main Example

Here I'll consider S^{1} and it's reflection group W generated by finite number of it's dissecting reflections.(reflections w.r.t it's diameters)

We know that a group of orthogonal transformations in \mathbb{R}^{2} consisting of at least one reflection is a dihedral group. Moreover, if the generator s, r meets at an angle of π / m then the reflection group is the coxeter group of order $2 m$ with the presentation

$$
D_{m}=\left\langle s, r: s^{2}=r^{2}=(s r)^{m}=1\right\rangle
$$

So, if we consider the example that we've seen in example 2 there each walls are meeting at $\pi / 3$. So, the reflection group is D_{6}.

Labeling of chambers of Example 2 :

Figure 4
Here choose fundamental chamber C_{+}to be C_{3}. So, the set of simple reflection $S=\{s, r\}$
So, reflection group $W=\left\langle s, r: s^{2}=r^{2}=(s r)^{3}=1\right\rangle$.
Figure 4 is showing the labeling of S^{1} by the elements of W.

Conclusion

So, we've seen that reflections in manifold is more generalized than reflections in euclidean space and both of them satisfy almost similar properties. In figure 4 we've found that the reflection group generated by two dissecting reflection of S^{1} is coxeter group of order 6 . This illustrates the main theorem.

References

1. A. Borovick, A. Borovick, Mirrors and Reflections, Springer UTM 2009.
2. Geometry and combinatorics of groups generated by reflections, Eugene Gutkin
3. Reflection groups on Riemannian manifolds, Dmitri Alekseevsky, Andreas Kriegl, Mark Losik, Peter W. Michor, http://arxiv.org/abs/math/0306078
4. Antoni A. Kosinski, Differential manifold, Academic press,INC 1993

[^0]: ${ }^{1}$ A simply connected space is a topological space which is path connected and has trivial fundamental group(equivalently where every loop can be shrunk to a point).e.g. S^{n} for $n \geq 2, \mathbb{R}^{n}$ for $n \geq 1$.

[^1]: ${ }^{2}$ We denote by M / s the quotient of M by the action of s endowed with natural topology. e.g. for a) of Example $1 \mathrm{M} / \mathrm{s}$ is the Möbius band.

