Course Project (Introduction to Reflection Groups)

Specht method for constructing irreducible representations of groups of type A_n and B_n

Shraddha Srivastava April 29, 2013

Abstract

Representation theory of finite groups is an important branch of mathematics. In the context of reflection groups one can see a rich interplay between algebra and combinatorics. In this talk I shall focus on 2 classes of reflection groups; the symmetric groups (type A) and the octahedral groups (type B). I will explain, in detail, the Specht method of constructing all irreducible representations of these groups upto equivalence.

1 Introduction

I will assume that reader is familier with the representation theory of finite groups. For the details of representation of finite group reader may refer reference [1]. A representation of a group G is a group homomorphism $G \to GL(V)$ where V is finite dimensional vector space over \mathbb{C} which is also equivalent to a module over $\mathbb{C}[G]$, which can be easily seen. An irreducible representation correspond to simple $\mathbb{C}[G]$ module. A general strategy to construct irreducible representation of G will be:

- 1. Determine the conjugacy class of G,
- 2. For each conjugacy class λ , construct an irreducible representation V_{λ} in such a way that V_{λ} is not equivalent to V_{μ} for $\lambda \neq \mu$.

In Specht method we construct explicitly simple $\mathbb{C}[G]$ -module , as suitable subspaces of the polynomial algebra in n variables over \mathbb{C}

Figure 2.1: Young Diagram for (5,4,1)

2 Type A_n

We have seen in class that Coxeter group corresponding the Coxeter graph of type A_n is isomorphic to S_n which is symmetric group on n symbols.

2.1 The conjugacy class of S_n

Partition of *n*: A decreasing sequence of positive intergers $\lambda = (\lambda_1, ..., \lambda_r)$ is called partition of *n* if $\sum \lambda_i = n$ and is denoted by $\lambda \vdash n$.

Theorem: The set of all conjugacy classes of S_n is naturally bijective with the set of all partitions of n.

2.2 Young diagrams and Tableaux

Young diagram: Given a partition $\lambda = (\lambda_1, ..., \lambda_r) \vdash n$, by a Young diagram T_{λ} of shape λ , we mean a left and top aligned frame of empty boxes having r rows and λ_1 columns in such a way i^{th} row has λ_i boxes for $1 \leq i \leq r$. See figure 2.1 for an example.

Conjugate partitions: Given a partition $\lambda = (\lambda_1, ..., \lambda_r) \vdash n$, the partition $\lambda' = (\lambda'_1, ..., \lambda'_s) \vdash n$ is called the conjugate of λ where λ'_i is the number of boxes in the *i*th column of Young diagram T_{λ} of shape λ .

Young Tableaux:Given a partition $\lambda = (\lambda_1, ..., \lambda_r) \vdash n$, by a Young tableaux ,we mean a Young diagram T_{λ} of shape λ whose boxes are filled with the intergers between 1 to n without repetition.See figure 2.2 for example.

There are exactly n! Young tableaux of any given shape λ .Given $\lambda \vdash n$ and $\sigma \in S_n$, the Young tableaux $T_{\lambda}(\sigma)$ of shape λ is the diagram T_{λ} which is filled with entries $\sigma(1), ..., \sigma(n)$ down the coulmns starting with the first column ,left to right.

2.3 Specht modules for S_n

We shall give the Specht construction of the irreducible representations of S_n . Let $K = \mathbb{C}[x_1, ..., x_n]$ be the polynomial algebra over \mathbb{C} in the n

1	2	4	7	8
3	5	6	9	
10				

Figure 2.2: Young Tableaux

variables $x_1, ..., x_n$. $S_n \curvearrowright K$ by permuting the variables i.e.

$$\theta(f(x_1, ..., x_n)) = f(x_{\theta(1)}, ..., x_{\theta(n)})$$

 $\forall \theta \in S_n, f \in K$. For each positive integer m.Let H_m denote the space of all homogeneous polynomials of degree m in K which is a finite dimensional vector space of K.Each H_m is an S_n -module of K. Given a partition $\lambda \vdash n$,let λ' be the conjugate of λ .Let $\lambda = (\lambda_1, ..., \lambda_r)$, $\lambda' = (\lambda'_1, ..., \lambda'_s)$ Let

$$m_{\lambda} = \frac{1}{2} \sum_{j=1}^{s} \lambda'_{j} (\lambda'_{j} - 1)$$
(2.1)

Let T_{λ} be a fixed Young tableaux of shape λ . Let $a_{1j}, ..., a_{\lambda'_j j}$ be the entries of the j^{th} column of T_{λ} . Define

$$\Delta_{j} = \Delta_{j}(a_{1j}, \dots, a_{\lambda'_{j}j}) = \begin{vmatrix} 1 & \cdots & 1 \\ x_{a_{1j}} & \cdots & x_{a_{\lambda'_{j}}} \\ x_{a_{1j}}^{2} & \cdots & x_{a_{\lambda'_{j}}}^{2} \\ & \cdots & & \\ x_{a_{1j}}^{\lambda'_{j}-1} & \cdots & x_{a_{\lambda'_{j}}}^{\lambda'_{j}-1} \end{vmatrix}$$
Which is a Van-

dermonde determinant and so we know that

$$\Delta_j = \prod_{1 \le p < q \le \lambda'_j} (x_{a_{qj}} - x_{a_{pj}})$$

2.3.1 Specht polynomials:

Let $\Delta(T_{\lambda}) = \prod_{j=1}^{\lambda_1} \Delta_j$. This is a homogeneous polynomial of degree m_{λ} , called the Specht polynomial associated to the Young tableaux T_{λ} . For $\sigma \in S_n$, we have $\sigma \Delta(T_{\lambda}) = \Delta(\sigma T_{\lambda})$.

2.3.2 Specht modules

Given $\lambda \vdash n$, the cyclic S_n -submodule of $H_{m_{\lambda}}$ generated by the Specht polynomial $\Delta(T_{\lambda})$ is independent of the tableaux T_{λ} but depends only on shape λ . It is called the Specht module associated to the partition λ and is denoted by W_{λ} .

Theorem 2.1. For $\lambda \vdash n$, the Specht modules W_{λ} is simple S_n -module.

Proof. Refer [2].

Theorem 2.2. For $\lambda \neq \mu$, the Specht modules W_{λ} , W_{μ} are non-isomorphic.

Proof. We do this by showing that $Ann_{\mathbb{C}[S_n]}W_{\lambda} \neq Ann_{\mathbb{C}[S_n]}W_{\mu}$. The details of the proof are in [2].

3 Type B_n

Treat S_{2n} as the group of permutation of the 2n symbols $\pm 1, \dots, \pm n$.

3.1 The group B_n :

For an integer $n \ge 2, B_n := \{\theta \in S_{2n} | \theta(i) + \theta(-i) = 0\}.$

3.1.1 Positive and Negative Cycles:

An element in B_n which is

- 1. a product of 2 l-cycles in S_{2n} of the form $\theta = (a_1, \dots, a_l)(-a_1, \dots, -a_l)$ is called postive l-cycles.
- 2. a 2*l* cycles in S_{2n} of the form $\theta = (a_1, \cdots, a_l, -a_1, \cdots, -a_l)$

Some facts for the group B_n :

- 1. $B_n \cong C_2^n \rtimes S_n$.See [3].
- 2. Every element of B_n can be uniquely expressed as a product of disjoint positive and negative cycles.

3.1.2 Complementary partitions:

Two partitions $\lambda \vdash a$ and $\mu \vdash b \ a, b \ge 0$ are said to be complementary partitions of an integer if a + b = n. An ordered pair (λ, μ) of complementary partitions of n is denoted by $(\lambda, \mu) \models n$.

Fact: The set of conjugacy classes of B_n is naturally bijective with the set of pairs of complementary partitions.

3.2 Young diagram and Young tableaux for B_n

Given $(\lambda, \mu) \models n$, let $\lambda = (\lambda_1, ..., \lambda_r)$ and its conjugate partition $\lambda' = (\lambda'_1, ..., \lambda'_{r'})$. Likewise , let $\mu = (\mu_1, ..., \mu_s)$ and its conjugate $\mu' = (\mu'_1, ..., \mu'_{s'})$.

Young diagram: Given $(\lambda, \mu) \vdash n$, by a Young diagram of shape (λ, μ) or a (λ, μ) - diagram $T_{(\lambda,\mu)}$ of shape (λ, μ) we mean a pair of Young diagrams T_{λ} and T_{μ} of shape λ and μ respectively.

Young tableaux: We fill a (λ, μ) -Young diagram by filling the entries of T_{λ}, T_{μ} by $\{\pm 1, ..., \pm n\}$ in such a way that each *i* or -i must occur but not both.

3.3 Specht modules for B_n

Consider K as previous. Define $x_{-j} = -x_j$ for all $1 \le j \le n$ Now the group B_n acts lineally on the polynomial algebra K by permuting and sign change of variables.

1. For non-zero intergers $a_1, ..., a_l$ between -n and n, define a Vandermonde type determinant , namely,

$$\Omega(a_1, \dots, a_l) = \begin{vmatrix} 1 & \dots & 1 \\ x_{a_1}^2 & \dots & x_{a_l}^2 \\ \dots & \dots & \dots \\ x_{a_1}^{2l-2} & \dots & x_{a_l}^{2l-2} \end{vmatrix}$$

we have
$$\Omega(a_1, \dots, a_l) = \prod_{1 \le j \le k \le l} (x_{a_k}^2 - x_{a_j}^2)$$

2. Given $(\lambda, \mu) \models n$, let $\lambda \vdash l$ and $\mu \vdash m$ with l + m = n. Let $T_{(\lambda,\mu)}(\theta) = (T_{\lambda}(\theta), T_{\mu}(\theta))$ be a Young tableaux of shape (λ, μ) filled along a $\theta \in B_n$ where $T_{\lambda}(\theta)$ is filled with $\{\theta(i) | i \leq l\} = \{a_{jk}\}$ and $T_{\mu}(\theta)$ filled with $\{\theta(j) | l + 1 \leq j \leq n\} = \{b_{jk}\}$.

Let
$$\Delta_{(\lambda,\mu)}(\theta) = \Gamma_{\lambda}(\theta)\Omega_{\lambda}(\theta)\Omega_{\mu}(\theta)$$
, where $\Gamma_{\lambda}(\theta) = \prod_{j=1}^{\lambda_{1}'} \prod_{k=1}^{\lambda_{1}} x_{a_{jk}}$
 $\Omega_{\lambda}(\theta) = \prod_{k=1}^{\lambda_{1}} \Omega(x_{a_{1k}}, ..., x_{a_{\lambda_{k}'k}})$,
 $\Omega_{\mu}(\theta) = \prod_{k=1}^{\mu_{1}} \Omega(x_{a_{1k}}, ..., x_{a_{\mu_{k}'k}})$.

3.3.1 Specht polynomials for B_n

Given $(\lambda, \mu) \models n$ and $\theta \in B_n$, the homogeneous polynomial $\Delta_{(\lambda,\mu)}(\theta)$, defined above, is called the Specht polynomial associated to θ .

3.3.2 Specht modules for B_n

Given $(\lambda, \mu) \models n$ the cyclic B_n – submodule of K generated by the Specht polynomial $\Delta_{(\lambda,\mu)}$ associated to (λ,μ) and is denoted by $W_{(\lambda,\mu)}$. **Theorem:**The Specht module $W_{(\lambda,\mu)}$ is simple.

Proof: Refer [2]

Theorem:The family $Irr_{\mathbb{C}}(B_n) = \{W_{(\lambda,\mu)} | (\lambda,\mu) \models n\}$ is a complete set of inequivalent irreducible representations of B_n . **Proof:** Refer [2].

References

- [1] William Fulton, Joe Harris Representation theory: a first course
- [2] Meinolf Geck ,G6tz Pfeiffer Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras
- [3] Alexandre V. Borovik, Anna Borovik, Mirrors and Reflections : The Geometry of Finite Reflection Groups, Springer, 2010