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Abstract
For a reflection group W , the associated W -permutahedron is the convex hull

of the W -orbit of a generic point. I shall first describe the properties of a W -
permutahedron associated to a classical root system. Then, the definition of matrix
mutation will be given and the operations of it will be shown using a concrete
example. Later, by proper example it will be sketched how diagonal flip is related
with matrix mutation.We shall then introduce the concept of exchange relation and
that goes hand in hand with matrix mutation.

1 W -Permutahedron

1.1 Introduction

The permutahedron of order n is an (n − 1)-dimensional polytope embedded in an n-
dimensional space, the vertices of which are formed by permuting the co-ordinates of the
vector (1, 2, ..., n). The name ‘permutahedron’(or rather its French version ‘permutoedre’)
comes from the fact that the vertices of an An − permutahedron are obatined by per-
muting the co-ordinates of a generic point in Rn+1.

1.2 Definition and Properties

Definition 1.1. Let W be a finite coxeter group and u be a point in the interior of
the fundamental chamber. We write u =

∑
s∈S usws with us ∈ R>0 . We define the

W − Permutahedron, Permu(W ) to be the convex hull of the orbit of u under W, whose
combinatorical properties are determined by that of the coxeter group W.

W -permutahedron of order n has the following properties.

1. Number of vertices is n!.

2. Each vertex is adjacent to (n− 1) others. So, number of edges is
(n− 1)n!

2
.

Each edge has length
√

2.

3. The permutahedron has one panel for each non-empty proper subset S of {1, 2, ...., n},
consisting of the vertices in which all co-ordinates in positions in S are smaller than
all co-ordinates in positions not in S. So, number of panels is 2n − 2.
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Figure 1.1: The permutahedra of type A3 and B3 respectively

Figure 1.2: The permutahedra of order 2 and 3 respectively

1.3 Examples

The A2, B2 and G2 permutahedra are respectively a hexagon, an octagon and a dodecagon
and under the choice of a generic point, these polygons are regular. Figure 1 show the
permutahedra of types A3 and B3. Each of these realizations derives from a choice of x
∈ R1 which makes the permutahedron an Archimedean solid (i.e. a non-regular polytope
whose all facets are regular polygons, and whose symmetry group acts transitively on
vertices.). The non-crystallographic H3-permutahedron is also an Archimedean solid.

We can write each element w ∈ W as a product of elements of S i.e. w = si1si2 ...sik .
A shortest factorization of this form is called a reduced word for w. The number of factors
k is called the length of w.

Any finite Coxeter Group has a unique element w0 of maximal length. In the symmet-
ric group Sn+1 (' An), this is the permutation w0 that reverses the order of the elements
of the set {1, 2, ...., n+ 1}. For example, in Figure 1, the bottom vertex can be associated
with the identity element 1 ∈ W , so that the top vertex is w0.

Realization of Perm(A3): Let W = S4 be the Coxeter group of type A3. The
standard choice of simple reflection yields S = {s1, s2, s3}, where s1, s2 and s3 are
the transpositions which interchange 1 with 2, 2 with 3 and 3 with 4, respectively.
Since 1 ∈ W , the top vertex is w0. A reduced word for w corresponds to a path
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from 1 to w which moves up in a mono-
tone fashion. There are 16 such paths from
1 to w0 in the A3-permutahedron. The
word s1s2s1s3s2s3 is a non-reduced word for
the permutation that interchanges 1 with 3
and 2 with 4. This permutation has two
reduced words s2s1s3s2 and s2s3s1s2. An
example of a reduced word for the w0 is
s1s2s1s3s2s1. In the adjacent figure, the
bottom vertex(1, 2, 3, 4) can be associated
with the identity(0, 0, 0, 0) and the top most
vertex(4, 3, 2, 1) with (0,1,2,3). There are 16
such distinct paths between these two points.

Theorem 1.1. The number of reduced words for w0 in the reflection group An is(
n+1
2

)
!

1n3n−15n−2....(2n− 1)1
.

This formulla was given by R. Stanley. We can simply calculate the number of reduced
words for w0 ∈ A3 to be 16.

Definitions 1.1.

• If u = 1 :=
∑

w∈4W , we say that the W-permutahedron Permu(W ) is balanced
and it is denoted by Perm(W ).

• Permu(W ) is said to be fairly balanced if W0(u) = −u i.e. us = uφ(s) ∀ s ∈ S.

• The classical permutahedron is the convex hull of all permutations of 0,1,2,...,n,
regarded as vectors in Rn+1. According to the fundamental weights , we get

∑
w∈4W

= 0,1,2,...,n. So the classical permutahedron coincides with the balanced An-permut-
ahedron Perm(An).

Remark 1.1. The permutahedron of types A3, B3 and H3 are also known as the truncated
octahedron, great rhombicuboctahedron and great rhombicosidodecahedron, respectively.

2 Matrix Mutation

2.1 Introduction

Definition 2.1. A triangulation T is a collection of n triangles satisfying the following
requirements :

• The interiors of the triangles are pairwise disjoint.

• Each edge of a triangle in T is either a common edge of two triangles in T or else
it is on the boundary of the union of all the triangles.
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Figure 2.1: the edge-adjacency matrix and principal matrix

Fix a triangulation T of the (n+3)-gon. Label the n diagonals of T arbitrarily by the
numbers 1, 2,...., n and label the n+3 sides of T arbitrarily by the numbers n+1, n+2,....,
2n+3. The combinatorics of T can be encoded by the edge-adjacency matrix or signed
adjacency matrix B̃.

Definition 2.2. The edge-adjacency matrix is a (2n+ 3)× n matrix B̃ = (bij) 3

bij =


1 if i and j label two sides in some triangle of T so that j follows

i in the clockwise traversal of the triangle’s boundary;
−1 if the same holds, with the counter-clockwise direction;
0 otherwise.

Note that the first index i is a label for a side or a diagonal of the (n + 3)-gon, while
the second index j must label a diagonal. The principal part of B̃ i.e. principal matrix
is an n × n submatrix B = (bij)i,j∈n that encodes the signed adjacencies between the
diagonals of T. Here is an example of the edge-adjacency matrix and principal matrix.

Let vivj be an edge of a planar triangulation T and {vi,vj,vk} and {vi,vj,vl} be the
vertices of the faces of G containing vivj on their boundaries.

We say that vivj is flippable if vk
and vl are not adjacent in T. By
flipping vivj, we mean the opera-
tion of removing it from T followed
by the insertion of vkvl into T. It is
easy to see that this produces a new
graph T ′ which is also a planar tri-
angulation. The operation is called
a diagonal flip on vivj. In the ad-
jacent figure, the edge between the
vertices 0 and 4 in the triangulation
T is flipped to produce the new tri-
angulation T ′, where unlike in the
triangulation T the vertices 3 and 4
are joined.

In the languages of matrices B̃ and B, diagonal flips can be described as certain
transformations called matrix mutations.
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Figure 2.2: A diagonal flip and the corresponding matrix mutation

2.2 Matrix Mutation

Definition 2.3. Let B = (bij)i,j∈n and B’ = (b′ij)i,j∈n be integer matrices. We say that
B’ is obtained from B by a matrix mutation in direction k i.e. B’ = µk(B), if

b′ij =


−bij if k ∈ i, j
bij + |bik|bkj if k /∈ i, j and bikbkj > 0
bij otherwise

Lemma 2.1. Assume that B̃ and B̃’ are the edge-adjacency matrices and B and B’ are
their principal parts respectively for two triangulations T and T’ obtained from each other
by flipping the diagonal numbered k; the remaining labels are the same in T and T’. Then
B’ = µk(B) (respectively B = µk(B

′)).

The lemma stated above is illustrated in figures 4 and 6. Note that the numbering
of the diagonals used in defining the matrices B̃ and B can change as we move along the
exchange graph. For instance, the sequence of 5 flips shown in figure results in switching
the labels of the two diagonals.

One can similarly define edge-adjacency matrices for centrally symmetric triangula-
tions (those matrices will have entries 0, 1 , -1, +2, -2) and verify that cyclohedral flips
translate precisely into matrix mutations.

Corollary 2.1. Matrix Mutation is an involution i.e. µk(µk(B)) = B.

Proof. From the previous lemma, we have that matrix mutation in direction k is equiv-
alent to diagonal flip of the diagonal numbered k. So it’s enough to establish that a
diagonal flip is an involution.

Let, {vi,vj,vk} and {vi,vj,vl} be the vertices of the faces of a triangulation T containing
vivj on their boundaries and suppose vivj is flippable i.e. vk and vl are not adjacent in
T .
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Figure 2.3: Diagonal flip in a pentagon and the corresponding matrix mutations
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Doing a diagonal flip, we get a new triangulation T ′, edges of which are same as edges
of T except the edge vivj in T which is flipped to form vkvl in T ′.

We perform another diagonal flip on T ′ and now another triangulation(say T ′′) is
formed whose vertices vi and vj are joined and vkvl is not an edge. As all the others edges
remain unchanged, the triangulation T ′′ is same as the triangulation T . So, performing
diagonal flip twice gives the same triangulation i.e. diagonal flip is an involution, which
implies µk(µk(B)) = B.

2.3 Exchange Relation

Let us fix an arbitrary initial triangulation T0 of a convex (n + 3)-gon, and introduce a
variable for each diagonal of this triangulation, and also for each side of the (n+ 3)-gon.
We now associate a rational function in these 2n + 3 variables to every diagonal of the
(n+ 3)-gon (This can be done in a recursive fashion).

Whenever we perform a diagonal flip as
shown in the adjacent figure, all but one ra-
tional functions associated to the current tri-
angulation remain unchanged. The rational
function x associated with the diagonal being
removed gets replaced by the rational func-
tion x′ associated with the new diagonal,

where x′ is determined from the exchange relation xx′ = ac+ bd.

Consider a triangulation of a pentagon i.e. n = 2. We label
the sides of the pentagon (see adjacent figure) by the variables
q1, q2, q3, q4, q5. We then then label the diagonals incident to
the top vertex by the variables y1 and y2. Thus, in the figure
5, the initial triangulation T0 appears at the top. The rational
functions y3, y4, y5 associated with the remaining three diago-
nals are then computed from the exchange relations associated
with the flips shown there.

Starting from the top of Figure 5 and moving clockwise, we recursively express y3, y4, y5
in terms of y1, y2 and q1, q2, q3, q4, q5 hereby.

• y3 =
q2y2 + q4q5

y1

• y4 =
q3y3 + q5q1

y2
=
q3q2y2 + q3q4q5 + q5q1y1

y1y2

• y5 =
q4y4 + q1q2

y3
= ... =

q3q4 + q1y1
y2

And from the above equations, we get

• y1 =
q5y5 + q2q3

y4
= ... = y1

• y2 =
q1y1 + q3q4

y5
= ... = y2

Remark 2.1. Under the specialization q1 = q2 = q3 = q4 = q5 = 1, the phenomenon we
just observed is nothing else but the 5-periodicity of the pentagon recurrence.

7



Figure 2.4: Exchange relations for the flips in a pentagon
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