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Abstract

The icosahedron is one of the most important platonic solids in Eu-
clidean geometry, admitting as it does a highly rich group of symmetries.
The construction of the icosahedron is also an interesting topic and this
paper gives an outline of Taylor’s and Kepler’s methods of construction.
Some nice geometrical properties of the icosahedron and a few interesting
facts about its symmetry group are also discussed, with special emphasis
on the orientation-preserving or rotational symmetries.

1 Introduction

In Euclidean geometry, a regular convex polyhedron is referred to as a platonic
solid. Such solids have an equal number of congruent, regular, polygonal faces
meeting at each vertex. There are five such platonic solids in existence and the
icosahedron, the construction and properties of which we are about to discuss, is
one of the most important. It has 20 equilateral triangles as its faces, with five
such triangles meeting at each vertex. Clearly, it follows that it has 12 vertices
and 30 edges. The icosahedron is the dual of the dodecahedron, another pla-
tonic solid having three regular pentagonal faces meeting at each vertex. Thus,
while the dodecahedron is represented by the Schläfli symbol [5,3], the icosahe-
dron is represented by [3,5], and, being duals, the symmetry groups of the two
polytopes are also the same.
A regular icosahedron has a symmetry group of order 120, out of which 60
are orientation-preserving or rotational symmetries. This rotational symmetry

Figure 1: A Regular Icosahedron
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Figure 2: An illustration of Taylor’s method

group is isomorphic to A5, the alternating group of five letters, but we must
carefully note that the full icosahedral symmetry group, (involving both rota-
tional and reflectional symmetries), is not isomorphic to S5 , but to A5×C2,
though both S5 and the icosahedral symmetry group Ih have order 120 and
have A5 as a subgroup of index 2.

2 Construction of the Icosahedron

Perhaps one of the easiest methods of constructing an icosahedron is due to
H.M. Taylor. Suppose that we wish to construct an icosahedron of edge length,
say, 2. For that, we take a cube of edge length 2φ centred at the origin, where

φ =
√
5+1
2 is the golden ratio. (In general, for constructing an icosahedron of

edge length p, we take a cube of edge length φ× p.)
Thereafter, we mark the six line segments joining the twelve points (0,±1,±φ),

(±1,±φ, 0), (±φ, 0,±1) in alternating fashion and join each pair of these twelve
points by a line segment. The polytope obtained by this construction is what
we choose to call an icosahedron, though we are far from knowing whether our
construction gives a unique polytope or not. However, what we can easily ob-
serve is that the polytope just constructed has each of its sides of equal length
and at each of its vertices, five equilateral triangles meet. So, it at least sat-
isfies the basic geometrical properties of the icosahedron. Also note that our
construction at least proves the existence of the icosahedron, because it follows
from the principle of continuity (the distance between two points is a continuous
function of their coordinates and therefore assumes all intermediate values) that
by varying the lengths of the line segments drawn on the cube, we can get all
edges of the inscribed polytope to be equal at a certain length of the segments.

The second common method of constructing an icosahedron is due to Kepler.
In this method, we first construct a pentagonal biprism, the existence of which is
guaranteed by the principle of continuity, and then add two pentagonal pyramids
with all edges equal-one at the top and the other at the bottom.

The next question is whether the constructed icosahedron is unique, at least
up to isometry. The two methods that we described above are quite different
from each other and yet we have chosen to call the polyhedrons constructed in
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Figure 3: Kepler’s method of Construction

each case by the common name of ’icosahedron’. That this is justified can be
established by Cauchy’s rigidity theorem, which we discuss next.

3 Cauchy’s Theorem and the Uniqueness of our
Construction

Now, we prove the uniqueness of our construction using Cauchy’s theorem. We
first give the definition of a polytopal map.

Definition. Let ∆ and ∆′ be two convex polytopes and F, F ′ the sets of their
faces. A map α : F → F ′ is said to be polytopal if :

• α takes vertices into vertices, edges into edges, and faces into faces.

• α preserves the adjacency of faces, i.e., the common edge of two neighbouring
faces is mapped to the common edge of the images of the faces.

Now Cauchy’s theorem can be stated as follows :

Theorem. Let ∆ and ∆′ be two convex polytopes and F, F ′ the sets of their
faces. Let α : F → F ′ be a polytopal map such that for every face F of ∆, there
is an isometry IF : F → α(F ) which agrees with the map α on all edges of F ,i.e,
if E is an edge then the image IF (E) of E coincides with α(E).
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Figure 4: The so-called Arm Lemma

Then there is an isometry I : ∆ → ∆′ that agrees with α, that is, if F is
an arbitrary face of ∆, then the image I(F ) of F coincides with α(F ).

Stated in a simpler form, the theorem states that any two convex polyhedra
consisting of the same number of equal similarly placed faces are isometric.

The proof of Cauchy’s theorem is in 3 parts and below we give a bare outline
of the idea behind the proof. The first part of the proof is a lemma, commonly
referred to as the Arm lemma, which we state below without proof.

Lemma 1. Let ABC...G and A′B′C ′...G′ represent two convex planar polygons
satisfying AB = A′B,BC = B′C ′, ...FG = F ′G′ and, for the corresponding
angles, ∠ABC ≤ ∠A′B′C ′,∠BCD ≤ ∠B′C ′D′, ...∠EFG ≤ ∠E′F ′G′. Then
AG ≤ A′G′, with equality holding iff the polygons are congruent. (see Fig. 4)

A result which follows from the Arm Lemma is the following :

Lemma 2. Let P and P’ be two convex planar polygons with an equal number
of sides and with the length of the corresponding sides equal. We assign + and
- signs for those vertices of P where the internal angle increases or decreases,
respectively, in going from P to P’. (In case there is no change, no sign is
assigned.) Then there are at least four changes in sign as we go around P or
there is no sign attached to any vertex, which happens iff P and P’ are congruent.

Proof. Firstly, we note that if there is a change of sign at all, there can’t be an
odd number of sign changes, and so, if there are fewer than four, the number
of sign changes can be two or zero and, in the latter case, the polytopes are
easily seen to be congruent. So, if possible, let there be two changes of sign.
We then choose a line segment with its endpoints lying on the two edges of P
seperating the two signs. The Arm lemma then forces that the length of this
segment increases as we go from P to P’ and also when gong from P’ to P, which
is impossible as the two length changes must be opposite for the length of the
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segment to be preserved in P. This contradiction forces that there must be at
least four sign changes, if at all.

We now define a triangulation of a sphere and state another lemma, com-
monly referred to as Cauchy’s combinatorial lemma.

Definition. A triangulation of a sphere S is a partition of S into spherical
triangles (regions bounded by three arcs such that the internal angle at each
vertex is less than π) by the non-intersecting diagonals of an inscribed spherical
polygon.

Lemma 3. Suppose + and - signs are associated with some of the edges of a
triangulated sphere so that at each vertex with some labeled edge, there are at
least four changes of sign as one goes around the vertex. Then none of the edges
are labeled.

The proof of the rigidity theorem can now be easily completed. If P and
P’ are two convex polyhedra, we label each edge of P with a + or a - sign de-
pending on whether the dihedral angle at the edge increases or decreases. By
taking a small sphere centred at each of P’s vertices, we conclude that there
must be at least four sign changes around each vertex with at least one la-
beled edge coming into it. Cauchy’s combinatorial lemma then forces that there
is actualy no sign change at all, which can only happen if P and P’ are isometric.

Now, let’s see how Cauchy’s theorem helps us in proving the uniqueness of
the constructed icosahedron. In both the methods of construction we described,
the ways the polytopes are assembled from equilateral triangles are the same.
The rigidity theorem then automatically implies that as soon as we ensure that
the edge lenghths for the polytopes are equal for both the methods, the polytopes
will turn out to be isometric. So, Kepler’s and Taylor’s polytopes are identical,
at least up to isometry and we call it an icosahedron. In fact, for most methods
of constructing an icosahedron, a simple application of Cauchy’s theorem will
establish that the constructed polytope is isomtric to, say, Taylor’s polytope
having the same edge length.

4 The Icosahedral Symmetry Group

Let us recollect how we constructed the icosahedron by Taylor’s method. We
already saw that this construction is the same as any other, since Cauchy’s theo-
rem guarantees uniqueness in any case. We can easily verify that the symmetry
group Sym(∆) of the constructed polytope acts transitively on the set of vertices
of ∆. Actually, the group of symmetries of the ambient cube has a subgroup of
order 24 that preserves ∆ and acts transitively on the set of vertices. In fact,
it’s true that Sym(∆) acts transitively not only on the set of vertices, but also
on the edges and faces of the icosahedron.
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Now, let’s analyze the symmetry group of the icosahedron a bit more, con-
centrating first on the rotational or orientation-preserving symmetries. One can
easily check that rotating an icosahedron by angles of 2π

5 , 4π
5 , 6π

5 or 8π
5 about

any axis joining the extreme opposite vertices , or by angles of 2π
3 or 4π

3 about
any axis joining the centres of opposite faces or by an angle of π about any axis
joining the midpoints of opposite edges preserves symmetry. We also note that
the number of such axes of rotation are 6 for the first type, 10 for the second
and 15 for the third. Including the identity, the order of this rotation group
thus comes out to be

6.4 + 10.2 + 15.1 + 1 = 60 (1)

Theorem. If I is the rotational symmetry group of an icosahedron, I 'A5.

Proof. The first observation we make is that I is a simple group. This is because
the order of a proper normal subgroup of I divides 60 and additionally, it must
also be the sum of some of the terms on the right side of the class equation (1),
including the term 1, which is the order of the conjugacy class of the identity
element. Since there is no integer satisfying both these conditios, there can’t be
any such proper normal subgroup and hence I must be simple.

To show that I is isomorphic
to A5, we first of all need to
find a set of 5 elements on
which I operates. It can be
shown that the set of 5 cubes
that can be inscribed in the
dodecahedron (one such cube
is shown in the figure) is such
a set and we can take I to
act on it by the operation of
permutation. Corresponding
to the permutation operation
on the cubes inscribed in the
dodecahedron, there is an
operation on the inscribed
cubes of the icosahedron as the
polytopes are duals.

Now, let φ : I → S5 be the permutation representation corresponding to
this operation. The kernel of φ is a normal subgroup of I and, I being simple,
ker(φ)={1} or the whole group I. Since the operation is not trivial, ker(φ) is
not I, i.e, ker(φ)={1}. This means that φ is injective and defines an isomor-
phism from I to its image in S5.

Now, consider the sign homomorphism σ : S5 → {±1} and compose it with
φ to obtain the homomorphism σφ : I → {±1}. If this homomorphism is sur-
jective, its kernel will be a proper normal subgroup of I, which is impossible.
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Figure 5: The icosahedron inscribed in the cube [−1, 1]3 of edge length 2. The
icosahedron has edge length 2α. The coordinates of the endpoints of the seg-
ments marked on the cube are shown for the x = 1, y = 1 and z = 1 faces.

So the restriction is the trivial homomorphism, implying that the image of φ is
contained in the kernel of σ, which is A5. Since both I and A5 have order 60
and φ is injective, we conclude that I ' im(φ) ' A5.

So, we have more or less analysed the group I of rotational symmetries
of the icosahedron. If, however, we consider both rotational and reflectional
symmtries, the analysis is more cumbresome. To simplify the discussion, we yet
again take the help of Cauchy’s theorem.

We define a flag of an icosahedron ∆ to be a triple (V,E,F) such that the
vertex V is an end-point of the edge E and E itself is a side of the face F. Then
there is a map α from one flag (V,E,F) to another (V’,E’,F’) sending V to V’,
E to E’ and F to F’. It can be shown that this map is unique also. Cauchy’s
theorem then implies that there is an unique isometry of ∆ that sends (V,E,F)
to (V’,E’,F’), i.e, Sym(∆) acts transitively on the set of flags.

So, if the number of flags is N, |Sym(∆)| = N .

Now, let’s calculate N. Let’s fix a vertex V. The number of ways this can be
done is

(
12
1

)
=12 since there are 12 vertices to choose from. For each such vertex,

E can be chosen in
(
5
1

)
=5 ways because 5 edges propagate from a vertex and

since the number of faces meeting at an edge is 2, F can be chosen in
(
2
1

)
=2

ways once V and E are fixed.
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Thus, N=12×5 × 2 = 120 and so the icosahedral symmetry group has order
120. It can be verified, however, that it’s not isomorphic to S5, but to A5× C2.
However, it has a subgroup of order 60 (the group of rotational symmetries I
we already saw) that has index 2 and, as we saw, that subgroup is isomorphic
to A5.
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