
Introduction to Manifolds

Mid Semester Exam
Solutions

Problem 1: Denote by 𝐺(2, ℝ3) the set of all planes (passing through the origin) in ℝ3. Show
that 𝐺(2, ℝ3) is a 2-manifold and determine its homeomorphism type.
Solution: For every plane passing through the origin there is a unique line orthogonal to it. This
correspondence gives a clear bijection between lines and planes in ℝ3. In other words, 𝐺(2, ℝ3)
is in bijection with ℝℙ2. Hence, we can put the same smooth structure as ℝℙ2 on 𝐺(2, ℝ3).
Problem 2: Consider the map 𝐹 ∶ ℝℙ1 → ℝ2 defined by

𝑥 = 2𝑢1𝑢2
𝑢2

1 + 𝑢2
2

, 𝑦 =
𝑢2

1 − 𝑢2
2

𝑢2
1 + 𝑢2

2

where [𝑢1 ∶ 𝑢2] ∈ ℝℙ1 and (𝑥, 𝑦) ∈ ℝ2. Show that 𝐹 is well defined, smooth and a diffeomor-
phism onto 𝑆1.
Solution: It is fairly straightforward to show that the given map is well defined and that its image
is contained in 𝑆1. Now for smoothness, consider the chart on ℝℙ1 on which 𝑢1 ≠ 0. Then we
get the composition

𝑠 ↦ [1 ∶ 𝑠] ↦ (
2𝑠

1 + 𝑠2 , 1 − 𝑠2

1 + 𝑠2 )
which is clearly smooth; moreover, a similar argument works for the other chart.
Now in order to show that it is a bijection, a straightforward manipulation shows it is one-one.
Observe that for (cos 𝜃, sin 𝜃) ∈ 𝑆1 the point [sin 𝜃/2 ∶ cos 𝜃/2] ∈ ℝℙ1 is its inverse image;
implying 𝐹 is onto.
The last step is to show that 𝐹 is an immersion. Now in the first chart the differential of 𝐹 takes
the following form

[
2(1 − 𝑠2)
(1 + 𝑠2)2

−4𝑠
(1 + 𝑠2)2 ] .

The above matrix is zero if and only if 𝑠 = 0 and 1−𝑠2 = 0 which is a absurd. A similar argument
works for the second chart.
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Problem 3: Show that the punctured plane ℝ2 ⧵ {0} is diffeomorphic to the infinite cylinder
ℝ × 𝑆1.
Solution: It is convenient to consider the polar coordinates on ℝ2 and also to consider ℝ × 𝑆1 as
a subset of ℝ3. Consider the map 𝑓 ∶ ℝ2 ⧵ {0} → ℝ3 given by

(𝑟, 𝜃) ↦ (ln 𝑟, cos 𝜃, sin 𝜃).
Its image is the infinite cylinder and the map is a bijection onto the image. A simple calculation
shows that the derivative matrix is always rank 2 hence 𝑓 is also an immersion.
Problem 4: For 𝑎 ∈ ℝ consider the set

𝑀𝑎 ∶= {(𝑥, 𝑦, 𝑧) ∈ ℝ3 ∣ 𝑥2 + 𝑦2 − 𝑧2 = 𝑎}.
For what values of 𝑎 the set 𝑀𝑎 is a manifold? What is its dimension? Explain.
Solution: Use the regular value theorem to conclude that for 𝑎 ≠ 0 the hyperboloid (of one sheet
if 𝑎 > 0 and of two sheets if 𝑎 < 0) is a regular codimension-1 submanifold of ℝ3. For 𝑎 = 0, we
get the cone which fails to be locally Euclidean at the origin.
Problem 5: Explicitly determine 𝑇𝑝(𝑆1) at an arbitrary point 𝑝 = (𝑎, 𝑏) ∈ 𝑆1.
Solution: We know that 𝑆1 ⊂ ℝ2 so for any 𝑝 ∈ 𝑆1 the tangent space 𝑇𝑝(𝑆1) is a linear subspace
of 𝑇𝑝(ℝ2) = ℝ2. Let 𝑓(𝑥, 𝑦) = 𝑥2+𝑦2−1. Then 𝑆1 is the regular zero set 𝑓 −1(0). Let 𝑐 be a curve
in 𝑆1 starting at 𝑝 = (𝑎, 𝑏) with 𝑐′(0) as a tangent vector in 𝑇𝑝(𝑆1). We know that 𝑓(𝑐(𝑡)) = 0
for all 𝑡’s. Taking the derivative (invoking the chain rule) followed by a simple calculation shows
that the equation of 𝑇𝑝(𝑆1) in ℝ2 is 𝑎𝑥 + 𝑏𝑦 = 0.
Problem 6: Let 𝑓 ∶ GL(𝑛, ℝ) → GL(𝑛, ℝ) be the inversion map, 𝑓(𝐴) = 𝐴−1. Show that

𝑓∗,𝐼 ∶ M(𝑛, ℝ) → M(𝑛, ℝ) is given by 𝑋 ↦ −𝑋.

Solution: Let 𝑔 be the constant map 𝐴 ↦ 𝐴𝐴−1 = 𝐼 and let 𝑐 be a curve starting at 𝐼 and
𝑐′(0) = 𝑋. Since 𝑔(𝑐(𝑡)) = 𝐼 for all 𝑡 we get

0 = 𝑑
𝑑𝑡𝑔(𝑐(𝑡))|𝑡=0 = 𝑐′(0)𝐼 + 𝑐(0)𝑓∗,𝐼 (𝑐′(0)).

Bonus problem: For an arbitrary 𝐶 ∈ GL(𝑛, ℝ) determine the linear map 𝑓∗,𝐶 ∶ 𝑇𝐶GL →
𝑇𝐶−1GL. (Hint: Use 𝑓 ∘ 𝑙𝐶 = 𝑟𝐶−1 ∘ 𝑓 , where 𝑙 is the left multiplication and 𝑟 is the right
multiplication.)
Solution: Observe that the hint basically says that (𝐶𝐴)−1 = 𝐴−1𝐶−1. Now applying the chain
rule to the differentials of the above composition we get

𝑓∗,𝐶 ∘ (𝑙𝐶 )∗,𝐼 = (𝑟𝐶−1)∗,𝐼 ∘ 𝑓∗,𝐼 .
Since both the right and left multiplications are diffeomorphisms the induced derivatives are linear
isomorphisms. Hence we have

𝑓∗,𝐶 (𝑋) = (𝑟𝐶−1)∗,𝐼 ∘ 𝑓∗,𝐼 ∘ (𝑙𝐶 )−1
∗,𝐼 (𝑋) = −𝐶−1𝑋𝐶−1.
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