Introduction to Manifolds

Mid Semester Exam
 Solutions

Problem 1: Denote by $G\left(2, \mathbb{R}^{3}\right)$ the set of all planes (passing through the origin) in \mathbb{R}^{3}. Show that $G\left(2, \mathbb{R}^{3}\right)$ is a 2-manifold and determine its homeomorphism type.

Solution: For every plane passing through the origin there is a unique line orthogonal to it. This correspondence gives a clear bijection between lines and planes in \mathbb{R}^{3}. In other words, $G\left(2, \mathbb{R}^{3}\right)$ is in bijection with $\mathbb{R} \mathbb{P}^{2}$. Hence, we can put the same smooth structure as $\mathbb{R} \mathbb{P}^{2}$ on $G\left(2, \mathbb{R}^{3}\right)$.

Problem 2: Consider the map $F: \mathbb{R}^{1} \rightarrow \mathbb{R}^{2}$ defined by

$$
x=\frac{2 u_{1} u_{2}}{u_{1}^{2}+u_{2}^{2}}, \quad y=\frac{u_{1}^{2}-u_{2}^{2}}{u_{1}^{2}+u_{2}^{2}}
$$

where $\left[u_{1}: u_{2}\right] \in \mathbb{R} \mathbb{P}^{1}$ and $(x, y) \in \mathbb{R}^{2}$. Show that F is well defined, smooth and a diffeomorphism onto S^{1}.

Solution: It is fairly straightforward to show that the given map is well defined and that its image is contained in S^{1}. Now for smoothness, consider the chart on $\mathbb{R} \mathbb{P}^{1}$ on which $u_{1} \neq 0$. Then we get the composition

$$
s \mapsto[1: s] \mapsto\left(\frac{2 s}{1+s^{2}}, \frac{1-s^{2}}{1+s^{2}}\right)
$$

which is clearly smooth; moreover, a similar argument works for the other chart.
Now in order to show that it is a bijection, a straightforward manipulation shows it is one-one. Observe that for $(\cos \theta, \sin \theta) \in S^{1}$ the point $[\sin \theta / 2: \cos \theta / 2] \in \mathbb{R} \mathbb{P}^{1}$ is its inverse image; implying F is onto.
The last step is to show that F is an immersion. Now in the first chart the differential of F takes the following form

$$
\left[\frac{2\left(1-s^{2}\right)}{\left(1+s^{2}\right)^{2}} \quad \frac{-4 s}{\left(1+s^{2}\right)^{2}}\right]
$$

The above matrix is zero if and only if $s=0$ and $1-s^{2}=0$ which is a absurd. A similar argument works for the second chart.

Problem 3: Show that the punctured plane $\mathbb{R}^{2} \backslash\{0\}$ is diffeomorphic to the infinite cylinder $\mathbb{R} \times S^{1}$.
Solution: It is convenient to consider the polar coordinates on \mathbb{R}^{2} and also to consider $\mathbb{R} \times S^{1}$ as a subset of \mathbb{R}^{3}. Consider the map $f: \mathbb{R}^{2} \backslash\{0\} \rightarrow \mathbb{R}^{3}$ given by

$$
(r, \theta) \mapsto(\ln r, \cos \theta, \sin \theta) .
$$

Its image is the infinite cylinder and the map is a bijection onto the image. A simple calculation shows that the derivative matrix is always rank 2 hence f is also an immersion.
Problem 4: For $a \in \mathbb{R}$ consider the set

$$
M_{a}:=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}-z^{2}=a\right\} .
$$

For what values of a the set M_{a} is a manifold? What is its dimension? Explain.
Solution: Use the regular value theorem to conclude that for $a \neq 0$ the hyperboloid (of one sheet if $a>0$ and of two sheets if $a<0$) is a regular codimension- 1 submanifold of \mathbb{R}^{3}. For $a=0$, we get the cone which fails to be locally Euclidean at the origin.
Problem 5: Explicitly determine $T_{p}\left(S^{1}\right)$ at an arbitrary point $p=(a, b) \in S^{1}$.
Solution: We know that $S^{1} \subset \mathbb{R}^{2}$ so for any $p \in S^{1}$ the tangent space $T_{p}\left(S^{1}\right)$ is a linear subspace of $T_{p}\left(\mathbb{R}^{2}\right)=\mathbb{R}^{2}$. Let $f(x, y)=x^{2}+y^{2}-1$. Then S^{1} is the regular zero set $f^{-1}(0)$. Let c be a curve in S^{1} starting at $p=(a, b)$ with $c^{\prime}(0)$ as a tangent vector in $T_{p}\left(S^{1}\right)$. We know that $f(c(t))=0$ for all t 's. Taking the derivative (invoking the chain rule) followed by a simple calculation shows that the equation of $T_{p}\left(S^{1}\right)$ in \mathbb{R}^{2} is $a x+b y=0$.
Problem 6: Let $f: \operatorname{GL}(n, \mathbb{R}) \rightarrow \mathrm{GL}(n, \mathbb{R})$ be the inversion map, $f(A)=A^{-1}$. Show that

$$
f_{*, I}: \mathrm{M}(n, \mathbb{R}) \rightarrow \mathrm{M}(n, \mathbb{R}) \text { is given by } X \mapsto-X
$$

Solution: Let g be the constant map $A \mapsto A A^{-1}=I$ and let c be a curve starting at I and $c^{\prime}(0)=X$. Since $g(c(t))=I$ for all t we get

$$
0=\left.\frac{d}{d t} g(c(t))\right|_{t=0}=c^{\prime}(0) I+c(0) f_{*, I}\left(c^{\prime}(0)\right)
$$

Bonus problem: For an arbitrary $C \in \mathrm{GL}(n, \mathbb{R})$ determine the linear map $f_{*, C}: T_{C} \mathrm{GL} \rightarrow$ $T_{C^{-1}} \mathrm{GL}$. (Hint: Use $f \circ l_{C}=r_{C^{-1}} \circ f$, where l is the left multiplication and r is the right multiplication.)
Solution: Observe that the hint basically says that $(C A)^{-1}=A^{-1} C^{-1}$. Now applying the chain rule to the differentials of the above composition we get

$$
f_{*, C} \circ\left(l_{C}\right)_{*, I}=\left(r_{C^{-1}}\right)_{*, I} \circ f_{*, I} .
$$

Since both the right and left multiplications are diffeomorphisms the induced derivatives are linear isomorphisms. Hence we have

$$
f_{*, C}(X)=\left(r_{C^{-1}}\right)_{*, I} \circ f_{*, I} \circ\left(l_{C}\right)_{*, I}^{-1}(X)=-C^{-1} X C^{-1}
$$

