Introduction to Manifolds

Assignment 7

Due Date: 16/11/2017

Problem 1: If V is a finite dimensional vector space and $a \in \Lambda^{k}(V)$ and k is odd, then show that $a \wedge a=0$.

Problem 2: Calculate $a \wedge b$ in the following cases.

1. $a=b=v_{1} \wedge v_{2}+v_{2} \wedge v_{3}+v_{3} \wedge v_{1}$.
2. $a=v_{1} \wedge v_{2}+v_{3} \wedge v_{1} \quad b=v_{2} \wedge v_{3} \wedge v_{4}$.
3. $a=v_{1}+v_{2}+v_{3} \quad b=v_{1} \wedge v_{2}+v_{2} \wedge v_{3}+v_{3} \wedge v_{1}$.

Problem 3: Which of the following 2-tensors is decomposable? (recall that a tensor is decomposable if it can be expressed as wedge of two tensors of lower rank.)

1. $v_{1} \wedge v_{2}+v_{2} \wedge v_{3}$.
2. $v_{1} \wedge v_{2}+v_{2} \wedge v_{3}+v_{3} \wedge v_{1}$.
3. $v_{1} \wedge v_{2}+v_{2} \wedge v_{3}+v_{3} \wedge v_{4}$.

Problem 4: If $x=r \cos \theta$ and $y=r \sin \theta$, calculate $\mathrm{d} x, \mathrm{~d} y$ and $\mathrm{d} x \wedge \mathrm{~d} y$.
Problem 5: Denote the standard coordinates on \mathbb{R}^{2} by x, y, and let

$$
x=-y \frac{\partial}{\partial x}+x \frac{\partial}{\partial y} \quad \text { and } \quad x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}
$$

be two vector fields on \mathbb{R}^{2}. Find a 1-form ω on $\mathbb{R}^{2} \backslash\{(0,0)\}$ such that $\omega(X)=1$ and $\omega(Y)=0$.

