Introduction to Manifolds

Assignment 7 Due Date: 16/11/2017

Problem 1: If V is a finite dimensional vector space and $a \in \bigwedge^k (V)$ and k is odd, then show that $a \wedge a = 0$.

Problem 2: Calculate $a \wedge b$ in the following cases.

- 1. $a = b = v_1 \wedge v_2 + v_2 \wedge v_3 + v_3 \wedge v_1$.
- 2. $a = v_1 \wedge v_2 + v_3 \wedge v_1$ $b = v_2 \wedge v_3 \wedge v_4$.
- 3. $a = v_1 + v_2 + v_3$ $b = v_1 \wedge v_2 + v_2 \wedge v_3 + v_3 \wedge v_1$.

Problem 3: Which of the following 2-tensors is decomposable? (recall that a tensor is decomposable if it can be expressed as wedge of two tensors of lower rank.)

- 1. $v_1 \wedge v_2 + v_2 \wedge v_3$.
- 2. $v_1 \wedge v_2 + v_2 \wedge v_3 + v_3 \wedge v_1$.
- 3. $v_1 \wedge v_2 + v_2 \wedge v_3 + v_3 \wedge v_4$.

Problem 4: If $x = r \cos \theta$ and $y = r \sin \theta$, calculate dx, dy and dx \wedge dy.

Problem 5: Denote the standard coordinates on \mathbb{R}^2 by *x*, *y*, and let

$$X = -y\frac{\partial}{\partial x} + x\frac{\partial}{\partial y}$$
 and $x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y}$

be two vector fields on \mathbb{R}^2 . Find a 1-form ω on $\mathbb{R}^2 \setminus \{(0,0)\}$ such that $\omega(X) = 1$ and $\omega(Y) = 0$.