Introduction to Manifolds

Assignment 6

Due Date: 02/11/2017

Problem 1: In each of the following find the maximal integral curve of the given vector field.

1. $X=x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y}$ on \mathbb{R}^{2} with the initial point $p=(0,0)$.
2. $X=\frac{\partial}{\partial x}+x \frac{\partial}{\partial y}$ on \mathbb{R}^{2} with the initial point $p=(a, b)$.
3. $X=x \frac{\mathrm{~d}}{\mathrm{~d} x}$ on \mathbb{R} with the initial point any $p \in \mathbb{R}$.
4. $X=x^{2} \frac{\mathrm{~d}}{\mathrm{~d} x}$ on \mathbb{R} with the initial point any $p \in \mathbb{R}_{>0}$.

Problem 2: Let f, g be two smooth real valued functions and let X, Y be two smooth vector fields on a manifold M. Prove that

$$
[f X, g Y]=f g[X, Y]+f(X g) Y-g(Y f) X
$$

Problem 3: Consider two smooth vector fields X, y on \mathbb{R}^{n} :

$$
X=\sum_{i} a_{i} \frac{\partial}{\partial x_{i}} \quad Y=\sum_{j} b_{j} \frac{\partial}{\partial x_{j}} .
$$

Find the coefficients of $[X, Y]$ in terms of a_{i} 's and b_{j} 's.

