Introduction to Manifolds

Assignment 4

Due Date: 21/09/2017

Problem 1: Show that the map $f: \mathbb{R} / \mathbb{Z} \rightarrow S^{1}$ defined by $x \mapsto(\cos 2 \pi x, \sin 2 \pi x)$ is a diffeomorphism.
Problem 2: Find all points in \mathbb{R}^{3} in a neighborhood of which the functions $x, x^{2}+y^{2}+z^{2}-1, z$ can serve as a local coordinate system.
Problem 3: For $\theta \in[0,2 \pi)$, let $F^{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the rotation through θ (in counterclockwise direction) map. Given $p \in \mathbb{R}^{2}$ find a matrix representing the differential $F_{*, p}^{\theta}: T_{p} \mathbb{R}^{2} \rightarrow T_{p} \mathbb{R}^{2}$.
Problem 4: Consider the map $f: S^{2} \rightarrow \mathbb{R}$ given by $(x, y, z) \mapsto z$. Find all the critical points of f.
Problem 5: Let $n \in \mathbb{Z}$ and let $g_{n}: S^{1} \rightarrow S^{1}$ be given by $z \mapsto z^{n}$ (here $S^{1} \subset \mathbb{C}$). Compute the differential of g_{n} at some point $w \in S^{1}$.

