Introduction to Manifolds

Assignment 2

Due Date: 4/09/2017

Problem 1: In each of the following questions show that the given function f is one-to-one on the given set A. Sketch A and $B=f(A)$. For $p \in B$ find $D f^{-1}(p)$.

1. $f(x, y)=\left(x^{2}-y^{2}, 2 x y\right), A=\{(x, y) \mid x>0\}$ and $p=(0,1)$.
2. $f(x, y)=\left(e^{x} \cos y, e^{x} \sin y\right), A=\{(x, y) \mid 0<y<2 \pi\}$ and $p=(0,1)$.

Problem 2: Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be given by the equation $f(x)=\|x\|^{2} \cdot x$.

1. Show that f is a smooth function.
2. Show that f maps the unit ball onto itself in a one-to-one fashion.
3. Is the inverse function differentiable at the origin? Why ?

Problem 3: Let $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by $g(x, y)=\left(2 y e^{2 x}, x e^{y}\right)$ and $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be given by the equation $f(x, y)=\left(3 x-y^{2}, 2 x+y, x y+y^{3}\right)$.

1. Show that there is a neighborhood of $(0,1)$ that g carries in a one-to-one fashion onto a neighborhood of $(2,0)$.
2. Find $D\left(f \circ g^{-1}\right)$ at $(2,0)$.

Problem 4: Let $U \subset \mathbb{R}^{n}$ be open; let $f: U \rightarrow \mathbb{R}^{n}$ be a smooth function; assume $D f(x)$ is non-singular for $x \in U$. Show that even if f is not one-to-one on U the image is open in \mathbb{R}^{n}.
Problem 5: The function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is given by

$$
f(x, y)=x^{2}+y^{2}-5 .
$$

1. Explain why there exist a unique single variable continuous function g such that $y=g(x)$ in a neighborhood of 1 ? Find g.
2. Draw a picture depicting the neighborhood and its image.
