Introduction to Manifolds

Assignment 2

Due Date: 4/09/2017

Problem 1: In each of the following questions show that the given function f is one-to-one on the given set A. Sketch A and B = f(A). For $p \in B$ find $Df^{-1}(p)$.

- 1. $f(x, y) = (x^2 y^2, 2xy), A = \{(x, y) \mid x > 0\}$ and p = (0, 1).
- 2. $f(x, y) = (e^x \cos y, e^x \sin y), A = \{(x, y) \mid 0 < y < 2\pi\} \text{ and } p = (0, 1).$

Problem 2: Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be given by the equation $f(x) = ||x||^2 \cdot x$.

- 1. Show that f is a smooth function.
- 2. Show that f maps the unit ball onto itself in a one-to-one fashion.
- 3. Is the inverse function differentiable at the origin? Why?

Problem 3: Let $g: \mathbb{R}^2 \to \mathbb{R}^2$ be given by $g(x, y) = (2ye^{2x}, xe^y)$ and $f: \mathbb{R}^2 \to \mathbb{R}^3$ be given by the equation $f(x, y) = (3x - y^2, 2x + y, xy + y^3)$.

- 1. Show that there is a neighborhood of (0, 1) that g carries in a one-to-one fashion onto a neighborhood of (2, 0).
- 2. Find $D(f \circ g^{-1})$ at (2, 0).

Problem 4: Let $U \subset \mathbb{R}^n$ be open; let $f: U \to \mathbb{R}^n$ be a smooth function; assume Df(x) is non-singular for $x \in U$. Show that even if f is not one-to-one on U the image is open in \mathbb{R}^n .

Problem 5: The function $f: \mathbb{R}^2 \to \mathbb{R}$ is given by

$$f(x, y) = x^2 + y^2 - 5.$$

- 1. Explain why there exist a unique single variable continuous function g such that y = g(x) in a neighborhood of 1? Find g.
- 2. Draw a picture depicting the neighborhood and its image.