Introduction to Manifolds

Assignment 1

Due Date: 24/08/2017

Problem 1: In each of the following a function f is given, find a generic expression for its derivative Df, then determine when the derivative is non-singular. Finally, for the given subset S of the domain sketch its image f(S).

- 1. $f(r, \theta) = (r \cos \theta, r \sin \theta)$ and $S = [1, 2] \times [0, 2\pi]$.
- 2. $f(x, y) = (x^2 y^2, 2xy)$ and $S = \{(x, y) \mid x^2 + y^2 \le a^2, x \ge 0, y \ge 0, a \ge 0\}$.
- 3. $f(x, y) = (e^x \cos y, e^x \sin y)$ and $S = [0, 1] \times [0, 2\pi]$.
- 4. $f(\rho, \phi, \theta) = (\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi)$ and $S = [1, 2) \times [0, \frac{\pi}{2}] \times [0, \frac{\pi}{2}]$.

Problem 2: Let $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^p$ be a bilinear function.

1. Prove that if f is bilinear, then

$$\lim_{(h,k)\to 0} \frac{\|f(h,k)\|}{\|(h,k)\|} = 0,$$

and that f is differentiable everywhere in the domain.

- 2. Prove that D f(a, b)(x, y) = f(a, y) + f(x, b).
- 3. Let $f,g: \mathbb{R} \to \mathbb{R}^n$ be two differentiable maps and $h: \mathbb{R} \to \mathbb{R}$ is defined by setting $h(t) = \langle f(t), g(t) \rangle$ (the standard inner product on \mathbb{R}^n). Prove that h is differentiable everywhere and find h'(a).

Problem 3: Let $\{V_1, \dots, V_k\}$ be a collection of finite-dimensional vector spaces such that $\dim V_i = n_i$ for every i. Let $f: V_1 \times \dots \times V_k \to \mathbb{R}^p$ be a multilinear map (i.e., linear in each variable).

1. Show that for $a := (a_1, \dots, a_k)$ and $h := (h_1, \dots, h_k)$ we have

$$\lim_{h\to 0}\frac{\|f(a_1,\ldots,h_i,\ldots,h_j,\ldots,a_k)\|}{\|h\|}=0.$$

- 2. Prove that f is differentiable everywhere.
- 3. Find the matrix Df(a) and also Df(a)(x).

Problem 4: Let $M(n, \mathbb{R})$ be the vector space of all $n \times n$ matrices with real entries.

- 1. Prove that the function det: $M(n, \mathbb{R}) \to \mathbb{R}$ which sends a matrix to its determinant is differentiable and find $D \det(A)(X)$.
- 2. Find $D \det(I_n)(X)$ and use it to show that the trace map is differentiable.

Problem 5: Compute the derivative of the following functions.

- 1. $f: M(n,\mathbb{R}) \times M(n,\mathbb{R}) \to M(n,\mathbb{R})$ given by f(A,B) = A + B.
- 2. $g: M(n, \mathbb{R}) \times M(n, \mathbb{R}) \to M(n, \mathbb{R})$ given by g(A, B) = AB.
- 3. $h: M(n, \mathbb{R}) \to M(n, \mathbb{R})$ given by $h(A) = A^2$.
- 4. $j: M(n, \mathbb{R}) \to M(n, \mathbb{R})$ given by $j(A) = A^t$.