Introduction to Manifolds

Assignment 2 Due Date: 07/09/2017

Problem 1: Let X be a finite-dimensional (abstract) smooth manifold. Show that with respect to the manifold topology on X the coordinate maps $\phi_{\alpha}: U_{\alpha} \to \phi_{\alpha}(U_{\alpha})$ are homeomorphisms.

Problem 2: Let $U_N \subset S^2$ be the complement of (0,0,1). Prove that U_N is diffeomorphic to \mathbb{R}^2 by exhibiting an explicit map and its inverse. Repeat this for the complement of (0,0,-1), i.e., show that it is a coordinate neighborhood. Conclude that these charts give S^2 a structure of smooth 2-manifold.

Problem 3: Show that it is not possible to cover the unit d-sphere in \mathbb{R}^{d+1} by a single coordinate chart.

Problem 4: Let $B_a = \{x \in \mathbb{R}^n \mid ||x||^2 < a^2\}$ be an open ball of radius a in \mathbb{R}^n . Show that the map

$$x \mapsto \frac{ax}{\sqrt{a^2 - \|x\|^2}}$$

is a diffeomorphism of B_a onto \mathbb{R}^n .

Problem 5: Prove that the union of the two coordinate axes in the Euclidean plane is not a manifold.

Problem 6: Let M and N be two smooth manifolds of dimension m and n respectively. Prove that the cartesian product $M \times N$ is a smooth manifold of dimension m + n.