Reflection Groups

Homework 5
Due date: 15/04/2013

1. Let W be a finite reducible Coxeter group with \mathcal{G} as its Coxeter graph. Let $\mathcal{G}_{1}, \ldots, \mathcal{G}_{k}$, for $k \geq 2$, denote the connected components of \mathcal{G}. Finally, let W_{j} denote the parabolic subgroup of W generated by the simple reflections corresponding to the nodes of \mathcal{G}_{j} for $1 \leq j \leq k$. Then prove that

$$
W \cong W_{1} \times \cdots \times W_{k} .
$$

2. Prove that the following Coxeter graphs are positive definite by explicitly calculating the determinant of the associated real, symmetric matrix $2 G$. Graphs of type $A_{n}(n \geq 1)$, of type $B C_{n}(n \geq 2)$, of type $D_{n}(n \geq 4)$ and of the type E_{6}.
3. Prove that the graphs of type $\tilde{A}_{n}(n \geq 2), \tilde{C}_{n}(n \geq 3), \tilde{D}_{n}(n \geq 4)$ and of the type \tilde{E}_{8} are positive semidefinite by showing that the determinant of the associated real, symmetric matrix is zero.
4. Prove that a labelled subgraph of a positive definite is itself positive definite.
5. Consider the reflection group of type $B C_{3}$ whose Coxeter presentation is the following:

$$
W=\left\langle r_{1}, r_{2}, r_{3} \mid r_{1}^{2}=r_{2}^{2}=r_{3}^{2}=\left(r_{1} r_{2}\right)^{4}=\left(r_{2} r_{3}\right)^{3}=1\right\rangle .
$$

Find a reduced expression for the following word in W -

$$
r_{1} r_{2} r_{3} r_{2} r_{3} r_{2} r_{1} r_{2} r_{3} r_{2} r_{3} r_{2} r_{3} r_{1} r_{3} r_{2} r_{3} r_{2} r_{3} r_{2}
$$

Can you identify the above element, concretely, as a signed permutation?

