Reflection Groups Homework 5 Due date: 15/04/2013

1. Let W be a finite reducible Coxeter group with \mathcal{G} as its Coxeter graph. Let $\mathcal{G}_1, \ldots, \mathcal{G}_k$, for $k \geq 2$, denote the connected components of \mathcal{G} . Finally, let W_j denote the parabolic subgroup of W generated by the simple reflections corresponding to the nodes of \mathcal{G}_j for $1 \leq j \leq k$. Then prove that

$$W \cong W_1 \times \cdots \times W_k.$$

- 2. Prove that the following Coxeter graphs are positive definite by explicitly calculating the determinant of the associated real, symmetric matrix 2G. Graphs of type $A_n (n \ge 1)$, of type $BC_n (n \ge 2)$, of type $D_n (n \ge 4)$ and of the type E_6 .
- 3. Prove that the graphs of type $\tilde{A}_n (n \ge 2)$, $\tilde{C}_n (n \ge 3)$, $\tilde{D}_n (n \ge 4)$ and of the type \tilde{E}_8 are positive semidefinite by showing that the determinant of the associated real, symmetric matrix is zero.
- 4. Prove that a labelled subgraph of a positive definite is itself positive definite.
- 5. Consider the reflection group of type BC_3 whose Coxeter presentation is the following:

 $W = \langle r_1, r_2, r_3 \mid r_1^2 = r_2^2 = r_3^2 = (r_1 r_2)^4 = (r_2 r_3)^3 = 1 \rangle.$

Find a reduced expression for the following word in ${\cal W}$ -

 $r_1r_2r_3r_2r_3r_2r_1r_2r_3r_2r_3r_2r_3r_2r_3r_1r_3r_2r_3r_2r_3r_2r_3r_2$

Can you identify the above element, concretely, as a signed permutation?