Reflection Groups

Homework 4

Due date: 14/03/2013

1. Prove that the reflection groups of type A_{3} and D_{3} are isomorphic by exhibiting an explicit isometry between the corresponding root systems.
2. Draw the hyperplane arrangement corresponding to the root system $B C_{2}$ and label its chambers by the elements in the dihedral group of order 8 .

Use the following information for the remaining problems. Φ is a root system in \mathbb{R}^{n}, Σ is the corresponding arrangement of reflecting hyperplanes, W is the group generated by reflections which acts transitively on \mathcal{C}, the chambers of the reflection arrangement. For two chambers C and D let $\mathcal{S}(C, D)$ denote the set of all hyperplanes in Σ that separate them (i.e., the set of all those hyperplanes such that C and D lie on their opposite sides). Recall that for a chamber C the chamber opposite to it is denoted by $-C$.

3 Prove that for chambers C_{1}, C_{2}, C_{3} the following is true:

$$
\mathcal{S}\left(C_{1}, C_{3}\right)=\left[\mathcal{S}\left(C_{1}, C_{2}\right) \backslash \mathcal{S}\left(C_{2}, C_{3}\right)\right] \bigcup\left[\mathcal{S}\left(C_{2}, C_{3}\right) \backslash \mathcal{S}\left(C_{2}, C_{1}\right)\right] .
$$

4 Given a face F and a chamber C of Σ prove that there is a unique chamber C_{F} satisfying the following:

- $F \subseteq \overline{C_{F}}$,
- $\operatorname{gd}\left(C, C_{F}\right)=\min \{\operatorname{gd}(C, D) \mid D \in \mathcal{C}, F \subseteq \bar{D}\}$.

Moreover, conclude that if $F \subseteq \bar{G}$ then $\left(C_{F}\right)_{G}=C_{G}$ and that if $F \subseteq \bar{C}$ then $C_{F}=C$.

5 Prove that $\operatorname{gd}(C, D)=|\mathcal{S}(C, D)|$.
6 For a chamber C prove the following assertions:
(a) $\operatorname{gd}(C,-C)=\operatorname{gd}(C, D)+\operatorname{gd}(D,-C)$ for every $D \in \mathcal{C}$.
(b) $\operatorname{gd}(C,-C)=|\Sigma|$.
(c) $\operatorname{gd}(C, D)=\operatorname{gd}(-C,-D)$ for every $D \in \mathcal{C}$.

