# Reflection Groups 

Homework 1

Due date: 18/01/2013

## 1 Isometries of $\mathbb{A}^{n}$

1. Let $t_{\alpha} \in \operatorname{iso}\left(\mathbb{A}^{n}\right)$ denote the translation through the vector $\vec{\alpha}$ and let $A \in \operatorname{iso}\left(\mathbb{A}^{n}\right)$ be an orthogonal transformation then prove that

$$
A t_{\alpha} A^{-1}=t_{A \alpha} .
$$

Definition 1.1. A map $f: \mathbb{A}^{n} \rightarrow \mathbb{A}^{n}$ is called a similarity if and only if for all points $w, x, y, z \in \mathbb{A}^{n}$ we have

$$
d(w, x)=d(y, z) \Longleftrightarrow d(f(w), f(x))=d(f(y), f(z)) ;
$$

i.e., $f$ preserves equal distances.

The set of all similarities of $\mathbb{A}^{n}$ form a group under composition.
Definition 1.2. A map $f: \mathbb{A}^{n} \rightarrow \mathbb{A}^{n}$ is called an elation if and only if there exists a non-zero scalar $k$ such that for all points $w, x \in \mathbb{A}^{n}$ we have

$$
d(f(w), f(x))=k \cdot d(w, x)
$$

The constant $k$ is called the coefficient of elation (or the stretching factor) of $f$.
The set of all elations of $\mathbb{A}^{n}$ form a group under composition.
2. (Bonus) Prove that every similarity is an elation.
(It should be clear that elations are similarity; you may take an extra week to submit the answer to this particular question.)
3. Prove that similarity preserves angles (i.e., $\angle x y z=\angle f(x) f(y) f(z))$.
4. Prove that elations of $\mathbb{A}^{2}$ can be characterized as maps that send straight lines to straight lines and preserve perpendicularity.
5. Prove that the group of elations is isomorphic to $\left(\mathbb{R}^{n} \rtimes \mathbb{O}_{n}\right) \rtimes \mathbb{R}_{>0}$. In fact, it is isomorphic to $\mathbb{R}^{n} \rtimes\left(\mathbb{O}_{n} \times \mathbb{R}_{>0}\right)$

