F-RATIONALITY

MANOJ KUMMINI

Introduction

These are notes from my lectures at the workshop Commutative Algebra and Algebraic Geometry in Positive Characteristics held at IIT Bombay in December 2018. The goal is to give a proof of a theorem of K. Smith which asserts that F-rational rings have pseudorational singularities [Smi97].

Notation. By a ring we mean a commutative ring with multiplicative identity. Ring homomorphisms are assumed to take the multiplicative identity to the multiplicative identity.
\mathbb{k} : field
R, S : rings.

1. Double-complex spectral sequences

In this lecture, we list some results, mostly without proofs, about double-complex spectral sequences. References are [CE99, Chapter XV], [Eis95, Appendix A3], and [Wei94, Chapter 5].
Let \mathcal{A} be an abelian category and $C^{\boldsymbol{\bullet} \boldsymbol{\bullet}}$ a first-quadrant double complex in \mathcal{A}, i.e., a double complex with $C^{i, j}=0$ if $i<0$ or $j<0$. Write $F^{\bullet}=\operatorname{Tot}\left(C^{\bullet \bullet \bullet}\right)$. We wish to understand $\mathrm{H}^{*}\left(F^{\bullet}\right)$. To this end, we take a filtration $F^{\bullet} \supseteq F_{1}^{\bullet} \supseteq F_{2}^{\bullet} \supseteq \cdots$. Fix $n \geq 0$. Write $M_{p}=\operatorname{Im}\left(\mathrm{H}^{n}\left({ }^{\prime} F_{p}^{\bullet}\right) \longrightarrow \mathrm{H}^{n}\left(F^{\bullet}\right)\right)$. Since H^{n} is a functor from the category of complexes over \mathcal{A} to \mathcal{A}, we get an induced filtration $\mathrm{H}^{n}\left(F^{\bullet}\right) \supseteq M_{1} \supseteq M_{2} \cdots$ on $\mathrm{H}^{n}\left(F^{\bullet}\right)$. Using a spectral sequence, we start from

$$
\mathrm{H}^{*}\left(\bigoplus_{p}\left(F_{p}^{\bullet} / F_{p+1}^{\bullet}\right)\right)
$$

and obtain the associated graded object

$$
\bigoplus_{p} M_{p} / M_{p+1}
$$

of the filtration of $\mathrm{H}^{n}\left(F^{\bullet}\right)$.
Filtration by columns. For $p \geq 0$, define

$$
' C_{p}^{i, j}= \begin{cases}C^{i, j}, & \text { if } i \geq p \\ 0, & \text { otherwise }\end{cases}
$$

for every j. Write ${ }^{\prime} F_{p}^{\bullet \bullet}=\operatorname{Tot}\left({ }^{\prime} C_{p}^{\bullet \bullet \bullet}\right)$. This gives a filtration $F^{\bullet}={ }^{\prime} F_{0}^{\bullet} \supseteq{ }^{\prime} F_{1}^{\bullet} \supseteq{ }^{\prime} F_{2}^{\bullet} \supseteq \cdots$ with

$$
{ }^{\prime} F_{p}^{\bullet} /^{\prime} F_{p+1}^{\bullet}=C^{p, \bullet}
$$

Version of December 15, 2018.

Set ${ }^{\prime} E_{0}^{i, j}=C^{i, j}$ for every i, j. Think of ${ }^{\prime} E_{0}^{\bullet \bullet \bullet}$ as the collection of complexes $C^{i, \bullet} i \geq 0$, with the horizontal arrows as maps of these complexes. Now ${ }^{\prime} E_{1}^{\bullet, \bullet}$ is the homology of ${ }^{\prime} E_{0}^{\boldsymbol{\bullet} \boldsymbol{\bullet}} ;$ more precisely, the maps in ${ }^{\prime} E_{0}^{\boldsymbol{\bullet}, \bullet}$ are of the form

so ${ }^{\prime} E_{1}^{i, j}=\mathrm{H}^{j}\left(C^{i, \bullet}\right)$. The horizontal maps of $C^{\bullet \bullet \bullet}$, which are thought of as maps of complexes $C^{i, \bullet} \longrightarrow C^{i+1, \bullet}$, give maps

$$
{ }^{\prime} E_{1}^{i-1, j} \longrightarrow{ }^{\prime} E_{1}^{i, j} \longrightarrow{ }^{\prime} E_{1}^{i+1, j}
$$

We define ${ }^{\prime} E_{2}^{\boldsymbol{\bullet}, \boldsymbol{\bullet}}$ as the homology of ${ }^{\prime} E_{1}^{\boldsymbol{\bullet} \boldsymbol{\bullet}}$. One can show that there are maps

and that these form a complex. Define ${ }^{\prime} E_{3}^{\boldsymbol{\bullet}, \boldsymbol{\bullet}}$ as the homology of ${ }^{\prime} E_{2}^{\boldsymbol{\bullet} \cdot \boldsymbol{\bullet}}$; there are maps

$$
{ }^{\prime} E_{3}^{i-3, j+2} \longrightarrow{ }^{\prime} E_{3}^{i, j} \longrightarrow{ }^{\prime} E_{3}^{i+3, j-2} .
$$

Inductively define ${ }^{\prime} E_{r}^{\boldsymbol{\bullet}, \boldsymbol{\bullet}}$ as the homology of ${ }^{\prime} E_{r-1}^{\boldsymbol{\bullet}, \boldsymbol{\bullet}}$; the maps are

$$
{ }^{\prime} E_{r}^{i-r, j+r-1} \longrightarrow{ }^{\prime} E_{r}^{i, j} \longrightarrow{ }^{\prime} E_{r}^{i+r, j-r+1} .
$$

Note for each $s \geq r \geq 1$, and and each $i, j,{ }^{\prime} E_{s}^{i, j}$ is a subquotient of ${ }^{\prime} E_{r}^{i, j}$ and that ${ }^{\prime} E_{0}^{i, j}$ is a subquotient of $C^{i, j}$. Hence, for each i, j, there exists r such that for every $s \geq r$, the map coming into ${ }^{\prime} E_{s}^{i, j}$ is from the second quadrant and the map leaving from ${ }^{\prime} E_{s}^{i, j}$ is to the fourth quadrant; therefore these maps are zero, which gives that ${ }^{\prime} E_{s}^{i, j}={ }^{\prime} E_{r}^{i, j}$; define

$$
{ }^{\prime} E_{\infty}^{i, j}={ }^{\prime} E_{r}^{i, j}
$$

for this r.
1.1. Theorem. For the filtration on $\mathrm{H}^{n}\left(F^{\bullet}\right)$ induced by the filtration of $\left\{{ }^{\prime} F_{p}^{\bullet}\right\}_{p}$ of F^{\bullet}, the associated graded object of $\mathrm{H}^{n}\left(F^{\bullet}\right)$ has ${ }^{\prime} E_{\infty}^{i, n-i}$ as its ith component.

Filtration by rows. For $q \geq 0$, define

$$
" C_{q}^{i, j}= \begin{cases}C^{i, j}, & \text { if } j \geq q \\ 0, & \text { otherwise }\end{cases}
$$

for every i. Write ${ }^{\prime \prime} F_{q}^{\bullet}=\operatorname{Tot}\left({ }^{\prime \prime} C_{q}^{\bullet \bullet \bullet}\right)$. This gives a filtration $F^{\bullet}={ }^{\prime \prime} F_{0}^{\bullet} \supseteq " F_{1}^{\bullet} \supseteq " F_{2}^{\bullet \bullet} \supseteq \cdots$ with

$$
\prime F_{q}^{\bullet} /{ }^{\prime \prime} F_{q+1}^{\bullet}=C^{\bullet}, q .
$$

Set ${ }^{\prime \prime} E_{0}^{i, j}=C^{i, j}$ for every i, j. Think of ${ }^{\prime \prime} E_{0}^{\bullet \bullet \bullet}$ as the collection of complexes $C^{\bullet}, j \geq 0$, with the vertical arrows as maps of these complexes. Now " $E_{1}^{\bullet \bullet \bullet}$ is the homology of " $E_{0}^{\bullet \bullet \bullet}$; more precisely, the maps in " $E_{0}^{\boldsymbol{\bullet}, \bullet}$ are of the form

$$
C_{i-1, j} \longrightarrow C_{i, j} \longrightarrow C_{i+1, j}
$$

so " $E_{1}^{i, j}=\mathrm{H}^{i}\left(C^{\bullet, j}\right)$. The vertical maps of $C^{\bullet \bullet \bullet}$, which are thought of as maps of complexes $C^{\bullet, j} \longrightarrow C^{\bullet, j+1}$, give maps

We define ${ }^{\prime \prime} E_{2}^{\boldsymbol{\bullet}, \bullet}$ as the homology of " $E_{1}^{\boldsymbol{\bullet} \bullet \bullet}$. One can show that there are maps

and that these form a complex. Inductively define ${ }^{\prime \prime} E_{r}^{\bullet \bullet \bullet}$ as the homology of ${ }^{\prime \prime} E_{r-1}^{\bullet \bullet}$; the maps are

$$
{ }^{\prime \prime} E_{r}^{i+r, j-r+1} \longrightarrow{ }^{\prime} E_{r}^{i, j} \longrightarrow{ }^{\prime \prime} E_{r}^{i-r, j+r-1} .
$$

As with the filtration by columns, for each i, j, there exists r such that for every $s \geq r$, ${ }^{\prime \prime} E_{s}^{i, j}={ }^{\prime \prime} E_{r}^{i, j}$; define

$$
{ }^{\prime \prime} E_{\infty}^{i, j}={ }^{\prime \prime} E_{r}^{i, j}
$$

for this r.
1.2. Theorem. For the filtration on $\mathrm{H}^{*}\left(F^{\bullet}\right)$ induced by the filtration of $\left\{" F_{q}^{\bullet}\right\}_{q}$ of F^{\bullet}, the associated graded object of $\mathrm{H}^{n}\left(F^{\bullet}\right)$ has ${ }^{\prime \prime} E_{\infty}^{n-i, i}$ as its ith component.

Terminology. We often refer to ${ }^{\prime} E_{r}^{\boldsymbol{\bullet}, \bullet}$ and ${ }^{\prime \prime} E_{r}^{\bullet, \bullet}$ as the r th page of the spectral sequence. We also say that the spectral sequences ${ }^{\prime} E_{r}^{\bullet \bullet \bullet}$ and ${ }^{\prime \prime} E_{r}^{\bullet \bullet \bullet}$ converge to $H^{*}\left(F^{\bullet}\right)$. We denote this by

$$
{ }^{\prime} E_{r}^{i, j} \Rightarrow \mathrm{H}^{i+j}\left(F^{\bullet}\right) \text { and }{ }^{\prime \prime} E_{r}^{i, j} \Rightarrow \mathrm{H}^{i+j}\left(F^{\bullet}\right)
$$

Edge maps. Fix $n \geq 0$ and consider the filtration on $\mathrm{H}^{n}\left(F^{\bullet}\right)$ induced by the filtration of $\left\{{ }^{\prime} F_{p}^{\bullet}\right\}_{p}$ of F^{\bullet}. Since this is a decreasing filtration, we see that ${ }^{\prime} E_{\infty}^{n, 0}$ is a submodule of $\mathrm{H}^{n}\left(F^{\bullet}\right)$. For $r \geq 2$, there is a surjective morphism ${ }^{\prime} E_{r}^{n, 0} \longrightarrow{ }^{\prime} E_{\infty}^{n, 0}$. The composite $\operatorname{map}^{\prime} E_{r}^{n, 0} \longrightarrow{ }^{\prime} E_{\infty}^{n, 0} \longrightarrow \mathrm{H}^{n}\left(F^{\bullet}\right)$ is called an edge homomorphism. Similarly, we get an edge homomorphism " $E_{r}^{0, n} \longrightarrow{ }^{\prime \prime} E_{\infty}^{0, n} \longrightarrow \mathrm{H}^{n}\left(F^{\bullet}\right)$

Grothendieck spectral sequence. We give an application of the double complex spectral sequence to obtain a relation between the derived functors of a composite of two functors.

Let $\mathcal{A}, \mathcal{B}, C$ be abelian categories such that \mathcal{A} and \mathcal{B} have enough injectives. Let F : $\mathcal{A} \longrightarrow \mathcal{B}$ and $G: \mathcal{B} \longrightarrow \mathcal{C}$ be left-exact covariant additive functors such that F takes injectives in \mathcal{A} to G-acyclic objects in \mathcal{B}, i.e., objects Y of \mathcal{B} such that $R^{i} G Y=0$ for every $i>0$.

1.3. Theorem. With notation as above, there is a spectral sequence

$$
E_{2}^{i, j}=\mathrm{R}^{j} G\left(\mathrm{R}^{i} F(X)\right) \Rightarrow \mathrm{R}^{i+j}(G F)(X)
$$

for every object X of \mathcal{A}.
Proof. Let X be an object of \mathcal{A}. Let I^{\bullet} be an injective resolution of X. Let $J^{\bullet \bullet \bullet}$ be a CartanEilenberg injective resolution (double complex) of $F\left(I^{\bullet}\right)$. (See [CE99, Chapter XVII] and [Wei94, Section 5.7] for the construction of Cartan-Eilenberg resolutions.) Let $C^{\boldsymbol{\bullet}, \boldsymbol{\bullet}}=$ $G\left(J^{\bullet \bullet \bullet}\right)$. Then

$$
'^{\prime} E_{1}^{i, j}=\mathrm{H}^{j}\left(G\left(J^{i, \bullet}\right)\right)=\mathrm{R}^{j} G\left(F\left(I^{i}\right)\right)= \begin{cases}(G F)\left(I^{i}\right), & \text { if } j=0 ; \\ 0, & \text { otherwise },\end{cases}
$$

by the hypothesis on F. Hence the ' E_{1} page is the complex $(G F)\left(I^{\bullet}\right)$, from which we conclude that

$$
' E_{\infty}^{i, j}= \begin{cases}\mathrm{R}^{i}(G F)(X), & \text { if } j=0, \\ 0, & \text { otherwise },\end{cases}
$$

In particular, for every n, the associated graded object of $H^{n}\left(\operatorname{Tot}\left(C^{\boldsymbol{\bullet}, \bullet}\right)\right)$ has only one potentially non-zero term $\mathrm{R}^{n}(G F)(X)$; it follows that $\mathrm{H}^{n}\left(\operatorname{Tot}\left(C^{\bullet \bullet \bullet}\right)\right)=\mathrm{R}^{n}(G F)(X)$.

In the spectral sequence associated to filtration by rows of $C^{\bullet \bullet}$, we have

$$
{ }^{\prime \prime} E_{1}^{i, j}=\mathrm{H}^{i} G\left(J^{\bullet, j}\right)
$$

One can check, using the definition and properties of Cartan-Eilenberg resolutions that

$$
\mathrm{H}^{i} G\left(J^{\bullet, j}\right)=G\left(\text { an injective resolution of } \mathrm{H}^{i}\left(F\left(I^{\bullet}\right)\right)\right) .
$$

Hence

$$
{ }^{\prime \prime} E_{2}^{i, j}=\mathrm{R}^{j} G\left(\mathrm{R}^{i} F(X)\right)
$$

Set $E_{2}={ }^{\prime \prime} E_{2}$.
The edge homomorphisms of the above spectral sequence are $\mathrm{R}^{n} G(F(X)) \longrightarrow \mathrm{R}^{n}(G F)(X)$.

2. Pseudo-Rational rings

In this lecture, we look at pseudo-rational rings [LT81]. We begin with some remarks on local cohomology.

Cohomology with supports. Let X be a topological space, Z a (locally) closed subset of X and \mathcal{F} a sheaf of abelian groups on X. We denote the category of abelian groups by $\mathbf{A b}$ and, for a topological space Y, the category of sheaves of abelian groups on Y by $\mathbf{A b}_{Y}$.
Write $U=X \backslash Z$. Define

$$
\Gamma_{Z}(X, F):=\operatorname{ker}(\Gamma(X, F) \longrightarrow \Gamma(U, F)) .
$$

This is a functor from $\mathbf{A b} \mathbf{b}_{X}$ to $\mathbf{A b}$. It is left exact (Exercise 5.5). Define cohomology groups with support in Z, denoted $\mathrm{H}_{Z}^{*}(X)$, to be its right-derived functors.
2.1. Proposition. Suppose that $X=\operatorname{Spec} R$, that Z is defined by a finitely generated R-ideal I and that \mathcal{F} is the sheaf defined by an R-module M. Then

$$
\mathrm{H}_{Z}^{i}(X, \mathcal{F})=\mathrm{H}_{I}^{i}(M)
$$

for every i.
For a proof, see [Har67, Proposition 2.2] or [ILL ${ }^{+}$07, Theorem 12.47].
2.2. Proposition. Let $f: X^{\prime} \longrightarrow X$ be a continuous map, Z a closed subset of $X, Z^{\prime}:=f^{-1}(Z)$ and \mathcal{F} a sheaf of abelian groups on X. Then we have a spectral sequence

$$
E_{2}^{i, j}=\mathrm{H}_{Z}^{j}\left(X, \mathrm{R}^{i} f_{*} \mathcal{F}\right)
$$

converging to $\mathrm{H}_{Z^{\prime}}^{i+j}\left(X^{\prime}, \mathcal{F}\right)$. The edge homomorphisms of this page are the maps $\mathrm{H}_{Z}^{n}\left(X, f_{*} \mathcal{F}\right) \longrightarrow$ $\mathrm{H}_{Z^{\prime}}^{n}\left(X^{\prime}, \mathcal{F}\right)$.
Proof. Use Theorem 1.3 with $\mathcal{A}=\mathbf{A b}_{X^{\prime}}, \mathcal{B}=\mathbf{A} \mathbf{b}_{X}, \mathcal{C}=\mathbf{A b}, F=f_{*}$ and $G=\Gamma_{Z}(X,-)$. Note that f_{*} takes injectives in $\mathbf{A} \mathbf{b}_{X^{\prime}}$ to injectives in $\mathbf{A} \mathbf{b}_{X}$, which are acyclic for $\Gamma_{Z}(X,-)$. See [Har67, Proposition 5.5] for details. The assertion about edge homomorphisms follows from the definition.

Pseudo-rational rings.

2.3. Definition. Let (R, \mathfrak{m}) be a d-dimensional Cohen-Macaulay, normal, analytically unramified local ring. Then R is said to be pseudo-rational if the edge homomorphism

$$
\mathrm{H}_{\mathfrak{m}}^{d}(R) \xrightarrow{\delta_{f}} \mathrm{H}_{f^{-1}(\{\mathfrak{m}\})}^{d}\left(Z, \mathscr{O}_{Z}\right)
$$

is injective, for every proper birational map $f: Z \longrightarrow \operatorname{Spec} R$ with Z normal.
2.4. Example. Regular local rings are pseudo-rational [LT81, Section 4].
2.5. Example. Let (R, \mathfrak{m}) be a d-dimensional Cohen-Macaulay, normal local ring that is essentially of finite type over a field of characteristic zero. Suppose that R has rational singularities, i.e., there exists a proper birational morphism $h: Z \longrightarrow \operatorname{Spec} R$ such that Z is nonsingular (such a morphism is called a desingularization) and $\mathrm{R}^{i} h_{*} \mathscr{O}_{Z}=0$ for every $i>0$. In fact, if this holds for one desingularization, it holds for every desingularization. Let $f: W \longrightarrow \operatorname{Spec} R$ be a proper birational morphism with W normal. Let $g: Z \longrightarrow W$ be a desingularization. Then $h=f g$ is a desingularization of $\operatorname{Spec} R$. Then the edge homomorphism δ_{f} is injective. (Exercise 5.8).
2.6. Example. Let \mathbb{k} be a field of characteristic different from $3, S=\mathbb{k}[x, y, z]$ and $R=$ $S /\left(x^{3}+y^{3}+z^{3}\right)$. Write \mathfrak{m} for the homogeneous maximal ideal of R. After replacing \mathbb{k} by an algebraic closure and using the jacobian criterion [Eis95, 16.19] we see that the
singular locus of $\operatorname{Spec} R$ is $\{\mathfrak{m}\}$, which has codimension two. Since it is Cohen-Macaulay, it satisfies the Serre condition $\left(S_{2}\right)$. Hence R is a normal domain. Let A be the Rees algebra $R[\mathfrak{m} t]$ and $X=\operatorname{Proj} A$. Write f for the natural map $X \longrightarrow \operatorname{Spec} R$. We now make several observations and conclude that R is not pseudo-rational.
(1) X is nonsingular: X has an affine open covering

$$
\operatorname{Spec}\left(\left(R\left[\frac{\mathfrak{m} t}{x t}\right]\right)_{0}\right) \cup \operatorname{Spec}\left(\left(R\left[\frac{\mathfrak{m} t}{y t}\right]\right)_{0}\right) .
$$

130
(Observe that $z t \in \sqrt{(x t, y t)}$.) Note that

$$
\left(R\left[\frac{\mathfrak{m} t}{x t}\right]\right)_{0} \simeq R\left[\frac{y}{x}, \frac{z}{x}\right]
$$

Write $u=\frac{y}{x}$ and $y=\frac{z}{x}$ to see that

$$
R\left[\frac{y}{x}, \frac{z}{x}\right] \simeq \mathbb{k}[x, u, v] /\left(1+u^{3}+v^{3}\right)
$$

which is non-singular; similarly for the other open set.
(2) $\mathrm{H}^{2}(X, \mathcal{F})=0$ for every coherent sheaf \mathcal{F} on X, since X has an affine cover with two open sets.
(3) The map f is birational: for, let $0 \neq a \in \mathfrak{m}$. Then $A_{a} \simeq R_{a}[t]$, so $f^{-1}\left(\operatorname{Spec} R_{a}\right) \simeq$ $\operatorname{Proj}\left(R_{a} \otimes_{R} A\right) \simeq \operatorname{Proj}\left(R_{a}[t]\right) \simeq \operatorname{Spec} R_{a}$. Write $U=\operatorname{Spec} R \backslash\{\mathfrak{m}\}$ and $V=f^{-1}(U)$. Then $\left.f\right|_{V}: V \longrightarrow U$ is an isomorphism, since U has an affine covering by $\operatorname{Spec} R_{a}, a \in \mathfrak{m}, a \neq 0$.
(4) $\operatorname{Supp}\left(\mathrm{H}^{1}(X, \mathcal{F})\right) \subseteq\{\mathfrak{m}\}$ for every coherent sheaf \mathcal{F} on X. This follows from applying the flat-base change theorem for cohomology [Har77, III.9.3] for the flat (in fact open) morphism $U \longrightarrow$ Spec R, and noting that all higher direct images vanish for the isomorphism $V \longrightarrow U$.
(5) Let $E=\operatorname{Proj}\left(R / \mathfrak{m t} \otimes_{R} A\right)$, the scheme-theoretic pre-image of $\operatorname{Spec}(R / \mathfrak{m}) \subseteq \operatorname{Spec} R$. Note that $R / \mathfrak{m} \otimes_{R} A \simeq \mathbb{k}[x, y, z] /\left(x^{3}+y^{3}+z^{3}\right)$, so $E \simeq \operatorname{Proj} R$. Note that we have an exact sequence

$$
0 \longrightarrow \mathfrak{m} \mathscr{O}_{X} \longrightarrow \mathscr{O}_{X} \longrightarrow \mathscr{O}_{E} \longrightarrow 0
$$

(6) $\mathrm{H}^{1}\left(E, \mathscr{O}_{E}\right) \neq 0$: Since $E \simeq \operatorname{Proj} R$, it suffices [ILL $\left.{ }^{+} 07,13.21\right]$ to show that

$$
\mathrm{H}_{\mathfrak{m}}^{2}(R)_{0} \neq 0 .
$$

Note that we have an exact sequence

$$
0 \longrightarrow \mathrm{H}_{\mathfrak{m}}^{2}(R) \longrightarrow \mathrm{H}_{\mathfrak{m}}^{3}(S)(-3) \longrightarrow \mathrm{H}_{\mathfrak{m}}^{3}(S) \longrightarrow 0
$$

A description of $\mathrm{H}_{\mathfrak{m}}^{3}(S)$ as a graded S-module is given in [ILL ${ }^{+} 07$, Example 7.16], whence we conclude that

$$
\mathrm{H}_{\mathrm{m}}^{2}(R)_{0} \simeq \mathrm{H}_{\mathrm{m}}^{3}(S)_{-3} \simeq \mathbb{k} .
$$

(7) $\mathrm{H}_{\mathfrak{m}}^{0}\left(\mathrm{H}^{1}\left(X, \mathscr{O}_{X}\right)\right)=\mathrm{H}^{1}\left(X, \mathscr{O}_{X}\right) \neq 0$, since $\mathrm{H}^{1}\left(X, \mathscr{O}_{X}\right)$ is a finite-length non-zero module.
(8) The 'exact sequence of low-degree terms' (Exercise 5.1) for the spectral sequence of Proposition 2.2

$$
\mathrm{H}_{\mathfrak{m}}^{j}\left(\mathrm{R}^{i} f_{*} \mathscr{O}_{X}\right) \Rightarrow \mathrm{H}_{E}^{i+j}\left(\mathscr{O}_{X}\right)
$$

is

$$
0 \longrightarrow \mathrm{H}_{\mathfrak{m}}^{1}(R) \xrightarrow{\text { edge }} \mathrm{H}_{E}^{1}\left(\mathscr{O}_{X}\right) \longrightarrow \mathrm{H}^{1}\left(X, \mathscr{O}_{X}\right) \longrightarrow \mathrm{H}_{\mathfrak{m}}^{2}(R) \xrightarrow{\text { edge }} \mathrm{H}_{E}^{2}\left(\mathscr{O}_{X}\right) \longrightarrow
$$

(9) $\mathrm{H}_{E}^{1}\left(\mathscr{O}_{X}\right)=0$ [Lip78, Theorem 2.4, p. 177].

Hence the edge map $\mathrm{H}_{\mathrm{m}}^{2}(R) \longrightarrow \mathrm{H}_{E}^{2}\left(\mathscr{O}_{X}\right)$ is non-zero, and Spec R is not pseudo-rational. What we essentially used is the fact that

$$
\mathrm{H}_{\mathrm{m}}^{2}(R)_{j} \neq 0
$$

for some $j \geq 0$. See Exercise 5.11 in this context.

3. F-rationality

Tight closure. For this lecture and the next, p is a prime number and R is a noetherian ring of characteristic p. Let I be an R-ideal. By q, we mean a power of p. By $I^{[q]}$, we mean the ideal generated by $\left\{x^{q} \mid x \in I\right\}$. By R^{o}, we mean the set $R \backslash \cup_{p \in \operatorname{Min}(R)} \mathfrak{p}$.
3.1. Definition. The tight closure of I, denoted I^{*}, is the set

$$
\left\{x \in R \mid \text { there exists } c \in R^{o} \text { such that } c x^{q} \in I^{[q]} \text { for all } q \gg 0\right\} .
$$

We say that I is tightly closed if $I=I^{*}$.
Some facts:
(1) I^{*} is an ideal containing $I ;\left(I^{*}\right)^{*}=I^{*}$.
(2) $x \in I^{*}$ if and only if $x \in(I R / \mathfrak{p})^{*}$ for every $\mathfrak{p} \in \operatorname{Min}(R)$.
(3) Every ideal in a regular local ring is tightly closed.
F-rational rings. Let $x_{1}, \ldots, x_{n} \in R$. We say that $\left(x_{1}, \ldots, x_{n}\right)$ is a parameter ideal if the images of x_{1}, \ldots, x_{n} in $R_{\mathfrak{p}}$ form part of a system of parameters for $R_{\mathfrak{p}}$ for every prime ideal \mathfrak{p} of R containing x_{1}, \ldots, x_{n}. We say that R is F-rational if every parameter ideal is tightly closed.

Some facts:
(1) Every F-rational ring is normal.
(2) Every ideal in a Gorenstein F-rational ring is tightly closed.
(3) If R is a quotient of a Cohen-Macaulay ring and is F-rational, then R is CohenMacaulay, and localizations of R are F-rational.
(4) Let R be a local ring that is a quotient of a Cohen-Macaulay ring. Then R is F rational if and only if R is equi-dimensional and there exists a system of parameters that generates a tightly closed ideal.
(5) Let R be a local ring and \widehat{R} its completion. If \widehat{R} is F-rational, then R is F-rational. The converse is true if R is excellent (e.g., essentially of finite type over a field).

Frobenius action on local cohomology. The Frobenius map $F: R \longrightarrow R, r \mapsto r^{p}$ commutes with localization. Let $I=\left(x_{1}, \ldots, x_{n}\right)$; then F commutes with the maps in $\check{\mathrm{C}}\left(x_{1}, \ldots, x_{n} ; R\right)$, so it induces a map on $\mathrm{H}_{I}^{i}(R)$ for every i. On $\mathrm{H}_{I}^{n}(R)$, this map is

$$
\left[\frac{z}{x_{1}^{t} x_{2}^{t} \cdots x_{n}^{t}}\right] \mapsto\left[\frac{z^{p}}{x_{1}^{t p} x_{2}^{t p} \cdots x_{n}^{t p}}\right] .
$$

$\check{\mathrm{C}}^{\bullet}\left(x_{1}, \ldots, x_{n} ; R\right)$ is also the limit of the Koszul complexes $K^{\bullet}\left(x_{1}^{t}, \ldots, x_{n}^{t} ; R\right)\left[\operatorname{ILL}^{+} 07\right.$, Chapter 7]. We have

$$
\lim _{\vec{t}}\left(\frac{R}{\left(x_{1}^{t}, \ldots, x_{n}^{t}\right)} \xrightarrow{x_{1} x_{2} \cdots x_{n}} \frac{R}{\left(x_{1}^{t+1}, \ldots, x_{n}^{t+1}\right)}\right)=\mathrm{H}_{I}^{i}(R) .
$$

If x_{1}, \ldots, x_{n} is an R-regular then the maps in the above system are injective, so

$$
\frac{R}{\left(x_{1}^{t}, \ldots, x_{n}^{t}\right)} \hookrightarrow \mathrm{H}_{I}^{i}(R) .
$$

187 Under this map the element

$$
\left[\frac{z}{x_{1}^{t} x_{2}^{t} \cdots x_{n}^{t}}\right]
$$

188 corresponds to $z \bmod \left(x_{1}^{t}, \ldots, x_{n}^{t}\right)$. For a proof, see [LT81, p. 104-105].
189 3.2. Definition. A submodule M of $H_{I}^{i}(R)$ is said to be F-stable if $F(M) \subseteq M$.
190 3.3. Example. Let $\eta \in \mathrm{H}_{I}^{n}(R)$. Then the R-submodule of $\mathrm{H}_{I}^{n}(R)$ generated by $F^{e}(\eta), e \geq 1$ 191 is F-stable. In the proof of the theorem below, we will denote it by M_{η}.
3.4. Theorem ([Smi97, Theorem 2.6]). Let (R, \mathfrak{m}) be a d-dimension excellent Cohen-Macaulay local ring of characteristic p. Then R is F-rational if and only if $\mathrm{H}_{\mathrm{m}}^{d}(R)$ has no proper non-zero F-stable submodules.

A special case of this was proved by R. Fedder and K. i. Watanabe: assuming that R is an isolated singularity and that $\mathrm{H}_{\mathrm{m}}^{i}(R)$ has finite length for every $i<d$; see [FW89, Theorem 2.8].
Proof. 'Only if': Since R is excellent and F-rational, \widehat{R} is Cohen-Macaulay and F-rational. Since $\overline{\mathrm{H}_{\mathfrak{m}}^{d}(R) \text { is }}$ both an R-module and an \widehat{R}-module (compatibly), we may assume that R is complete.
By way of contradiction suppose that $0 \neq M \subsetneq \mathrm{H}_{\mathfrak{m}}^{d}(R)$ is an F-stable R-submodule of $\mathrm{H}_{\mathrm{m}}^{d}(R)$. Let $C=\mathrm{H}_{\mathrm{m}}^{d}(R) / M$. Taking Matlis duals, we get

$$
0 \longrightarrow C^{\vee} \longrightarrow\left(\mathrm{H}_{\mathrm{m}}^{d}(R)\right)^{\vee} \underset{\omega_{R}}{ } \longrightarrow M^{\vee} \longrightarrow 0
$$

203 where ω_{R} is a canonical module of R. The isomorphism $\left(\mathrm{H}_{\mathrm{m}}^{d}(R)\right)^{\vee} \simeq \omega_{R}$ is local duality [ILL ${ }^{+} 07$, Theorem 11.44]. Note that $M \neq 0 \neq C$, so $C^{\vee} \neq 0 \neq M^{\vee}$. Since ω_{R} is a torsion-free R-module of rank $1, K \otimes_{R} M^{\vee}=0$. Since M^{\vee} is a finitely generated R-module, there exists $0 \neq c \in R$ such that $c M^{\vee}=0$, so $c M=0$. Let

$$
\eta:=\left[\frac{z}{x_{1}^{t} x_{2}^{t} \cdots x_{d}^{t}}\right] \in M
$$

be a non-zero element. Hence

$$
c F^{e}(\eta)=\left[\frac{c z^{q}}{x_{1}^{t q} x_{2}^{t q} \cdots x_{d}^{t q}}\right]=0 .
$$

for every q. This means that $c z^{q} \in\left(x_{1}^{t q}, x_{2}^{t q}, \ldots, x_{d}^{t q}\right)$ for every q, i.e., $z \in\left(x_{1}^{t}, x_{2}^{t}, \ldots, x_{d}^{t}\right)^{*}=$ $\left(x_{1}^{t}, x_{2}^{t}, \ldots, x_{d}^{t}\right)$, so $\eta=0$, a contradiction.
'If': To make the argument simple, we will assume that R is a domain. By way of contradiction, assume that R is not F-rational. Let x_{1}, \ldots, x_{d} be a system of parameters

212
and $z \in\left(x_{1}, \ldots, x_{d}\right)^{*} \backslash\left(x_{1}, \ldots, x_{d}\right)$. Write

$$
\eta=\left[\frac{z}{x_{1} x_{2} \cdots x_{d}}\right] \in \mathrm{H}_{\mathfrak{m}}^{d}(R) .
$$

213 Note that $\eta \neq 0$, so $M_{\eta} \neq 0$. Let $0 \neq c \in R$ be such that $c z^{q} \in\left(x_{1}^{q}, x_{2}^{q}, \ldots, x_{d}^{q}\right)$ for every $214 \quad q \geq 1$. Then $c \eta^{q}=0$ for every $q \geq 1$, so $c M_{\eta}=0$. Note that $M_{\eta} \neq \mathrm{H}_{\mathrm{m}}^{d}(R)$ since the 215

216 217
3.5. Example. Suppose that R is positively graded with R_{0}. Write \mathfrak{m} for the homogeneous maximal ideal. Then

$$
\bigoplus_{j \geq 0}\left(\mathrm{H}_{\mathfrak{m}}^{d}(R)\right)_{j}
$$

218 is a proper F-stable submodule of $\mathrm{H}_{\mathrm{m}}^{d}(R)$. Using this, we see that the ring

$$
\mathbb{K}[x, y, z] /\left(x^{3}+y^{3}+z^{3}\right)
$$

219 is not F-rational for any field \mathbb{K}.
220 3.6. Example. Let $R=\mathbb{F}_{2}[x, y, z] /\left(x^{2}+y^{3}+z^{5}\right)$. This is a Cohen-Macaulay normal domain.
221 It is a graded ring if we set $\operatorname{deg} x=15, \operatorname{deg} y=10$ and $\operatorname{deg} z=6$. Let $S=\mathbb{F}_{2}[x, y, z]$. Then

$$
\left[\mathrm{H}_{(x, y, z)}^{3}(S)\right]_{-31} \neq 0 \text { and }\left[\mathrm{H}_{(x, y, z)}^{3}(S)\right]_{j}=0 \text { for every } j \geq-30
$$

Hence

$$
\left[\mathrm{H}_{(x, y, z)}^{3}(R)\right]_{-1} \neq 0 \text { and }\left[\mathrm{H}_{(x, y, z)}^{3}(R)\right]_{j}=0 \text { for every } j \geq 0
$$

However, R is not F-rational, as we see now. Since $x \notin(y, z)$,

$$
0 \neq\left[\frac{x}{y z}\right] \in \mathrm{H}_{(x, y, z)}^{2}(R)
$$

On the other hand, $x^{2} \in\left(y^{2}, z^{2}\right)$, so

$$
\left[\frac{x^{2}}{y^{2} z^{2}}\right]=F\left(\left[\frac{x}{y z}\right]\right)=0
$$

5.2. Place an exact sequence

$$
0 \longrightarrow M_{1} \longrightarrow M_{2} \longrightarrow M_{3} \longrightarrow 0
$$

Hence F has a non-zero kernel. It is easy to check that kernel of F is an F-stable submodule of $\mathrm{H}_{(x, y, z)}^{2}(R)$.

4. F-rationality implies pseudo-rationality

5. Exercises

5.1. Derive the 'exact sequence of low-degree terms' for the " E_{2} page:

$$
0 \longrightarrow{ }^{\prime \prime} E_{2}^{0,1} \xrightarrow{\text { edge }} \mathrm{H}^{1}\left(F^{\bullet}\right) \longrightarrow{ }^{\prime \prime} E_{2}^{1,0} \xrightarrow{d_{2}^{1,0}}{ }^{\prime \prime} E_{2}^{0,2} \xrightarrow{\text { edge }} \mathrm{H}^{2}\left(F^{\bullet}\right) \longrightarrow
$$

on the horizontal axis and take a Cartan-Eilenberg injective resolution. Let F be a leftexact covariant functor. Show that the ' E_{3} page is zero and that the maps on the ' E_{1} and ${ }^{\prime} E_{2}$ pages give the familiar exact sequence in $R^{i} F$.
5.3. Show that $\operatorname{Tor}_{*}^{R}(M, N) \simeq \operatorname{Tor}_{*}^{R}(N, M)$ by looking at the third quadrant double complex

$$
C^{-i,-j}=F_{i} \otimes G_{j}
$$

where F_{\bullet} and G_{\bullet} are projective resolutions of M and N respectively.
5.4. The following is an example of a step in the construction of pure resolutions by Eisenbud and Schreyer.

Let $X=\mathbb{P}_{\mathbb{k}}^{1} \times \mathbb{P}_{\mathbb{k}}^{1}$, where \mathbb{k} is a field. Give homogeneous coordinates u, v and x, y respectively. Let $S=\mathbb{k}[u, v, x, y]$, with $\operatorname{deg} u=\operatorname{deg} v=(1,0)$ and $\operatorname{deg} x=\operatorname{deg} y=(0,1)$.
(1) The Koszul complex on S with respect to $u x, u y+v x, v y$ gives an exact sequence

$$
K_{\bullet}: \quad 0 \longrightarrow \mathscr{O}_{X}(-3,-3) \longrightarrow \mathscr{O}_{X}(-2,-2)^{\oplus 3} \longrightarrow \mathscr{O}_{X}(-1,-1)^{\oplus 3} \longrightarrow \mathscr{O}_{X} \longrightarrow 0 .
$$

(Hint: X can be thought of as the set of bigraded ideals not containing the irrelevant ideal $(u, v) \cap(x, y)$. The two projection maps from X are given by contraction to $\mathbb{k}[u, v]$ and $\mathbb{k}[x, y]$.)
(2) Let $\pi: X \longrightarrow \mathbb{P}_{k}^{1}$ be the projection to the first factor. Let $I^{\bullet \bullet \bullet}$ be a Cartan-Eilenberg injective resolution of K_{\bullet}. Let $C^{\boldsymbol{\bullet} \boldsymbol{\bullet}}=\pi_{*}\left(I^{\boldsymbol{\bullet} \bullet \bullet}\right)$. (This is a 'first-quadrant' double complex.) Use the projection formula to see that

$$
' E_{1}^{i, j}= \begin{cases}\mathscr{O}_{\mathbb{P}_{\mathbf{k}}^{1}}(-3)^{\oplus 2}, & \text { if } i=-3 \text { and } j=1 ; \\ \mathscr{O}_{\mathbb{P}_{\mathbf{k}}^{1}}(-2)^{\oplus 3}, & \text { if } i=-2 \text { and } j=1 ; \\ \mathscr{O}_{\mathbb{P}_{\mathbf{k}}^{1}}, & \text { if } i=0 \text { and } j=0 ; \\ 0, & \text { otherwise } .\end{cases}
$$

(3) Use the " E spectral sequence to conclude that ${ }^{\prime} E_{\infty}^{i, j}=0$ for every i, j.
(4) Conclude that the non-zero terms of the ' E_{1} page give an exact sequence

$$
0 \longrightarrow \mathscr{O}_{\mathbb{P}_{\mathbf{k}}^{1}}(-3)^{\oplus 2} \longrightarrow \mathscr{O}_{\mathbb{P}_{\mathbf{k}}}(-2)^{\oplus 3} \longrightarrow \mathscr{O}_{\mathbb{P}_{\mathbf{k}}^{1}} \longrightarrow 0
$$

(Getting a pure resolution over $\mathbb{k}[u, v]$ from the above exact sequence requires a little more work, which we omit in this exercise.)
(5) Using the same strategy, construct an exact sequence

$$
0 \longrightarrow \mathscr{O}_{\mathbb{P}_{\mathbf{k}}^{1}}(-3)^{\oplus a} \longrightarrow \mathscr{O}_{\mathbb{P}_{\mathbf{k}}}(-1)^{\oplus b} \longrightarrow \mathscr{O}_{\mathbb{P}_{\mathbf{k}}^{1}}(1)^{\oplus c} \longrightarrow 0
$$

5.5. Do a 'diagram-chasing' in the commutative diagram below

to conclude that $\Gamma_{Z}(X,-)$ is left-exact.
5.6. Let (R, \mathfrak{m}) be a two-dimensional analytically unramified normal domain and f : $W \longrightarrow \operatorname{Spec} R$ a proper birational morphism with W normal.
(1) Show that $\operatorname{Supp}\left(\mathrm{H}^{1}\left(W, \mathscr{O}_{W}\right)\right) \subseteq\{\mathfrak{m}\}$. (Hint: Localize in the base and use flat basechange for cohomology and the fact that over a DVR, every proper birational map is an isomorphism.)
(2) R is pseudo-rational if and only if $\mathrm{H}^{1}\left(Z, \mathscr{O}_{Z}\right)=0$ for every Z that has a proper birational map to $\operatorname{Spec} R$. (Use: $\mathrm{H}_{f^{-1}(\{\mathrm{~m}\})}\left(\mathscr{O}_{Z}\right)=0$ [Lip78, Theorem 2.4, p. 177].)
5.7. Let (R, \mathfrak{m}) be a normal local ring. Let $W \xrightarrow{g} Z \xrightarrow{f}$ Spec R be a proper birational morphisms with Z and W normal. Write $h=f g$. Then the edge map

$$
\mathrm{H}_{\mathfrak{m}}^{d}(R) \xrightarrow{\delta_{h}} \mathrm{H}_{h^{-1}(\{\mathfrak{m}\})}^{d}\left(W, \mathscr{O}_{W}\right)
$$

factors as

$$
\mathrm{H}_{\mathrm{m}}^{d}(R) \xrightarrow{\delta_{f}} \mathrm{H}_{f^{-1}(\{\mathfrak{m}\})}^{d}\left(Z, \mathscr{O}_{Z}\right) \longrightarrow \mathrm{H}_{h^{-1}(\{\mathfrak{m}\})}^{d}\left(W, \mathscr{O}_{W}\right)
$$

5.8. Show that rational singularities (in characteristic zero) are pseudo-rational. You need to use the fact that if R has rational singularities, then $\mathrm{R}^{i} f_{*} \mathscr{O}_{Z}=0$ for every desingularization $f: Z \longrightarrow \operatorname{Spec} R$ and every $i>0$.
5.9. Let R be a Cohen-Macaulay ring of characteristic zero. Show that R has rational singularities if and only if there exists a proper birational morphism $f: Z \longrightarrow \operatorname{Spec} R$ such that Z has rational singularities and $\mathrm{R}^{i} f_{*} \mathscr{O}_{Z}=0$ for every $i>0$.
5.10. Let (R, \mathfrak{m}) be a noetherian ring. Let $X=\{\mathfrak{p} \in \operatorname{Spec} R \mid \operatorname{dim} R / \mathfrak{p}=\operatorname{dim} R\}$. Let $a \in \mathfrak{m} \backslash \cup_{p \in X} \mathfrak{p}$. If $R /(a)$ is regular, then so is R. Show that the hypothesis on a is necessary.
5.11. Let R be a two-dimensional standard graded normal domain, with $R_{0}=\mathbb{k}$, with homogeneous maximal ideal \mathfrak{m}. Assume that Spec $R \backslash\{\mathfrak{m}\}$ has pseudo-rational singularities. Show that R has pseudo-rational singularities if and only if $H_{\mathfrak{m}}^{2}(R)_{j}=0$ for every $j \geq 0$ as follows:
(1) Let $X=\operatorname{Proj} R[\mathfrak{m} t]$. Then X has pseudo-rational singularities, and there is a proper birational map $f: X \longrightarrow \operatorname{Spec} R$.
(2) Let $h: W \longrightarrow \operatorname{Spec} R$ with W normal. Let W^{\prime} be the blow-up of W along the ideal sheaf $\mathfrak{m} \mathscr{O}_{W}$, and h^{\prime} the composite map $W^{\prime} \longrightarrow W \longrightarrow \operatorname{Spec} R$. It suffices to show that the edge map $\delta_{h^{\prime}}$ is injective. Hence replacing W by W^{\prime}, we may assume that h factors as $W \xrightarrow{g} X \xrightarrow{f} \operatorname{Spec} R$.
(3) $\mathrm{R}^{1} g_{*} \mathscr{O}_{W}=0$.
(4) Let E be the divisor of X defined by $\mathfrak{m} \mathscr{O}_{X}$. Write $\widetilde{E}=h^{-1}(\{\mathfrak{m}\})$. The map

$$
\mathrm{H}_{E}^{2}\left(\mathscr{O}_{X}\right) \longrightarrow \mathrm{H}_{\widetilde{E}}^{2}\left(\mathscr{O}_{W}\right)
$$

is an isomorphism.
(5) The map

$$
\mathrm{H}_{\mathfrak{m}}^{2}(R) \longrightarrow \mathrm{H}_{\widetilde{E}}^{2}\left(\mathscr{O}_{W}\right)
$$

is injective if and only if the map

$$
\mathrm{H}_{\mathfrak{m}}^{2}(R) \longrightarrow \mathrm{H}_{E}^{2}\left(\mathscr{O}_{X}\right)
$$

is injective, which holds if and only if $\mathrm{H}^{1}\left(X, \mathscr{O}_{X}\right)=0$ which holds if and only if $\mathrm{H}^{1}\left(E, \mathscr{O}_{E}(j)\right)=$ 0 for every $j \geq 0$ which holds if and only if $\mathrm{H}_{\mathfrak{m}}^{2}(R)_{j}=0$ for every $j \geq 0$. You will need to use two facts: $E \simeq \operatorname{Proj} R$ and that $\mathfrak{m}^{j} \mathscr{O}_{X} \otimes_{X} \mathscr{O}_{E} \simeq \mathscr{O}_{E}(j)$.
5.12. Let $R=\mathbb{k}\left[x^{2}, x^{3}\right]$ where \mathbb{k} is a field of characteristic $p>0$. Show that $x^{3} \in\left(x^{2}\right)^{*} \backslash\left(x^{2}\right)$.
5.13. Let $R=\mathbb{k}[x, y, z] /\left(x^{3}+y^{3}+z^{3}\right)$ where \mathbb{k} is a field of characteristic $p>0, p \neq 3$. Show that $z^{2} \in(x, y)^{*} \backslash(x, y)$.
5.14. Let R be a noetherian ring, and I an R-ideal. Show that if I is tightly closed, then $(I: J)$ is tightly closed for every ideal J.
5.15. Show that an intersection of tightly closed ideals is tightly closed.
5.16. Let (R, \mathfrak{m}) be a Gorenstein ring, I an unmixed R-ideal, and $x_{1}, \ldots, x_{c} \in I$ a maximal regular sequence. Write $J=\left(x_{1}, \ldots, x_{c}\right)$. Show that $(J:(J: I))=I$.
5.17. Show that every ideal in a Gorenstein F-rational ring is tightly closed.
5.18. Let R be a local ring and \widehat{R} its completion. If \widehat{R} is F-rational, then R is F-rational.
5.19. Let (R, \mathfrak{m}) be a two-dimensional pseudo-rational ring. Following [LT81, Section 5], prove the (special case of) Brian con-Skoda theorem:

$$
\overline{I^{n+2}} \subseteq I^{n}
$$

for every $n \geq 1$, as follows:
(1) We may assume that R / \mathfrak{m} is an infinite field [LT81, Example (c), p. 103].
(2) I has a reduction generated by two elements, i.e., there exists $J=(x, y) \subseteq I$ such that $I^{n+1}=J I^{n}$ for every $n \gg 0$. (Hint: take a Noether normalization of $R[I t] / \mathfrak{m} R[I t]$.)
(3) The ideal generated by $x t$, $y t$ in $A:=\overline{R[I t]}$ is primary to the irrelevant ideal.
(4) Let $X=\operatorname{Proj} A$. The Koszul complex $K_{\bullet}(x t, y t ; A)$ gives an exact sequence

$$
0 \longrightarrow \mathscr{O}_{X}(n) \longrightarrow \mathscr{O}_{X}(n+1) \longrightarrow \mathscr{O}_{X}(n+2) \longrightarrow 0
$$

for every $n \in \mathbb{Z}$. (Here, by $\mathscr{O}_{X}(1)$ we mean the invertible sheaf $I \mathscr{O}_{X}$.)
(5) For $n \geq 0$, this gives an exact sequence

$$
0 \longrightarrow \overline{I^{n}} \longrightarrow \overline{I^{n+1}} \xrightarrow{[x y]} \overline{I^{n+2}} \longrightarrow 0 .
$$

(Use: $\overline{I^{n}}=\mathrm{H}^{0}\left(X, \mathscr{O}_{X}(n)\right)$ for every $n \geq 1, I^{0}:=R=\mathrm{H}^{0}\left(X, \mathscr{O}_{X}\right)$.)
(6) $\overline{I^{n+2}}=I \overline{I^{n+1}}$ for every $n \geq 0$.
(7) $\overline{I^{n+2}} \subseteq I^{n}$ for every $n \geq 1$.

References

[CE99] H. Cartan and S. Eilenberg. Homological algebra. Princeton Landmarks in Mathematics. Princeton University Press, Princeton, NJ, 1999. With an appendix by David A. Buchsbaum, Reprint of the 1956 original. 1, 4
[Eis95] D. Eisenbud. Commutative algebra, with a View Toward Algebraic Geometry, volume 150 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995. 1, 5
[FW89] R. Fedder and K. Watanabe. A characterization of F-regularity in terms of F-purity. In Commutative algebra (Berkeley, CA, 1987), volume 15 of Math. Sci. Res. Inst. Publ., pages 227-245. Springer, New York, 1989. 8
[Har67] R. Hartshorne. Local cohomology, volume 41 of A seminar given by A. Grothendieck, Harvard University, Fall 1961. Springer-Verlag, Berlin, 1967. 5
[Har77] R. Hartshorne. Algebraic geometry. Springer-Verlag, New York, 1977. Graduate Texts in Mathematics, No. 52. 6
$\left[I L L^{+} 07\right]$ S. B. Iyengar, G. J. Leuschke, A. Leykin, C. Miller, E. Miller, A. K. Singh, and U. Walther. Twentyfour hours of local cohomology, volume 87 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2007. 5, 6, 7, 8
[Lip78] J. Lipman. Desingularization of two-dimensional schemes. Ann. Math. (2), 107(1):151-207, 1978. 6, 11
[LT81] J. Lipman and B. Teissier. Pseudorational local rings and a theorem of Briançon-Skoda about integral closures of ideals. Michigan Math.J., 28(1):97-116, 1981. 4, 5, 8, 12
[Smi97] K. E. Smith. F-rational rings have rational singularities. Amer. J. Math., 119(1):159-180, 1997. 1, 8 [Wei94] C. A. Weibel. An introduction to homological algebra, volume 38 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1994. 1, 4

Chennai Mathematical Institute, Siruseri, Tamilnadu 603103. India
E-mail address: mkummini@cmi.ac.in

