
F-RATIONALITY1

MANOJ KUMMINI2

Introduction3

These are notes from my lectures at the workshop Commutative Algebra and Algebraic4

Geometry in Positive Characteristics held at IIT Bombay in December 2018. The goal is to5

give a proof of a theorem of K. Smith which asserts that F-rational rings have pseudo-6

rational singularities [Smi97].7

Notation. By a ring we mean a commutative ring with multiplicative identity. Ring ho-8

momorphisms are assumed to take the multiplicative identity to the multiplicative identity.9

k: field10

R, S: rings.11

1. Double-complex spectral sequences12

In this lecture, we list some results, mostly without proofs, about double-complex spec-13

tral sequences. References are [CE99, Chapter XV], [Eis95, Appendix A3], and [Wei94,14

Chapter 5].15

Let A be an abelian category and C•,• a first-quadrant double complex in A, i.e., a16

double complex with Ci, j = 0 if i < 0 or j < 0. Write F• = Tot(C•,•). We wish to17

understand H∗(F•). To this end, we take a filtration F• ⊇ F•1 ⊇ F•2 ⊇ · · · . Fix n ≥ 0. Write18

Mp = Im(Hn(′F•p ) −→ Hn(F•)). Since Hn is a functor from the category of complexes over19

A to A, we get an induced filtration Hn(F•) ⊇ M1 ⊇ M2 · · · on Hn(F•). Using a spectral20

sequence, we start from21

H∗
(⊕

p

(
F•p /F•p+1

))
and obtain the associated graded object22 ⊕

p

Mp/Mp+1

of the filtration of Hn(F•).23

Filtration by columns. For p ≥ 0, define24

′Ci, j
p =

{
Ci, j, if i ≥ p;

0, otherwise,

for every j. Write ′F•p = Tot(′C•,•p ). This gives a filtration F• = ′F•0 ⊇ ′F•1 ⊇ ′F•2 ⊇ · · · with25

′F•p /′F•p+1 = Cp,•.

Version of December 15, 2018.
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2 MANOJ KUMMINI

Set ′E i, j
0 = Ci, j for every i, j. Think of ′E•,•0 as the collection of complexes Ci,• i ≥ 0,26

with the horizontal arrows as maps of these complexes. Now ′E•,•1 is the homology of27

′E•,•0 ; more precisely, the maps in ′E•,•0 are of the form28

Ci, j+1

Ci, j

OO

Ci, j−1

OO

so ′E i, j
1 = H j(Ci,•). The horizontal maps of C•,•, which are thought of as maps of complexes29

Ci,• −→ Ci+1,•, give maps30

′E i−1, j
1 −→ ′E i, j

1 −→
′E i+1, j

1 .

We define ′E•,•2 as the homology of ′E•,•1 . One can show that there are maps31

′E i−2, j+1
2

** ′E i, j
2

** ′E i+2, j−1
2

and that these form a complex. Define ′E•,•3 as the homology of ′E•,•2 ; there are maps32

′E i−3, j+2
3 −→ ′E i, j

3 −→
′E i+3, j−2

3 .

Inductively define ′E•,•r as the homology of ′E•,•r−1; the maps are33

′E i−r, j+r−1
r −→ ′E i, j

r −→ ′E i+r, j−r+1
r .

Note for each s ≥ r ≥ 1, and and each i, j, ′E i, j
s is a subquotient of ′E i, j

r and that ′E i, j
034

is a subquotient of Ci, j . Hence, for each i, j, there exists r such that for every s ≥ r, the35

map coming into ′E i, j
s is from the second quadrant and the map leaving from ′E i, j

s is to36

the fourth quadrant; therefore these maps are zero, which gives that ′E i, j
s =

′E i, j
r ; define37

′E i, j
∞ =

′E i, j
r

for this r .38

1.1. Theorem. For the �ltration on Hn(F•) induced by the �ltration of {′F•p }p of F•, the asso-39

ciated graded object of Hn(F•) has ′E i,n−i
∞ as its ith component.40

Filtration by rows. For q ≥ 0, define41

′′Ci, j
q =

{
Ci, j, if j ≥ q;

0, otherwise,

for every i. Write ′′F•q = Tot(′′C•,•q ). This gives a filtration F• = ′′F•0 ⊇ ′′F•1 ⊇ ′′F•2 ⊇ · · ·42

with43

′′F•q /′′F•q+1 = C•,q.
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Set ′′E i, j
0 = Ci, j for every i, j. Think of ′′E•,•0 as the collection of complexes C•, j j ≥ 0,44

with the vertical arrows as maps of these complexes. Now ′′E•,•1 is the homology of ′′E•,•0 ;45

more precisely, the maps in ′′E•,•0 are of the form46

Ci−1, j −→ Ci, j −→ Ci+1, j

so ′′E i, j
1 = Hi(C•, j). The vertical maps of C•,•, which are thought of as maps of complexes47

C•, j −→ C•, j+1, give maps48

′′E i, j+1
1

′′E i, j
1

OO

′′E i, j−1
1

OO

We define ′′E•,•2 as the homology of ′′E•,•1 . One can show that there are maps49

′′E i−2, j+1
2

′′E i, j
2

\\

′′E i+2, j−1
2

\\

and that these form a complex. Inductively define ′′E•,•r as the homology of ′′E•,•r−1; the50

maps are51

′′E i+r, j−r+1
r −→ ′E i, j

r −→ ′′E i−r, j+r−1
r .

As with the filtration by columns, for each i, j, there exists r such that for every s ≥ r,52

′′E i, j
s =

′′E i, j
r ; define53

′′E i, j
∞ =

′′E i, j
r

for this r .54

1.2. Theorem. For the �ltration on H∗(F•) induced by the �ltration of {′′F•q }q of F•, the55

associated graded object of Hn(F•) has ′′En−i,i
∞ as its ith component.56

Terminology. We often refer to ′E•,•r and ′′E•,•r as the rth page of the spectral sequence.57

We also say that the spectral sequences ′E•,•r and ′′E•,•r converge to H∗(F•). We denote this58

by59

′E i, j
r ⇒ Hi+ j(F•) and ′′E i, j

r ⇒ Hi+ j(F•)
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Edge maps. Fix n ≥ 0 and consider the filtration on Hn(F•) induced by the filtration60

of {′F•p }p of F•. Since this is a decreasing filtration, we see that ′En,0
∞ is a submodule61

of Hn(F•). For r ≥ 2, there is a surjective morphism ′En,0
r −→ ′En,0

∞ . The composite62

map ′En,0
r −→ ′En,0

∞ −→ Hn(F•) is called an edge homomorphism. Similarly, we get an edge63

homomorphism ′′E0,n
r −→ ′′E0,n

∞ −→ Hn(F•)64

Grothendieck spectral sequence. We give an application of the double complex spec-65

tral sequence to obtain a relation between the derived functors of a composite of two66

functors.67

Let A,B, C be abelian categories such that A and B have enough injectives. Let F :68

A −→ B and G : B −→ C be left-exact covariant additive functors such that F takes69

injectives in A to G-acyclic objects in B, i.e., objects Y of B such that RiGY = 0 for every70

i > 0.71

1.3. Theorem. With notation as above, there is a spectral sequence72

E i, j
2 = R jG(RiF(X)) ⇒ Ri+ j(GF)(X)

for every object X of A.73

Proof. Let X be an object ofA. Let I• be an injective resolution of X . Let J•,• be a Cartan-74

Eilenberg injective resolution (double complex) of F(I•). (See [CE99, Chapter XVII] and75

[Wei94, Section 5.7] for the construction of Cartan-Eilenberg resolutions.) Let C•,• =76

G(J•,•). Then77

′E i, j
1 = H j(G(Ji,•)) = R jG(F(Ii)) =

{
(GF)(Ii), if j = 0;

0, otherwise,

by the hypothesis on F. Hence the ′E1 page is the complex (GF)(I•), from which we78

conclude that79

′E i, j
∞ =

{
Ri(GF)(X), if j = 0,

0, otherwise,

In particular, for every n, the associated graded object of Hn(Tot(C•,•)) has only one80

potentially non-zero term Rn(GF)(X); it follows that Hn(Tot(C•,•)) = Rn(GF)(X).81

In the spectral sequence associated to filtration by rows of C•,•, we have82

′′E i, j
1 = Hi G(J•, j)

One can check, using the definition and properties of Cartan-Eilenberg resolutions that83

Hi G(J•, j) = G(an injective resolution of Hi(F(I•))).
Hence84

′′E i, j
2 = R jG(RiF(X))

Set E2 =
′′E2. �85

The edge homomorphisms of the above spectral sequence are RnG(F(X)) −→ Rn(GF)(X).86

2. Pseudo-rational rings87

In this lecture, we look at pseudo-rational rings [LT81]. We begin with some remarks88

on local cohomology.89



F-RATIONALITY 5

Cohomology with supports. Let X be a topological space, Z a (locally) closed subset90

of X and F a sheaf of abelian groups on X . We denote the category of abelian groups91

by Ab and, for a topological space Y , the category of sheaves of abelian groups on Y by92

AbY .93

Write U = X r Z . Define94

ΓZ (X, F) := ker (Γ(X, F) −→ Γ(U, F)) .
This is a functor from AbX to Ab. It is left exact (Exercise 5.5). Define cohomology groups95

with support in Z , denoted H∗Z (X), to be its right-derived functors.96

2.1. Proposition. Suppose that X = Spec R, that Z is de�ned by a �nitely generated R-ideal I97

and that F is the sheaf de�ned by an R-module M . Then98

Hi
Z (X, F ) = Hi

I(M)
for every i.99

For a proof, see [Har67, Proposition 2.2] or [ILL+07, Theorem 12.47].100

2.2. Proposition. Let f : X′ −→ X be a continuous map, Z a closed subset of X , Z′ := f −1(Z)101

and F a sheaf of abelian groups on X . Then we have a spectral sequence102

E i, j
2 = H

j
Z (X,R

i f∗F )

converging to H
i+ j
Z ′ (X

′, F ). The edge homomorphisms of this page are the maps Hn
Z (X, f∗F ) −→103

Hn
Z ′(X′, F ).104

Proof. Use Theorem 1.3 with A = AbX ′, B = AbX , C = Ab, F = f∗ and G = ΓZ (X,−).105

Note that f∗ takes injectives in AbX ′ to injectives in AbX , which are acyclic for ΓZ (X,−).106

See [Har67, Proposition 5.5] for details. The assertion about edge homomorphisms follows107

from the definition. �108

Pseudo-rational rings.109

2.3. De�nition. Let (R,m) be a d-dimensional Cohen-Macaulay, normal, analytically un-110

ramified local ring. Then R is said to be pseudo-rational if the edge homomorphism111

Hd
m(R)

δf−→ Hd
f −1({m})(Z,OZ )

is injective, for every proper birational map f : Z −→ Spec R with Z normal.112

2.4. Example. Regular local rings are pseudo-rational [LT81, Section 4].113

2.5. Example. Let (R,m) be a d-dimensional Cohen-Macaulay, normal local ring that is114

essentially of finite type over a field of characteristic zero. Suppose that R has rational115

singularities, i.e., there exists a proper birational morphism h : Z −→ Spec R such that Z116

is nonsingular (such a morphism is called a desingularization) and Rih∗OZ = 0 for every117

i > 0. In fact, if this holds for one desingularization, it holds for every desingularization.118

Let f : W −→ Spec R be a proper birational morphism with W normal. Let g : Z −→ W119

be a desingularization. Then h = f g is a desingularization of Spec R. Then the edge120

homomorphism δ f is injective. (Exercise 5.8).121

2.6. Example. Let k be a field of characteristic di�erent from 3, S = k[x, y, z] and R =122

S/(x3 + y3 + z3). Write m for the homogeneous maximal ideal of R. After replacing k123

by an algebraic closure and using the jacobian criterion [Eis95, 16.19] we see that the124
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singular locus of Spec R is {m}, which has codimension two. Since it is Cohen-Macaulay,125

it satisfies the Serre condition (S2). Hence R is a normal domain. Let A be the Rees126

algebra R[mt] and X = Proj A. Write f for the natural map X −→ Spec R. We now make127

several observations and conclude that R is not pseudo-rational.128

(1) X is nonsingular: X has an a�ne open covering129

Spec
((

R
[
mt
xt

] )
0

)
∪ Spec

((
R

[
mt
yt

] )
0

)
.

(Observe that zt ∈
√
(xt, yt).) Note that130 (

R
[
mt
xt

] )
0
' R

[ y
x
,

z
x

]
.

Write u = y
x and y = z

x to see that131

R
[ y

x
,

z
x

]
' k[x, u, v]/(1 + u3 + v3)

which is non-singular; similarly for the other open set.132

(2) H2(X, F ) = 0 for every coherent sheaf F on X, since X has an a�ne cover with two133

open sets.134

(3) The map f is birational: for, let 0 , a ∈ m. Then Aa ' Ra[t], so f −1(Spec Ra) '135

Proj(Ra ⊗R A) ' Proj(Ra[t]) ' Spec Ra. Write U = Spec R r {m} and V = f −1(U). Then136

f |V : V −→ U is an isomorphism, since U has an a�ne covering by Spec Ra, a ∈ m, a , 0.137

(4) Supp
(
H1(X, F )

)
⊆ {m} for every coherent sheaf F on X . This follows from ap-138

plying the flat-base change theorem for cohomology [Har77, III.9.3] for the flat (in fact139

open) morphism U −→ Spec R, and noting that all higher direct images vanish for the140

isomorphism V −→ U.141

(5) Let E = Proj (R/m ⊗R A), the scheme-theoretic pre-image of Spec(R/m) ⊆ Spec R.142

Note that R/m ⊗R A ' k[x, y, z]/(x3 + y3 + z3), so E ' Proj R. Note that we have an exact143

sequence144

0 −→ mOX −→ OX −→ OE −→ 0.

(6) H1(E,OE ) , 0: Since E ' Proj R, it su�ces [ILL+07, 13.21] to show that145

H2
m(R)0 , 0.

Note that we have an exact sequence146

0 −→ H2
m(R) −→ H3

m(S)(−3) −→ H3
m(S) −→ 0

A description of H3
m(S) as a graded S-module is given in [ILL+07, Example 7.16], whence147

we conclude that148

H2
m(R)0 ' H3

m(S)−3 ' k.
(7) H0

m(H1(X,OX)) = H1(X,OX) , 0, since H1(X,OX) is a finite-length non-zero module.149

(8) The ‘exact sequence of low-degree terms’ (Exercise 5.1) for the spectral sequence150

of Proposition 2.2151

H
j
m(Ri f∗OX) ⇒ H

i+ j
E (OX)

is152

0 −→ H1
m(R)

edge
−→ H1

E (OX) −→ H1(X,OX) −→ H2
m(R)

edge
−→ H2

E (OX) −→
(9) H1

E (OX) = 0 [Lip78, Theorem 2.4, p. 177].153
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Hence the edge map H2
m(R) −→ H2

E (OX) is non-zero, and Spec R is not pseudo-rational.154

What we essentially used is the fact that155

H2
m(R) j , 0

for some j ≥ 0. See Exercise 5.11 in this context. �156

3. F-rationality157

Tight closure. For this lecture and the next, p is a prime number and R is a noetherian158

ring of characteristic p. Let I be an R-ideal. By q, we mean a power of p. By I[q], we159

mean the ideal generated by {xq | x ∈ I}. By Ro, we mean the set R r ∪p∈Min(R)p.160

3.1. De�nition. The tight closure of I, denoted I∗, is the set161

{x ∈ R | there exists c ∈ Ro such that cxq ∈ I[q] for all q � 0}.
We say that I is tightly closed if I = I∗.162

Some facts:163

(1) I∗ is an ideal containing I; (I∗)∗ = I∗.164

(2) x ∈ I∗ if and only if x ∈ (IR/p)∗ for every p ∈ Min(R).165

(3) Every ideal in a regular local ring is tightly closed.166

F-rational rings. Let x1, . . . , xn ∈ R. We say that (x1, . . . , xn) is a parameter ideal if the167

images of x1, . . . , xn in Rp form part of a system of parameters for Rp for every prime ideal168

p of R containing x1, . . . , xn. We say that R is F-rational if every parameter ideal is tightly169

closed.170

Some facts:171

(1) Every F-rational ring is normal.172

(2) Every ideal in a Gorenstein F-rational ring is tightly closed.173

(3) If R is a quotient of a Cohen-Macaulay ring and is F-rational, then R is Cohen-174

Macaulay, and localizations of R are F-rational.175

(4) Let R be a local ring that is a quotient of a Cohen-Macaulay ring. Then R is F-176

rational if and only if R is equi-dimensional and there exists a system of parameters that177

generates a tightly closed ideal.178

(5) Let R be a local ring and R̂ its completion. If R̂ is F-rational, then R is F-rational.179

The converse is true if R is excellent (e.g., essentially of finite type over a field).180

Frobenius action on local cohomology. The Frobenius map F : R −→ R, r 7→ rp
181

commutes with localization. Let I = (x1, . . . , xn); then F commutes with the maps in182

Č(x1, . . . , xn; R), so it induces a map on Hi
I(R) for every i. On Hn

I (R), this map is183 [
z

xt
1xt

2 · · · x
t
n

]
7→

[
zp

xtp
1 xtp

2 · · · x
tp
n

]
.

Č
•(x1, . . . , xn; R) is also the limit of the Koszul complexes K•(xt

1, . . . , xt
n; R) [ILL+07,184

Chapter 7]. We have185

lim
−→
t

(
R

(xt
1, . . . , xt

n)
x1x2···xn−→ R

(xt+1
1 , . . . , xt+1

n )

)
= Hi

I(R).
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If x1, . . . , xn is an R-regular then the maps in the above system are injective, so186

R
(xt

1, . . . , xt
n)
↪→ Hi

I(R).

Under this map the element187 [
z

xt
1xt

2 · · · x
t
n

]
corresponds to z mod (xt

1, . . . , xt
n). For a proof, see [LT81, p. 104–105].188

3.2. De�nition. A submodule M of Hi
I(R) is said to be F-stable if F(M) ⊆ M .189

3.3. Example. Let η ∈ Hn
I (R). Then the R-submodule of Hn

I (R) generated by Fe(η), e ≥ 1190

is F-stable. In the proof of the theorem below, we will denote it by Mη. �191

3.4. Theorem ([Smi97, Theorem 2.6]). Let (R,m) be a d-dimension excellent Cohen-Macaulay192

local ring of characteristic p. Then R is F-rational if and only if Hd
m(R) has no proper non-zero193

F-stable submodules.194

A special case of this was proved by R. Fedder and K. i. Watanabe: assuming that R195

is an isolated singularity and that Hi
m(R) has finite length for every i < d; see [FW89,196

Theorem 2.8].197

Proof. ‘Only if’: Since R is excellent and F-rational, R̂ is Cohen-Macaulay and F-rational.198

Since Hd
m(R) is both an R-module and an R̂-module (compatibly), we may assume that R199

is complete.200

By way of contradiction suppose that 0 , M ( Hd
m(R) is an F-stable R-submodule of201

Hd
m(R). Let C = Hd

m(R)/M . Taking Matlis duals, we get202

0 // C∨ //
(
Hd
m(R)

)∨
// M∨ // 0

ωR

where ωR is a canonical module of R. The isomorphism
(
Hd
m(R)

)∨
' ωR is local dual-203

ity [ILL+07, Theorem 11.44]. Note that M , 0 , C, so C∨ , 0 , M∨. Since ωR is a204

torsion-free R-module of rank 1, K ⊗R M∨ = 0. Since M∨ is a finitely generated R-module,205

there exists 0 , c ∈ R such that cM∨ = 0, so cM = 0. Let206

η :=

[
z

xt
1xt

2 · · · x
t
d

]
∈ M

be a non-zero element. Hence207

cFe(η) =
[

czq

xtq
1 xtq

2 · · · x
tq
d

]
= 0.

for every q. This means that czq ∈ (xtq
1 , xtq

2 , . . . , xtq
d ) for every q, i.e., z ∈ (xt

1, xt
2, . . . , xt

d)
∗ =208

(xt
1, xt

2, . . . , xt
d), so η = 0, a contradiction.209

‘If’: To make the argument simple, we will assume that R is a domain. By way of210

contradiction, assume that R is not F-rational. Let x1, . . . , xd be a system of parameters211
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and z ∈ (x1, . . . , xd)∗ r (x1, . . . , xd). Write212

η =

[
z

x1x2 · · · xd

]
∈ Hd

m(R).

Note that η , 0, so Mη , 0. Let 0 , c ∈ R be such that czq ∈ (xq
1, xq

2, . . . , xq
d) for every213

q ≥ 1. Then cηq = 0 for every q ≥ 1, so cMη = 0. Note that Mη , Hd
m(R) since the214

annihilator of Hd
m(R) is 0. This contradicts the hypothesis. �215

3.5. Example. Suppose that R is positively graded with R0. Write m for the homogeneous216

maximal ideal. Then217 ⊕
j≥0

(
Hd
m(R)

)
j

is a proper F-stable submodule of Hd
m(R). Using this, we see that the ring218

k[x, y, z]/(x3 + y3 + z3)
is not F-rational for any field k. �219

3.6. Example. Let R = F2[x, y, z]/(x2+y3+z5). This is a Cohen-Macaulay normal domain.220

It is a graded ring if we set deg x = 15, deg y = 10 and deg z = 6. Let S = F2[x, y, z]. Then221 [
H3
(x,y,z)(S)

]
−31
, 0 and

[
H3
(x,y,z)(S)

]
j
= 0 for every j ≥ −30.

Hence222 [
H3
(x,y,z)(R)

]
−1
, 0 and

[
H3
(x,y,z)(R)

]
j
= 0 for every j ≥ 0.

However, R is not F-rational, as we see now. Since x < (y, z),223

0 ,

[
x
yz

]
∈ H2

(x,y,z)(R).

On the other hand, x2 ∈ (y2, z2), so224 [
x2

y2z2

]
= F

( [
x
yz

] )
= 0.

Hence F has a non-zero kernel. It is easy to check that kernel of F is an F-stable submodule225

of H2
(x,y,z)(R). �226

4. F-rationality implies pseudo-rationality227

5. Exercises228

5.1. Derive the ‘exact sequence of low-degree terms’ for the ′′E2 page:229

0 −→ ′′E0,1
2

edge
−→ H1(F•) −→ ′′E1,0

2

d1,02−→ ′′E0,2
2

edge
−→ H2(F•) −→

5.2. Place an exact sequence230

0 −→ M1 −→ M2 −→ M3 −→ 0

on the horizontal axis and take a Cartan-Eilenberg injective resolution. Let F be a left-231

exact covariant functor. Show that the ′E3 page is zero and that the maps on the ′E1 and232

′E2 pages give the familiar exact sequence in RiF.233
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5.3. Show that TorR
∗ (M, N) ' TorR

∗ (N, M) by looking at the third quadrant double complex234

C−i,− j = Fi ⊗ G j

where F• and G• are projective resolutions of M and N respectively.235

5.4. The following is an example of a step in the construction of pure resolutions by236

Eisenbud and Schreyer.237

Let X = P1k ×P
1
k, where k is a field. Give homogeneous coordinates u, v and x, y respec-238

tively. Let S = k[u, v, x, y], with deg u = deg v = (1, 0) and deg x = deg y = (0, 1).239

(1) The Koszul complex on S with respect to ux, uy + vx, vy gives an exact sequence240

K• : 0 −→ OX(−3,−3) −→ OX(−2,−2)⊕3 −→ OX(−1,−1)⊕3 −→ OX −→ 0.

(Hint: X can be thought of as the set of bigraded ideals not containing the irrelevant241

ideal (u, v) ∩ (x, y). The two projection maps from X are given by contraction to242

k[u, v] and k[x, y].)243

(2) Let π : X −→ P1k be the projection to the first factor. Let I•,• be a Cartan-Eilenberg244

injective resolution of K•. Let C•,• = π∗(I•,•). (This is a ‘first-quadrant’ double245

complex.) Use the projection formula to see that246

′E i, j
1 =


OP1

k
(−3)⊕2, if i = −3 and j = 1;

OP1
k
(−2)⊕3, if i = −2 and j = 1;

OP1
k
, if i = 0 and j = 0;

0, otherwise.

(3) Use the ′′E spectral sequence to conclude that ′E i, j
∞ = 0 for every i, j.247

(4) Conclude that the non-zero terms of the ′E1 page give an exact sequence248

0 −→ OP1
k
(−3)⊕2 −→ OP1

k
(−2)⊕3 −→ OP1

k
−→ 0.

(Getting a pure resolution over k[u, v] from the above exact sequence requires a249

little more work, which we omit in this exercise.)250

(5) Using the same strategy, construct an exact sequence251

0 −→ OP1
k
(−3)⊕a −→ OP1

k
(−1)⊕b −→ OP1

k
(1)⊕c −→ 0.

5.5. Do a ‘diagram-chasing’ in the commutative diagram below252

0 // ΓZ (X, F1) //

��

ΓZ (X, F2) //

��

ΓZ (X, F3) //

��
0 // Γ(X, F1) //

��

Γ(X, F2) //

��

Γ(X, F3) //

��
0 // Γ(U, F1) // Γ(U, F2) // Γ(U, F3) //

to conclude that ΓZ (X,−) is left-exact.253

5.6. Let (R,m) be a two-dimensional analytically unramified normal domain and f :254

W −→ Spec R a proper birational morphism with W normal.255
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(1) Show that Supp(H1(W,OW )) ⊆ {m}. (Hint: Localize in the base and use flat base-256

change for cohomology and the fact that over a DVR, every proper birational map257

is an isomorphism.)258

(2) R is pseudo-rational if and only if H1(Z,OZ ) = 0 for every Z that has a proper259

birational map to Spec R. (Use: H f −1({m})(OZ ) = 0 [Lip78, Theorem 2.4, p. 177].)260

5.7. Let (R,m) be a normal local ring. Let W
g
−→ Z

f
−→ Spec R be a proper birational261

morphisms with Z and W normal. Write h = f g. Then the edge map262

Hd
m(R)

δh−→ Hd
h−1({m})(W,OW )

factors as263

Hd
m(R)

δf−→ Hd
f −1({m})(Z,OZ ) −→ Hd

h−1({m})(W,OW ).

5.8. Show that rational singularities (in characteristic zero) are pseudo-rational. You need264

to use the fact that if R has rational singularities, then Ri f∗OZ = 0 for every desingular-265

ization f : Z −→ Spec R and every i > 0.266

5.9. Let R be a Cohen-Macaulay ring of characteristic zero. Show that R has rational267

singularities if and only if there exists a proper birational morphism f : Z −→ Spec R268

such that Z has rational singularities and Ri f∗OZ = 0 for every i > 0.269

5.10. Let (R,m) be a noetherian ring. Let X = {p ∈ Spec R | dim R/p = dim R}. Let270

a ∈ m r ∪p∈Xp. If R/(a) is regular, then so is R. Show that the hypothesis on a is271

necessary.272

5.11. Let R be a two-dimensional standard graded normal domain, with R0 = k, with ho-273

mogeneous maximal ideal m. Assume that Spec Rr {m} has pseudo-rational singularities.274

Show that R has pseudo-rational singularities if and only if H2
m(R) j = 0 for every j ≥ 0 as275

follows:276

(1) Let X = Proj R[mt]. Then X has pseudo-rational singularities, and there is a proper277

birational map f : X −→ Spec R.278

(2) Let h : W −→ Spec R with W normal. Let W′ be the blow-up of W along the ideal279

sheaf mOW , and h′ the composite map W′ −→ W −→ Spec R. It su�ces to show that the280

edge map δh′ is injective. Hence replacing W by W′, we may assume that h factors as281

W
g
−→ X

f
−→ Spec R.282

(3) R1g∗OW = 0.283

(4) Let E be the divisor of X defined by mOX . Write Ẽ = h−1({m}). The map284

H2
E (OX) −→ H2

Ẽ
(OW )

is an isomorphism.285

(5) The map286

H2
m(R) −→ H2

Ẽ
(OW )

is injective if and only if the map287

H2
m(R) −→ H2

E (OX)
is injective, which holds if and only if H1(X,OX) = 0 which holds if and only if H1(E,OE ( j)) =288

0 for every j ≥ 0 which holds if and only if H2
m(R) j = 0 for every j ≥ 0. You will need to289

use two facts: E ' Proj R and that m jOX ⊗X OE ' OE ( j).290
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5.12. Let R = k[x2, x3] where k is a field of characteristic p > 0. Show that x3 ∈ (x2)∗r(x2).291

5.13. Let R = k[x, y, z]/(x3 + y3 + z3) where k is a field of characteristic p > 0, p , 3. Show292

that z2 ∈ (x, y)∗ r (x, y).293

5.14. Let R be a noetherian ring, and I an R-ideal. Show that if I is tightly closed, then294

(I : J) is tightly closed for every ideal J.295

5.15. Show that an intersection of tightly closed ideals is tightly closed.296

5.16. Let (R,m) be a Gorenstein ring, I an unmixed R-ideal, and x1, . . . , xc ∈ I a maximal297

regular sequence. Write J = (x1, . . . , xc). Show that (J : (J : I)) = I.298

5.17. Show that every ideal in a Gorenstein F-rational ring is tightly closed.299

5.18. Let R be a local ring and R̂ its completion. If R̂ is F-rational, then R is F-rational.300

5.19. Let (R,m) be a two-dimensional pseudo-rational ring. Following [LT81, Section 5],301

prove the (special case of) Brian con-Skoda theorem:302

In+2 ⊆ In

for every n ≥ 1, as follows:303

(1) We may assume that R/m is an infinite field [LT81, Example (c), p. 103].304

(2) I has a reduction generated by two elements, i.e., there exists J = (x, y) ⊆ I such305

that In+1 = JIn for every n � 0. (Hint: take a Noether normalization of R[It]/mR[It].)306

(3) The ideal generated by xt, yt in A := R[It] is primary to the irrelevant ideal.307

(4) Let X = Proj A. The Koszul complex K•(xt, yt; A) gives an exact sequence308

0 −→ OX(n) −→ OX(n + 1) −→ OX(n + 2) −→ 0

for every n ∈ Z. (Here, by OX(1) we mean the invertible sheaf IOX .)309

(5) For n ≥ 0, this gives an exact sequence310

0 −→ In −→ In+1 [x y]
−→ In+2 −→ 0.

(Use: In = H0(X,OX(n)) for every n ≥ 1, I0 := R = H0(X,OX).)311

(6) In+2 = I In+1 for every n ≥ 0.312

(7) In+2 ⊆ In for every n ≥ 1.313
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