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F-RATIONALITY

MANOJ KUMMINI

INTRODUCTION

These are notes from my lectures at the workshop Commutative Algebra and Algebraic
Geometry in Positive Characteristics held at IIT Bombay in December 2018. The goal is to
give a proof of a theorem of K. Smith which asserts that F-rational rings have pseudo-
rational singularities [Smi97].

Notation. By a ring we mean a commutative ring with multiplicative identity. Ring ho-
momorphisms are assumed to take the multiplicative identity to the multiplicative identity.
k: field
R, §: rings.

1. DOUBLE-COMPLEX SPECTRAL SEQUENCES

In this lecture, we list some results, mostly without proofs, about double-complex spec-
tral sequences. References are [CE99, Chapter XV], [Eis95, Appendix A3], and [Wei94,
Chapter 5].

Let A be an abelian category and C** a first-quadrant double complex in A, i.e., a
double complex with C*/ = 0if i < 0 or j < 0. Write F* = Tot(C**). We wish to
understand H*(F*). To this end, we take a filtration F'* 2 F 2 F; 2 ---. Fix n > 0. Write
My, = Im(H"('F;) — H"(F*)). Since H" is a functor from the category of complexes over
A to A, we get an induced filtration H"(F*) 2 M1 2 My --- on H"(F*). Using a spectral

sequence, we start from
D (7150)
p

H*

and obtain the associated graded object

@ Mp/Mp+1
P

of the filtration of H"(F*®).

Filtration by columns. For p > 0, define

,Ci’j _ Ci’j, if i Zp;
P 0, otherwise,
for every j. Write 'F; = Tot('C,*). This gives a filtration F* ='F; 2 'F} 2 'F; 2 -+ with
Ey/'Foy = CP*.

+

Version of December 15, 2018.
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2 MANQOJ KUMMINI

Set ’E(i)’j = C" for every i, j. Think of 'E;"* as the collection of complexes C** i > 0,
with the horizontal arrows as maps of these complexes. Now 'E}"* is the homology of
'E’*; more precisely, the maps in 'Ej* are of the form

Cij+1

|

Cl,]

|

Cij-1
SO ’Ei’j = H/(C"*). The horizontal maps of C**, which are thought of as maps of complexes
C* — C™*1*, give maps
EyY — B — B

We define 'E* as the homology of 'E["*. One can show that there are maps

\

i—2,j+1
/E; J

’ E‘ln/
.+2, j—1
,E; J

and that these form a complex. Define 'E3* as the homology of 'E’*; there are maps

/E§—3,1+2 ,Eil);] /Eé+3’]_2.

Inductively define 'E;”* as the homology of 'E™*° ; the maps are

i—r,j+r—1 i,j i+r,j-r+l
'E, —s 'Ep) — ETTT

Note for each s > r > 1, and and each i, j, ’Eﬁ’j is a subquotient of ’Ef’j and that 'E(i)’j

is a subquotient of C’/. Hence, for each i, j, there exists  such that for every s > r, the

map coming into 'E,’ is from the second quadrant and the map leaving from 'E;’ is to

the fourth quadrant; therefore these maps are zero, which gives that 'E;’ = 'E,’; define
/E:;O/ — /E::’j

for this r.

1.1. Theorem. For the filtration on H"(F*) induced by the filtration of {'F}, of F*, the asso-
ciated graded object of H'(F*) has'EZ"™" as its ith component.
Filtration by rows. For g > 0, define
//Ci,j — Ci’j’ lf.] 2 q;
4 0, otherwise,
for every i. Write "F; = Tot("Cy"*). This gives a filtration F* = "F; 2 "Ff 2 "Fy 2 ---

with

//qu ///qu+1 = C*.
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F-RATIONALITY 3

Set ”E(i]’j = C" for every i, j. Think of "E* as the collection of complexes C*/ j > 0,
with the vertical arrows as maps of these complexes. Now “E"* is the homology of "E*°;
more precisely, the maps in ”E"* are of the form

Ci1,j — Cij — Ciqyj
SO ”Ei’j = H'(C*/). The vertical maps of C**, which are thought of as maps of complexes
C* — C*/*1, give maps

//Ei,j+1
1

|

” Ei,j
1

|

” i’j_l
Ey
We define ”E>* as the homology of ”E}**. One can show that there are maps

//Ei—2,j+1
2

” Ei,j
2

//Ei+2,j—1
2

and that these form a complex. Inductively define ”E* as the homology of “E™*; the
maps are
//E;‘+r,j—r+1 N ,E;‘,j SN ”E:_r’j”_l.
Ag with.t'he filtration by columns, for each i, j, there exists r such that for every s > r,
"Eg ="E;; define
” Eclxsj _ E;’]
for this r.

1.2. Theorem. For the filtration on H*(F°) induced by the filtration of {"F}, of F°, the
associated graded object of H'(F*) has"E™"™ as its ith component.

Terminology. We often refer to 'E;* and ”E"* as the rith page of the spectral sequence.
We also say that the spectral sequences 'E;* and "E;”® converge to H*(F*®). We denote this
by

'EY = H™(F*) and "E = H™Y(F*)
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4 MANQOJ KUMMINI

Edge maps. Fix n > 0 and consider the filtration on H"(F*) induced by the filtration
of {"F;}, of F*. Since this is a decreasing filtration, we see that 'E™Y is a submodule
of H'(F*). For r > 2, there is a surjective morphism "E** —s ’E’. The composite

map 'E" — "EXY — H'(F*) is called an edge homomorphism. Similarly, we get an edge
homomorphism " EX" —s "E%" —s H(F*)

Grothendieck spectral sequence. We give an application of the double complex spec-
tral sequence to obtain a relation between the derived functors of a composite of two
functors.

Let A, B, C be abelian categories such that A and B have enough injectives. Let F :
A — B and G : B — C be left-exact covariant additive functors such that F takes
injectives in A to G-acyclic objects in B, i.e., objects ¥ of B such that R'GY = 0 for every
i >0.

1.3. Theorem. With notation as above, there is a spectral sequence
EY = RIG(R'F(X)) = R™/(GF)(X)
for every object X of A.

Proof- Let X be an object of A. Let I* be an injective resolution of X. Let J** be a Cartan-
Eilenberg injective resolution (double complex) of F(/°). (See [CE99, Chapter XVII] and
[Wei94, Section 5.7] for the construction of Cartan-Eilenberg resolutions.) Let C** =
G(J**). Then
r i 1) i\ _ 1J iy (GF)(I'), ifj=0;
Ef =4 (GU™) = RGF) = {O, otherwise,

by the hypothesis on F. Hence the 'E; page is the complex (GF)(/*), from which we
conclude that

g~ JRGHX), if j =0,
© 0, otherwise,

In particular, for every n, the associated graded object of H"(Tot(C**)) has only one
potentially non-zero term R"(GF)(X); it follows that H"(Tot(C**)) = R"(GF)(X).
In the spectral sequence associated to filtration by rows of C**, we have

"Ey) = H G
One can check, using the definition and properties of Cartan-Eilenberg resolutions that
H' G(J*/) = G(an injective resolution of H'(F(I*))).

Hence N
"Ey) = R'G(R'F(X))
Set Ey =" E>. O
The edge homomorphisms of the above spectral sequence are R"G(F (X)) — R*(GF)(X).

2. PSEUDO-RATIONAL RINGS

In this lecture, we look at pseudo-rational rings [LT81]. We begin with some remarks
on local cohomology.
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F-RATIONALITY 5

Cohomology with supports. Let X be a topological space, Z a (locally) closed subset
of X and ¥ a sheaf of abelian groups on X. We denote the category of abelian groups
by Ab and, for a topological space Y, the category of sheaves of abelian groups on Y by
Aby.

Write U = X \ Z. Define

T'z(X, F) := ker (T(X, F) — [(U, F)).

This is a functor from Aby to Ab. It is left exact (Exercise 5.5). Define cohomology groups
with support in Z, denoted H’,(X), to be its right-derived functors.

2.1. Proposition. Suppose that X = Spec R, that Z is defined by a finitely generated R-ideal 1
and that F is the sheaf defined by an R-module M. Then

H(X, F) = Hy(M)
for every .
For a proof, see [Har67, Proposition 2.2] or [ILL*07, Theorem 12.47].
2.2. Proposition. Let f : X’ — X be a continuous map, Z a closed subset of X, Z' := f~1(2)
and T a sheaf of abelian groups on X. Then we have a spectral sequence
EY = HL(X,R'£.%)
converging to H;j (X', F). The edge homomorphisms of this page are the maps H,(X, f.F) —
HY (X', F).

Proof. Use Theorem 1.3 with A = Abx/, B = Abyx, C = Ab, F = f, and G = ['z(X, -).
Note that f. takes injectives in Aby- to injectives in Aby, which are acyclic for I'z(X, -).
See [Har67, Proposition 5.5] for details. The assertion about edge homomorphisms follows
from the definition. O

Pseudo-rational rings.

2.3. Definition. Let (R, m) be a d-dimensional Cohen-Macaulay, normal, analytically un-
ramified local ring. Then R is said to be pseudo-rational if the edge homomorphism

93
d I, 1d
Hm(R) - Hf—l({m})(z, ﬁZ)
is injective, for every proper birational map f : Z — Spec R with Z normal.
2.4. Example. Regular local rings are pseudo-rational [LT81, Section 4].

2.5. Example. Let (R, m) be a d-dimensional Cohen-Macaulay, normal local ring that is
essentially of finite type over a field of characteristic zero. Suppose that R has rational
singularities, i.e., there exists a proper birational morphism . : Z — Spec R such that Z
is nonsingular (such a morphism is called a desingularization) and R'h.07 = 0 for every
i > 0. In fact, if this holds for one desingularization, it holds for every desingularization.
Let f : W — Spec R be a proper birational morphism with W normal. Let g : Z — W
be a desingularization. Then & = fg is a desingularization of Spec R. Then the edge
homomorphism 6 is injective. (Exercise 5.8).

2.6. Example. Let k be a field of characteristic different from 3, S = k[x,y,z] and R =
S/(x3 + y2 + z%). Write m for the homogeneous maximal ideal of R. After replacing k
by an algebraic closure and using the jacobian criterion [Eis95, 16.19] we see that the
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6 MANQOJ KUMMINI

singular locus of Spec R is {m}, which has codimension two. Since it is Cohen-Macaulay,
it satisfies the Serre condition (S2). Hence R is a normal domain. Let A be the Rees
algebra R[mt] and X = Proj A. Write f for the natural map X — Spec R. We now make
several observations and conclude that R is not pseudo-rational.

(1) X is nonsingular: X has an affine open covering

Spec (R 22]) ) U Spec ((R [';_})) |

(Observe that zt € v/(xt, yt).) Note that

(=[5, =2 [%5]

Write u = < and y = £ to see that
R [X, E] ~ k[x, u, v]/(1 + u® + )
X x

which is non-singular; similarly for the other open set.

(2) H2(X,F) =0 for every coherent sheaf # on X, since X has an affine cover with two
open sets.

(3) The map f is birational: for, let 0 # @ € m. Then A, =~ R,[t], so f~}(SpecR,) ~
Proj(R, ®g A) =~ Proj(R,[t]) = Spec R,. Write U = SpecR \ {m} and V = f~1(U). Then
flv : V. — U is an isomorphism, since U has an affine covering by Spec R,,a € m,a # 0.

(4) Supp (Hl(X, T)) C {m} for every coherent sheaf ¥ on X. This follows from ap-

plying the flat-base change theorem for cohomology [Har77, II1.9.3] for the flat (in fact
open) morphism U — Spec R, and noting that all higher direct images vanish for the
isomorphism V — U.

(5) Let E = Proj(R/m ®g A), the scheme-theoretic pre-image of Spec(R/m) € SpecR.
Note that R/m ®g A ~ k[x, v, z]/(x> + y3 + z%), so E ~ Proj R. Note that we have an exact
sequence

0 — mOx — Ox — O — 0.

(6) HY(E, Of) # 0: Since E =~ Proj R, it suffices [ILL*07, 13.21] to show that
H2 (R)o # 0.
Note that we have an exact sequence
0 — H2(R) — H2 (8)(-3) — H3(5) — 0

A description of H? (S) as a graded S-module is given in [ILL*07, Example 7.16], whence
we conclude that

3 (R)o = Hi(S)-3 = k
(7) Hm(H (X, Ox)) = HY(X, Ox) # 0, since H'(X, Ox) is a finite-length non-zero module.
(8) The ‘exact sequence of low-degree terms’ (Exercise 5.1) for the spectral sequence
of Proposition 2.2

H,(R'£.0x) = Hy/ (0x)
1S
0— H! (R) H}i(ﬁx) —s HY(X, 0x) — H? (R) H,%-(ﬁx) —
(9) HL(Ox) = 0 [Lip78, Theorem 2.4, p. 177].
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F-RATIONALITY 7

Hence the edge map Hﬁl(R) — H%(ﬁx) is non-zero, and Spec R is not pseudo-rational.
What we essentially used is the fact that

H2(R); # 0

for some j > 0. See Exercise 5.11 in this context. O

3. F-RATIONALITY

Tight closure. For this lecture and the next, p is a prime number and R is a noetherian
ring of characteristic p. Let I be an R-ideal. By g, we mean a power of p. By 114 we
mean the ideal generated by {x? | x € I}. By R’, we mean the set R \ Upe\in(r)P-

3.1. Definition. The tight closure of I, denoted I*, is the set
{x € R | there exists ¢ € R such that cx? € 119 for all g > 0}.
We say that [ is tightly closed if I = I*.

Some facts:

(1) I" is an ideal containing 7; (I*)" = I".

(2) x € I" if and only if x € (IR/p)* for every p € Min(R).
(3) Every ideal in a regular local ring is tightly closed.

F-rational rings. Let x1,...,x, € R. We say that (x1,...,x,) is a parameter ideal if the
images of x1, ..., x, in R, form part of a system of parameters for R, for every prime ideal
p of R containing xi, ..., x,. We say that R is F-rational if every parameter ideal is tightly
closed.

Some facts:

(1) Every F-rational ring is normal.

(2) Every ideal in a Gorenstein F-rational ring is tightly closed.

(3) If R is a quotient of a Cohen-Macaulay ring and is F-rational, then R is Cohen-
Macaulay, and localizations of R are F-rational.

(4) Let R be a local ring that is a quotient of a Cohen-Macaulay ring. Then R is F-
rational if and only if R is equi-dimensional and there exists a system of parameters that
generates a tightly closed ideal.

(5) Let R be a local ring and R its completion. If R is Frational, then R is F-rational.
The converse is true if R is excellent (e.g., essentially of finite type over a field).

Frobenius action on local cohomology. The Frobenius map FF : R — Rr +— r?
commutes with localization. Let I = (x1,...,x,); then F commutes with the maps in
C(x1, ..., X, R), so it induces a map on Hj(R) for every i. On H/(R), this map is

7P

tp tp L IP|°
x| Xy X,

[ Z
T2 A 4
xjxh

C.(xl, ..., Xp; R) is also the limit of the Koszul complexes K'(xi, ..., xl; R) [ILL*07,
Chapter 7]. We have

X1X2° Xy R

= HY(R).

I R
m|\-———--—- e
- () (CIARNN AL
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8 MANQOJ KUMMINI

If x1,..., x, is an R-regular then the maps in the above system are injective, so
R

(x], -0 0xh)

[ Z ]
t L.t t
Xy Xo -t Xy

corresponds to z mod (x], ..., x}). For a proof, see [LT81, p. 104-105].

Under this map the element

3.2. Definition. A submodule M of H’I(R) is said to be F-stable if F(M) C M.

3.3. Example. Let n € H}(R). Then the R-submodule of H(R) generated by F(n),e > 1
is F-stable. In the proof of the theorem below, we will denote it by M,. O

3.4. Theorem ([Smi97, Theorem 2.6]). Let (R, m) be a d-dimension excellent Cohen-Macaulay
local ring of characteristic p. Then R is F-rational if and only if HY (R) has no proper non-zero
F-stable submodules.

A special case of this was proved by R. Fedder and K. i. Watanabe: assuming that R
is an isolated singularity and that H; (R) has finite length for every i < d; see [FW89,
Theorem 2.8].

Proof. ‘Only if’: Since R is excellent and F-rational, Ris Cohen-Macaulay and F-rational.

Since H? (R) is both an R-module and an R-module (compatibly), we may assume that R
is complete.

By way of contradiction suppose that 0 # M ¢ H%(R) is an F-stable R-submodule of
Hﬂl(R). Let C = HﬁI(R)/M. Taking Matlis duals, we get

V
0—>CY —— (H%(R)) MY ——0

Il
WR

\%
where wg is a canonical module of R. The isomorphism (Hﬁln(R)) ~ wpg is local dual-

ity [ILL*07, Theorem 11.44]. Note that M # 0 # C, so C¥ # 0 # M". Since wg is a
torsion-free R-module of rank 1, K ®g M" = 0. Since M" is a finitely generated R-module,
there exists 0 # ¢ € R such that cMY =0, so cM = 0. Let

<

= [#] €M
x1x2~--x

be a non-zero element. Hence

cz?
CFe(n) = i 1q 1q = 0.
xl x2 DR xd

. t t t .
for every ¢g. This means that cz? € (xlq, x2q, .. .,xdq) for every g, i.e., z € (x], x5, ..., xﬁl)* =

(x], x5, ..., x), sop =0, a contradiction.
‘If’: To make the argument simple, we will assume that R is a domain. By way of
contradiction, assume that R is not F-rational. Let xi,...,x; be a system of parameters
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F-RATIONALITY 9
and z € (x1,...,x9)" N\ (x1,...,xg7). Write

€ HY(R).

x1x2 “ e xd:|
Note that n # 0, so M, # 0. Let 0 # ¢ € R be such that cz? € (xf, xg, .. .,xZ) for every

g > 1. Then cn? = 0O for every g > 1, so cM, = 0. Note that M, # H¢ (R) since the
annihilator of HY (R) is 0. This contradicts the hypothesis. O

3.5. Example. Suppose that R is positively graded with Ry. Write m for the homogeneous
maximal ideal. Then

P (mw).

>0 /

is a proper F-stable submodule of H (R). Using this, we see that the ring

K[x, y, 2]/ (% + 3% + %)
is not F-rational for any field k. |

3.6. Example. Let R = Fo[x, y, z]/(x*+y3+z°). Thisis a Cohen-Macaulay normal domain.
It is a graded ring if we set deg x = 15, degy = 10 and deg z = 6. Let S = Fa[x, y, z]. Then

[ (xyz)(S)] # 0 and [ Xy, z)(S)] = 0 for every j > —30.

Hence
[ (xyz)(R)] #0 and [H?x,y,z)(R)]j =0 for eVeI'yj > 0.

However, R is not F-rational, as we see now. Since x ¢ (y, z),
X 2
0+ [E] € H(xyz)(R).
On the other hand, x? € (y% z?), so

][l

Hence F has a non-zero kernel. It is easy to check that kernel of F' is an F-stable submodule

2
of H(xy Z)(R). O
4. F-RATIONALITY IMPLIES PSEUDO-RATIONALITY
5. EXERCISES
5.1. Derive the ‘exact sequence of low-degree terms’ for the ”E5 page:

1,0
0 —> //EOI H(F)_>//E10 //E02 H2(F)—)
5.2. Place an exact sequence
00— M| — My — M3 — 0

on the horizontal axis and take a Cartan-Eilenberg injective resolution. Let F be a left-
exact covariant functor. Show that the 'E3 page is zero and that the maps on the 'E; and
'Eo pages give the familiar exact sequence in R'F.
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234 5.3. Show that Tor®(M, N) ~ Tor®(N, M) by looking at the third quadrant double complex
C"/=F®G,
235 where F, and G, are projective resolutions of M and N respectively.

236 5.4. The following is an example of a step in the construction of pure resolutions by
237 Eisenbud and Schreyer.

238 Let X = Pﬂ}( X Pé, where k is a field. Give homogeneous coordinates &, v and x, y respec-
239 tively. Let S = k[u, v, x, y], with degu = degv = (1,0) and degx = degy = (0, 1).

240 (1) The Koszul complex on S with respect to ux, uy + vx, vy gives an exact sequence
K. : 0 — Ox(=3,-3) — Ox(-2,-2)®3 — Ox(-1,-1)® — Ox — 0.

241 (Hint: X can be thought of as the set of bigraded ideals not containing the irrelevant
242 ideal (#,v) N (x,y). The two projection maps from X are given by contraction to
243 k[u, v] and k[x, y].)

244 (2) Letm: X — Pﬂi be the projection to the first factor. Let /*® be a Cartan-Eilenberg
245 injective resolution of K,. Let C** = n.(I*®). (This is a ‘first-quadrant’ double
246 complex.) Use the projection formula to see that

ﬁpﬁ(—z),)@?, ifi=-3and j = 1;
ﬁ%(—z)@?’, ifi=-2andj=1;

/Ei,j —
ﬁPﬁ’ ifi=0and j =0;
0, otherwise.
247 (3) Use the "E spectral sequence to conclude that ’Ei;i = 0 for every i, j.
248 (4) Conclude that the non-zero terms of the 'E; page give an exact sequence

0 — G (=3)* — p1(-2)*° — O — 0.

249 (Getting a pure resolution over k[u, v] from the above exact sequence requires a
250 little more work, which we omit in this exercise.)
251 (5) Using the same strategy, construct an exact sequence

0 — Opi(-3)*" — ﬁpﬂi(—n@b — Op(D* — 0.

252 5.5. Do a ‘diagram-chasing’ in the commutative diagram below

0—TI2(X,F1) —T2(X, F2) —=T2(X, F3) —

| | |

0—=T(X,FA) ——= T X, FR) —=T(X, F) —
0——TIU,F)——TWU, F)——TIU F3) —

253 to conclude that I'z(X, —) is left-exact.

254 5.6. Let (R,m) be a two-dimensional analytically unramified normal domain and f :
255 W — Spec R a proper birational morphism with W normal.
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F-RATIONALITY 11

(1) Show that Supp(H' (W, Ow)) C {m}. (Hint: Localize in the base and use flat base-
change for cohomology and the fact that over a DVR, every proper birational map
is an isomorphism.)

(2) R is pseudo-rational if and only if H(Z, &) = 0 for every Z that has a proper
birational map to Spec R. (Use: Hf-1(,,))(0Z) = 0 [Lip78, Theorem 2.4, p. 177].)

5.7. Let (R, m) be a normal local ring. Let W LN Spec R be a proper birational
morphisms with Z and W normal. Write & = fg. Then the edge map

0
H;{I(R) _h) HZ—I({m})(W’ ﬁW)

factors as

6 -
d S 11d d
Hm(R) Hf—l({m})(za ﬁZ) ? Hh—l({m})(We ﬁW)

5.8. Show that rational singularities (in characteristic zero) are pseudo-rational. You need
to use the fact that if R has rational singularities, then R’ .0z = 0 for every desingular-
ization f : Z — Spec R and every i > 0.

5.9. Let R be a Cohen-Macaulay ring of characteristic zero. Show that R has rational
singularities if and only if there exists a proper birational morphism f : Z — SpecR
such that Z has rational singularities and R’ f,&z = 0 for every i > 0.

5.10. Let (R, m) be a noetherian ring. Let X = {p € SpecR | dimR/p = dim R}. Let
a € m N\ Upexp. If R/(a) is regular, then so is R. Show that the hypothesis on a is
necessary.

5.11. Let R be a two-dimensional standard graded normal domain, with Ry = k, with ho-
mogeneous maximal ideal m. Assume that Spec R\ {m} has pseudo-rational singularities.
Show that R has pseudo-rational singularities if and only if Hgl(R) ; =0 for every j > 0 as
follows:

(1) Let X = Proj R[mt]. Then X has pseudo-rational singularities, and there is a proper
birational map f : X — SpecR.

(2) Let h : W — Spec R with W normal. Let W’ be the blow-up of W along the ideal
sheaf mOy, and A’ the composite map W — W — Spec R. It suffices to show that the
edge map 0y is injective. Hence replacing W by W’, we may assume that % factors as

w2, x i> SpecR.
(3) R'g.0w = 0. _
(4) Let E be the divisor of X defined by m&y. Write E = h~1({m}). The map
HZ(0x) — HZ(Ow)
is an isomorphism.
(5) The map
H(R) — H2(Ow)
is injective if and only if the map
H3(R) — HE(Ox)

is injective, which holds if and only if H(X, &x) = 0 which holds if and only if H!(E, 0%(j)) =
0 for every j > 0 which holds if and only if H?n(R)j = 0 for every j > 0. You will need to
use two facts: E ~ Proj R and that m/Ox ®x O =~ Ok (j).
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5.12. Let R = k[x2, x3] where k is a field of characteristic p > 0. Show that x3 € (x%)*\(x?).

5.13. Let R = k[x, y, z]/(x3 + y3 + z3) where k is a field of characteristic p > 0, p # 3. Show
that z2 € (x, y)* \ (x, y).

5.14. Let R be a noetherian ring, and / an R-ideal. Show that if / is tightly closed, then
(I : J) is tightly closed for every ideal J.

5.15. Show that an intersection of tightly closed ideals is tightly closed.

5.16. Let (R, m) be a Gorenstein ring, / an unmixed R-ideal, and x1, ..., x, € I a maximal
regular sequence. Write J = (xy,. .., x.). Show that (J : (J: 1)) = I.

5.17. Show that every ideal in a Gorenstein F-rational ring is tightly closed.
5.18. Let R be a local ring and R its completion. If Ris F -rational, then R is F-rational.

5.19. Let (R, m) be a two-dimensional pseudo-rational ring. Following [LT81, Section 5],
prove the (special case of) Brian con-Skoda theorem:

In+2 C "

for every n > 1, as follows:

(1) We may assume that R/m is an infinite field [LT81, Example (c), p. 103].

(2) I has a reduction generated by two elements, i.e., there exists J = (x,y) € I such
that I"*1 = JI" for every n > 0. (Hint: take a Noether normalization of R[It]/mR[It].)

(3) The ideal generated by xt, yt in A := R[[t] is primary to the irrelevant ideal.
(4) Let X = Proj A. The Koszul complex K.(xt, yt; A) gives an exact sequence

0— Ox(n) — Ox(n+1) — Ox(n+2) — 0

for every n € Z. (Here, by 0x(1) we mean the invertible sheaf /10%.)
(5) For n > 0, this gives an exact sequence

0—>F—)I"+1[x—ylln+2—>0,

(Use: 1" = H(X, Ox(n)) for everyn>1,1":=R = HO(X, Ox).)
(6) I"+2 = [I"*! for every n > 0.
(7) I"*2 C I" for every n > 1.
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