Big Cohen-Macaulay algebras Part 1: Applications

Manoj Kummini

Chennai Mathematical Institute

#### 2020-06-30

https://www.cmi.ac.in/~mkummini/bigcm.pdf

These are expository lectures on the "big Cohen-Macaulay algebras" conjecture (Hochster) and its proof in the prime characteristic case.

This lecture: the conjecture and some applications.

Next lecture: proof in the prime characteristic case (Huneke-Lyubeznik).

Background

#### Absolute Integral Closure Weak functoriality Characteristic zero

Vanishing of maps of Tor.

Pure subrings of regular rings

Direct summand conjecture

Tight closure

Mixed characteristic

# Background

1 Homological Conjectures: a diagram



- 1. Hochster, Topics in the homological theory of ..., CBMS notes, AMS.
- Hochster, Current state of the homological conjectures, Univ. Utah. www.math.utah.edu/vigre/minicourses/algebra/hochster. pdf

Throughout this talk R is a noetherian ring.

(But not *R*-algebras, necessarily.)

Definition

Let R be a local ring. An R-algebra S is said to be a *Cohen-Macaulay* R-algebra if a system of parameters of R is a S-regular sequence.

*big Cohen-Macaulay R-algebra*: to emphasise that it is not necessarily finitely generated as an *R*-module.

Definition

Let R be a local ring and S a Cohen-Macaulay R-algebra. Say that S is *balanced* if every system of parameters of R is S-regular.

# Absolute Integral Closure

#### Definition

Let *R* be a domain. The *absolute integral closure*  $R^+$  of *R* is the integral closure of *R* in an algebraic closure of its fraction field.

#### Theorem ([HH92, Theorem 1.1])

Let R be an excellent local domain of characteristic p > 0. Then  $R^+$  is a balanced (big) Cohen-Macaulay R-algebra.

#### Theorem ([HL07, Corollary 2.3])

Let R be a local domain of characteristic p > 0, that is a homomorphic image of a Gorenstein local ring. Then  $R^+$  is a balanced (big) Cohen-Macaulay R-algebra.

Let  $R \rightarrow S$  be be a local map of excellent local domains (or local domains that are homomorphic images of Gorenstein rings) of characteristic p > 0. Then there exists a commutative diagram



Let  $R \rightarrow S$  be be a local map of excellent local domains (or local domains that are homomorphic images of Gorenstein rings) of characteristic p > 0. Then there exists a commutative diagram



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

We can consider  $R \hookrightarrow S$  and  $R \twoheadrightarrow S$  separately.

Injective case:  $R \subseteq S$ .

 $K \subseteq L$ : respective fraction fields.



Surjective case:  $R \rightarrow S$ .

In general: for a domain A,  $A^+$  is characterised by

- 1.  $A^+$  is a domain and contains A as a subring;
- 2.  $A^+$  is integral over A;
- 3. every monic  $f(T) \in A^+[T]$  splits into monic linear factors over  $A^+$ .

Write  $S = R/\mathfrak{p}$ .

Let  $\mathfrak{q} \subseteq R^+$  be a prime ideal lying over  $\mathfrak{p}$ .

Then

$$S^+ \simeq R^+/\mathfrak{q}$$

The above results do not hold verbatim in characteristic 0 in dim  $\geq$  3.

The above results do not hold verbatim in characteristic 0 in dim  $\geq$  3.

#### Example

*R* normal local domain containing  $\mathbb{Q}$ , dim *R* = 3. *x*, *y*, *z* system of parameters.

The above results do not hold verbatim in characteristic 0 in dim  $\geq$  3.

#### Example

*R* normal local domain containing  $\mathbb{Q}$ , dim *R* = 3. *x*, *y*, *z* system of parameters. Let  $a \in ((x, y)R :_R z)$ .

The above results do not hold verbatim in characteristic 0 in dim  $\geq$  3.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

#### Example

*R* normal local domain containing  $\mathbb{Q}$ , dim *R* = 3. *x*, *y*, *z* system of parameters. Let  $a \in ((x, y)R :_R z)$ . Then  $a \in ((x, y)R^+ :_{R^+} z)$ .

The above results do not hold verbatim in characteristic 0 in dim  $\geq$  3.

#### Example

*R* normal local domain containing  $\mathbb{Q}$ , dim R = 3. x, y, z system of parameters. Let  $a \in ((x, y)R :_R z)$ . Then  $a \in ((x, y)R^+ :_{R^+} z)$ . Suppose  $a \in (x, y)R^+$ . Write  $a = s_1x + s_2y$  for some  $s_1, s_2 \in R^+$ .

The above results do not hold verbatim in characteristic 0 in dim  $\geq$  3.

#### Example

*R* normal local domain containing  $\mathbb{Q}$ , dim R = 3. x, y, z system of parameters. Let  $a \in ((x, y)R :_R z)$ . Then  $a \in ((x, y)R^+ :_{R^+} z)$ . Suppose  $a \in (x, y)R^+$ . Write  $a = s_1x + s_2y$  for some  $s_1, s_2 \in R^+$ . Let  $S \subseteq R^+$  be a finite extension of R with  $s_1, s_2 \in S$ .

The above results do not hold verbatim in characteristic 0 in dim  $\geq$  3.

#### Example

*R* normal local domain containing  $\mathbb{Q}$ , dim R = 3. x, y, z system of parameters. Let  $a \in ((x, y)R :_R z)$ . Then  $a \in ((x, y)R^+ :_{R^+} z)$ . Suppose  $a \in (x, y)R^+$ . Write  $a = s_1x + s_2y$  for some  $s_1, s_2 \in R^+$ . Let  $S \subseteq R^+$  be a finite extension of R with  $s_1, s_2 \in S$ .  $K \subseteq L$  fraction fields of R and S.

The above results do not hold verbatim in characteristic 0 in dim  $\geq$  3.

#### Example

*R* normal local domain containing  $\mathbb{Q}$ , dim R = 3. x, y, z system of parameters. Let  $a \in ((x, y)R :_R z)$ . Then  $a \in ((x, y)R^+ :_{R^+} z)$ . Suppose  $a \in (x, y)R^+$ . Write  $a = s_1x + s_2y$  for some  $s_1, s_2 \in R^+$ . Let  $S \subseteq R^+$  be a finite extension of R with  $s_1, s_2 \in S$ .  $K \subseteq L$  fraction fields of R and S.

Then there exists a non-zero integer m (invertible in R) such that

$$ma = \operatorname{Trace}_{L/K}(a) = x \operatorname{Trace}_{L/K}(s_1) + y \operatorname{Trace}_{L/K}(s_2) \in (x, y) R.$$

Hence x, y, z cannot be  $R^+$ -regular unless R is Cohen-Macaulay.

Nonetheless, we have the following:

Theorem ([HH92, Theorem 8.1])

Let  $(R, \mathfrak{m})$  be an equi-characteristic local domain. Then there exists a local (not necessarily noetherian) ring  $(S, \mathfrak{n})$  with a local map  $R \to S$  such that S is a balanced (big) Cohen-Macaulay R-algebra.

Nonetheless, we have the following:

Theorem ([HH92, Theorem 8.1])

Let  $(R, \mathfrak{m})$  be an equi-characteristic local domain. Then there exists a local (not necessarily noetherian) ring  $(S, \mathfrak{n})$  with a local map  $R \to S$  such that S is a balanced (big) Cohen-Macaulay R-algebra.

▶ In characteristic > 0,  $R \to \widehat{R} \to \widehat{R}/\mathfrak{p} \to (\widehat{R}/\mathfrak{p})^+ =: S$ , where  $\mathfrak{p}$  is a prime ideal of  $\widehat{R}$  of maximum dimension.

Nonetheless, we have the following:

Theorem ([HH92, Theorem 8.1])

Let  $(R, \mathfrak{m})$  be an equi-characteristic local domain. Then there exists a local (not necessarily noetherian) ring  $(S, \mathfrak{n})$  with a local map  $R \to S$  such that S is a balanced (big) Cohen-Macaulay R-algebra.

▶ In characteristic > 0,  $R \to \widehat{R} \to \widehat{R}/\mathfrak{p} \to (\widehat{R}/\mathfrak{p})^+ =: S$ , where  $\mathfrak{p}$  is a prime ideal of  $\widehat{R}$  of maximum dimension. Since  $\widehat{R}/\mathfrak{p}$  is complete, *S* is local.

Nonetheless, we have the following:

Theorem ([HH92, Theorem 8.1])

Let  $(R, \mathfrak{m})$  be an equi-characteristic local domain. Then there exists a local (not necessarily noetherian) ring  $(S, \mathfrak{n})$  with a local map  $R \to S$  such that S is a balanced (big) Cohen-Macaulay R-algebra.

- ▶ In characteristic > 0,  $R \to \widehat{R} \to \widehat{R}/\mathfrak{p} \to (\widehat{R}/\mathfrak{p})^+ =: S$ , where  $\mathfrak{p}$  is a prime ideal of  $\widehat{R}$  of maximum dimension. Since  $\widehat{R}/\mathfrak{p}$  is complete, *S* is local.
- In characteristic 0, Artin approximation and reduction to characteristic > 0.

#### Theorem

Let  $R \to S \to T$  be equi-characteristic noetherian rings, with R and T regular, R a domain, and S module-finite and torsion-free over R. Then for every R-module M and for every  $i \ge 1$ , the map

$$\operatorname{Tor}_{i}^{R}(M,S) \to \operatorname{Tor}_{i}^{R}(M,T)$$

is zero.

Proof: We follow [Hun96, Chapter 9].

#### Theorem

Let  $R \to S \to T$  be equi-characteristic noetherian rings, with R and T regular, R a domain, and S module-finite and torsion-free over R. Then for every R-module M and for every  $i \ge 1$ , the map

 $\operatorname{Tor}_{i}^{R}(M,S) \to \operatorname{Tor}_{i}^{R}(M,T)$ 

is zero.

Proof: We follow [Hun96, Chapter 9].

If the map is non-zero, it would remain non-zero if we replace T by  $\widehat{T}_{\mathfrak{q}}$  for a suitable prime ideal  $\mathfrak{q}$  of T.

・ロト ・ ロト ・ ヨト ・ ヨト ・ 日 ・ シタク

#### Theorem

Let  $R \to S \to T$  be equi-characteristic noetherian rings, with R and T regular, R a domain, and S module-finite and torsion-free over R. Then for every R-module M and for every  $i \ge 1$ , the map

 $\operatorname{Tor}_{i}^{R}(M,S) \to \operatorname{Tor}_{i}^{R}(M,T)$ 

is zero.

```
Proof:
We follow [Hun96, Chapter 9].
```

If the map is non-zero, it would remain non-zero if we replace T by  $\widehat{T}_{\mathfrak{q}}$  for a suitable prime ideal  $\mathfrak{q}$  of T.

```
Hence T is a RLR.
```

#### Theorem

Let  $R \to S \to T$  be equi-characteristic noetherian rings, with R and T regular, R a domain, and S module-finite and torsion-free over R. Then for every R-module M and for every  $i \ge 1$ , the map

 $\operatorname{Tor}_i^R(M,S) o \operatorname{Tor}_i^R(M,T)$ 

is zero.

```
Proof:
We follow [Hun96, Chapter 9].
```

If the map is non-zero, it would remain non-zero if we replace T by  $\widehat{T}_{\mathfrak{q}}$  for a suitable prime ideal  $\mathfrak{q}$  of T.

```
Hence T is a RLR.
```

May assume M a finitely generated R-module.

Hence R and T are complete RLRs.

Hence R and T are complete RLRs.

 $\ker(S \to T)$  is a prime ideal of S, so it contains a minimal prime ideal  $\mathfrak{p}$  of S. Note that  $\mathfrak{p} \cap R = \mathfrak{0}$  (:: torsion-free).

Hence R and T are complete RLRs.

 $\ker(S \to T)$  is a prime ideal of S, so it contains a minimal prime ideal  $\mathfrak{p}$  of S. Note that  $\mathfrak{p} \cap R = \mathfrak{0}$  (:: torsion-free).

Given map factors as:



Hence R and T are complete RLRs.

 $\ker(S \to T)$  is a prime ideal of *S*, so it contains a minimal prime ideal  $\mathfrak{p}$  of *S*. Note that  $\mathfrak{p} \cap R = \mathfrak{0}$  ( $\because$  torsion-free).

Given map factors as:



Replace S by S/p and assume S complete local domain.



▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - めへぐ

where A and B are balanced Cohen-Macaulay algebras for S and for T.



▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - めへぐ

where A and B are balanced Cohen-Macaulay algebras for S and for T.

 $R \rightarrow S$  finite, so A is a balanced Cohen-Macaulay algebra for R.



where A and B are balanced Cohen-Macaulay algebras for S and for T.

 $R \rightarrow S$  finite, so A is a balanced Cohen-Macaulay algebra for R.

Fact: Since R is regular, an R-algebra C is a balanced big Cohen-Macaulay R-algebra if and only if C is faithfully flat over R.

$$\begin{array}{c} A \longrightarrow B \\ \uparrow & \uparrow \\ R \longrightarrow S \longrightarrow T \end{array}$$

where A and B are balanced Cohen-Macaulay algebras for S and for T.

 $R \rightarrow S$  finite, so A is a balanced Cohen-Macaulay algebra for R.

Fact: Since R is regular, an R-algebra C is a balanced big Cohen-Macaulay R-algebra if and only if C is faithfully flat over R.

Hence, A is faithfully flat over R, and B is faithfully flat over T.

We get a commutative diagram: For  $i \ge 1$ ,

$$\operatorname{Tor}_{i}^{R}(M, A) \longrightarrow \operatorname{Tor}_{i}^{R}(M, B)$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$\operatorname{Tor}_{i}^{R}(M, S) \longrightarrow \operatorname{Tor}_{i}^{R}(M, T)$$

Explanation:

$$\operatorname{Tor}_{i}^{R}(M,T) \to \operatorname{Tor}_{i}^{R}(M,T) \otimes_{T} B$$
 is injective.

<ロ> <回> <回> <三> <三> <三> <三> <三> <三> <三</p>

Explanation:

$$\operatorname{Tor}_{i}^{R}(M,T) \to \operatorname{Tor}_{i}^{R}(M,T) \otimes_{T} B$$
 is injective.

Let  $F_{\bullet}$  be a free resolution of M over R.

Explanation:

$$\operatorname{Tor}_{i}^{R}(M,T) \to \operatorname{Tor}_{i}^{R}(M,T) \otimes_{T} B$$
 is injective.

Let  $F_{\bullet}$  be a free resolution of M over R.

$$\operatorname{Tor}_{i}^{R}(M,T)\otimes_{T}B\simeq \operatorname{H}_{i}(F_{\bullet}\otimes_{R}T)\otimes_{T}B\simeq \operatorname{H}_{i}(F_{\bullet}\otimes_{R}B)\simeq \operatorname{Tor}_{i}^{R}(M,B)$$

◆□ ▶ ◆昼 ▶ ◆ 臣 ▶ ◆ 国 ▶ ◆ 回 ▶

Explanation:

$$\operatorname{Tor}_{i}^{R}(M,T) \to \operatorname{Tor}_{i}^{R}(M,T) \otimes_{T} B$$
 is injective.

Let  $F_{\bullet}$  be a free resolution of M over R.

$$\operatorname{Tor}_{i}^{R}(M,T)\otimes_{T}B\simeq \operatorname{H}_{i}(F_{\bullet}\otimes_{R}T)\otimes_{T}B\simeq \operatorname{H}_{i}(F_{\bullet}\otimes_{R}B)\simeq \operatorname{Tor}_{i}^{R}(M,B)$$

◆□ ▶ ◆昼 ▶ ◆ 臣 ▶ ◆ 国 ▶ ◆ 回 ▶

A ring map  $R \to S$  is *pure* if  $M \to M \otimes_R S$  is injective for every *R*-module *M*.

A ring map  $R \to S$  is *pure* if  $M \to M \otimes_R S$  is injective for every *R*-module *M*.

1. Faithfully flat maps are pure.

A ring map  $R \to S$  is *pure* if  $M \to M \otimes_R S$  is injective for every *R*-module *M*.

- 1. Faithfully flat maps are pure.
- 2. Let  $R \xrightarrow{\phi} S$  be a ring map. If it splits, i.e, there exists an R-linear  $\sigma: S \to R$  such that  $\sigma \phi = \operatorname{id}_R$ , then  $\phi$  is pure. Converse holds if  $\phi$  is finite.

A ring map  $R \to S$  is *pure* if  $M \to M \otimes_R S$  is injective for every *R*-module *M*.

- 1. Faithfully flat maps are pure.
- 2. Let  $R \xrightarrow{\phi} S$  be a ring map. If it splits, i.e, there exists an R-linear  $\sigma: S \to R$  such that  $\sigma \phi = id_R$ , then  $\phi$  is pure. Converse holds if  $\phi$  is finite.
- 3. Let G be a finite group and V a finite-dimensional representation of G over a field k such that |G| is invertible in k. Let  $S = \text{Sym } V^*$  and  $R = S^G$ . Then  $R \to S$  splits.

Let  $R \rightarrow S$  be a pure morphism of equi-characteristic rings, with S a regular ring. Then R is Cohen-Macaulay.

Let  $R \rightarrow S$  be a pure morphism of equi-characteristic rings, with S a regular ring. Then R is Cohen-Macaulay.

Sketch (assuming  $\phi$  splits):

Let  $R \rightarrow S$  be a pure morphism of equi-characteristic rings, with S a regular ring. Then R is Cohen-Macaulay.

Sketch (assuming  $\phi$  splits):

Reduce to R complete local, S regular

・ロト・「「「・」」・ 「」・ 「」・ (「」・

Let  $R \rightarrow S$  be a pure morphism of equi-characteristic rings, with S a regular ring. Then R is Cohen-Macaulay.

Sketch (assuming  $\phi$  splits):

Reduce to R complete local, S regular

Take  $A \subseteq R$  with A regular and R module-finite over A.

Let  $R \rightarrow S$  be a pure morphism of equi-characteristic rings, with S a regular ring. Then R is Cohen-Macaulay.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Sketch (assuming  $\phi$  splits):

Reduce to R complete local, S regular

Take  $A \subseteq R$  with A regular and R module-finite over A.

Let  $x_1, \ldots, x_d$  regular system of parameters for A.

Let  $R \rightarrow S$  be a pure morphism of equi-characteristic rings, with S a regular ring. Then R is Cohen-Macaulay.

Sketch (assuming  $\phi$  splits):

Reduce to R complete local, S regular

Take  $A \subseteq R$  with A regular and R module-finite over A.

Let  $x_1, \ldots, x_d$  regular system of parameters for A.

Let  $M = A/(x_1, ..., x_d)$ .



gives, for  $i \ge 1$ ,





gives, for  $i \ge 1$ ,



◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶



gives, for  $i \ge 1$ ,



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで





Hence  $\operatorname{Tor}_{i}^{A}(M, R) = 0$  for every  $i \geq 1$ .

・ロト・日本・山田・山田・山口・





Hence  $\operatorname{Tor}_{i}^{A}(M, R) = 0$  for every  $i \geq 1$ .

*R* is a free *A*-module, so it is a Cohen-Macaulay ring.

### Direct summand conjecture

### Conjecture

If  $R \subseteq S$  is a module-finite extension of rings and R regular, then R is a direct summand of S as an R-module.

Vanishing of the maps of Tor implies the direct summand conjecture.

#### Definition

Let *R* be a domain of characteristic p > 0 and *I* an *R*-ideal. The *tight closure* of *I* is the set

 $I^* := \{ z \in R \mid \exists c \in R \smallsetminus 0 \text{ such that for every } e \ge 0, cz^{p^e} \in I^{[p^e]} \}.$ 

#### Definition

Let *R* be a domain of characteristic p > 0 and *I* an *R*-ideal. The *tight closure* of *I* is the set

$$I^*:=\{z\in R\mid \exists c\in R\smallsetminus 0 ext{ such that for every } e\geq 0, cz^{p^e}\in I^{[p^e]}\}.$$

 $I^*$  is an *R*-ideal containing *I*.

#### Definition

Let *R* be a domain of characteristic p > 0 and *I* an *R*-ideal. The *tight closure* of *I* is the set

$$I^*:=\{z\in R\mid \exists c\in R\smallsetminus 0 ext{ such that for every } e\geq 0, cz^{p^e}\in I^{[p^e]}\}.$$

I\* is an *R*-ideal containing *I*.

has various nice properties; is very useful.

#### Definition

Let *R* be a domain of characteristic p > 0 and *I* an *R*-ideal. The *tight closure* of *I* is the set

$$I^*:=\{z\in R\mid \exists c\in R\smallsetminus 0 ext{ such that for every } e\geq 0, cz^{p^e}\in I^{[p^e]}\}.$$

 $I^*$  is an *R*-ideal containing *I*.

has various nice properties; is very useful.

If S is a module-finite extension of R,  $IS \cap R \subseteq I^*$ .

Question: Is  $IR^+ \cap R = I^*$ ?

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

```
Question: Is IR^+ \cap R = I^*?
```

#### Theorem ([Hoc94, Theorem 11.1])

Let  $(R, \mathfrak{m})$  be a complete local domain of characteristic p > 0. Let I be an R-ideal. Let  $x \in R$ . Then  $x \in I^*$  if and only if there exists a balanced Cohen-Macaulay R-algebra S such that  $x \in IS$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

```
Question: Is IR^+ \cap R = I^*?
```

#### Theorem ([Hoc94, Theorem 11.1])

Let  $(R, \mathfrak{m})$  be a complete local domain of characteristic p > 0. Let I be an R-ideal. Let  $x \in R$ . Then  $x \in I^*$  if and only if there exists a balanced Cohen-Macaulay R-algebra S such that  $x \in IS$ .

### Theorem ([Smi94, Theorem 5.1])

Let R be a locally excellent noetherian domain of characteristic p > 0. Let  $x_1, \ldots, x_d$  be elements of R such that they form a part of a system of parameters in  $R_p$  for every prime ideal p containing  $x_1, \ldots, x_d$ . Write  $I = (x_1, \ldots, x_d)$ . Then  $IR^+ \cap R = I^*$ .

There exist weakly functorial big Cohen-Macaulay algebras in mixed characteristic also.

There exist weakly functorial big Cohen-Macaulay algebras in mixed characteristic also.

These have been used to study singularities in mixed characteristic.

There exist weakly functorial big Cohen-Macaulay algebras in mixed characteristic also.

These have been used to study singularities in mixed characteristic.

André, Bhatt, Heitman, Ma, Schwede, Shimomoto, ....

### M. Hochster and C. Huneke.

Infinite integral extensions and big Cohen-Macaulay algebras. Ann. of Math. (2), 135(1):53–89, 1992.

C. Huneke and G. Lyubeznik.
 Absolute integral closure in positive characteristic.
 Adv. Math., 210(2):498–504, 2007.

# M. Hochster.

Solid closure.

In Commutative algebra: syzygies, multiplicities, and birational algebra (South Hadley, MA, 1992), volume 159 of Contemp. Math., pages 103–172. Amer. Math. Soc., Providence, RI, 1994.

# C. Huneke.

*Tight closure and its applications*, volume 88 of *CBMS Regional Conference Series in Mathematics*. American Mathematical Society, Providence, RI, 1996.

### K. E. Smith. Tight closure of parameter ideals. *Invent. Math.*, 115(1):41–60, 1994.

Thank you!

▲□▶▲圖▶▲≣▶▲≣▶ ■ の�?