Big Cohen-Macaulay algebras Part 2: Absolute integral closure in prime characteristic

Manoj Kummini

Chennai Mathematical Institute

2020-07-03

https://www.cmi.ac.in/~mkummini/notes/Rplus.pdf

These are expository lectures on the "big Cohen-Macaulay algebras" conjecture (Hochster) and its proof in the prime characteristic case.

Previous lecture: the conjecture and some applications.

This lecture: proof by Huneke and Lyubeznik in the prime characteristic case that the absolute integral closure is a big Cohen-Macaulay algebra.

Local cohomology, 1 Sketch

Main Theorem

Local cohomology, 2 Quick overview Step 2 of the proof Local duality Step 1 of the proof

Separability

Throughout this talk (R, \mathfrak{m}) is a noetherian local ring.

Throughout this talk (R, \mathfrak{m}) is a noetherian local ring.

Definition

An *R*-algebra *S* is said to be a *balanced* (*big*) *Cohen-Macaulay R*-algebra if every system of parameters of *R* is an *S*-regular sequence.

Throughout this talk (R, \mathfrak{m}) is a noetherian local ring.

Definition

An *R*-algebra *S* is said to be a *balanced* (*big*) *Cohen-Macaulay R*-algebra if every system of parameters of *R* is an *S*-regular sequence.

Definition

Let *R* be a domain. The *absolute integral closure* R^+ of *R* is the integral closure of *R* in an algebraic closure of its fraction field.

Theorem ([HL07, Corollary 2.3(b)])

Let R be domain of characteristic p > 0, that is a homomorphic image of a Gorenstein local ring. Then R^+ is a balanced (big) Cohen-Macaulay R-algebra. Theorem ([HL07, Corollary 2.3(b)])

Let R be domain of characteristic p > 0, that is a homomorphic image of a Gorenstein local ring. Then R^+ is a balanced (big) Cohen-Macaulay R-algebra.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

This follows from:

Theorem ([HL07, Corollary 2.3(a)]) Let R be as above. $H^i_m(R^+) = 0$ for every $i < \dim R$. Theorem ([HL07, Corollary 2.3(b)])

Let R be domain of characteristic p > 0, that is a homomorphic image of a Gorenstein local ring. Then R^+ is a balanced (big) Cohen-Macaulay R-algebra.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

This follows from:

Theorem ([HL07, Corollary 2.3(a)]) Let R be as above. $H^i_{\mathfrak{m}}(R^+) = 0$ for every $i < \dim R$.

We will sketch the proof of this implication now.

Let $I = (x_1, \ldots, x_d)$ be an *R*-ideal.

Let $I = (x_1, \ldots, x_d)$ be an *R*-ideal.

No need to assume R local here.

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

Let $I = (x_1, \ldots, x_d)$ be an *R*-ideal.

No need to assume *R* local here.

Define *I*-torsion functor $\Gamma_I(-)$ on *R*-modules by

 $\Gamma_I(M) := \cup_{n \in \mathbb{N}} (0 :_M I^n)$

Let $I = (x_1, \ldots, x_d)$ be an *R*-ideal.

No need to assume *R* local here.

Define *I*-torsion functor $\Gamma_I(-)$ on *R*-modules by

 $\Gamma_I(M) := \cup_{n \in \mathbb{N}} (0 :_M I^n)$

Left-exact, covariant functor.

Let $I = (x_1, \ldots, x_d)$ be an *R*-ideal.

No need to assume *R* local here.

Define *I*-torsion functor $\Gamma_I(-)$ on *R*-modules by

 $\Gamma_I(M) := \cup_{n \in \mathbb{N}} (0 :_M I^n)$

Left-exact, covariant functor.

Its right-derived functors $H_{I}^{i}(-), i \in \mathbb{N}$ are called *local cohomology* functors (with support in I).

・ロト・西・・田・・田・・日・

Let x_1, \ldots, x_d be a system of parameters for R.

Let x_1, \ldots, x_d be a system of parameters for R. *R* local now.

Let x_1, \ldots, x_d be a system of parameters for R. *R* local now.

WTST it is an R^+ -regular sequence.

Let x_1, \ldots, x_d be a system of parameters for R. *R* local now.

WTST it is an R^+ -regular sequence.

Since $\mathfrak{m}R^+ \neq R^+$, we need only show that x_j is a non-zero-divisor on $R^+/(x_1, \ldots, x_{j-1})R^+$ for every $j \ge 2$.

・ロット (四)・ (目)・ (日)・ (日)

Let x_1, \ldots, x_d be a system of parameters for R. *R* local now.

WTST it is an R^+ -regular sequence.

Since $\mathfrak{m}R^+ \neq R^+$, we need only show that x_j is a non-zero-divisor on $R^+/(x_1, \ldots, x_{j-1})R^+$ for every $j \ge 2$.

Note: x_1 is a non-zero-divisor on R^+ .

Let x_1, \ldots, x_d be a system of parameters for R. R local now.

WTST it is an R^+ -regular sequence.

Since $\mathfrak{m}R^+ \neq R^+$, we need only show that x_j is a non-zero-divisor on $R^+/(x_1, \ldots, x_{j-1})R^+$ for every $j \ge 2$.

Note: x_1 is a non-zero-divisor on R^+ .

Let $j \ge 2$. Assume by induction that x_1, \ldots, x_{j-1} is R^+ -regular.

Let x_1, \ldots, x_d be a system of parameters for R. R local now.

WTST it is an R^+ -regular sequence.

Since $\mathfrak{m}R^+ \neq R^+$, we need only show that x_j is a non-zero-divisor on $R^+/(x_1, \ldots, x_{j-1})R^+$ for every $j \geq 2$.

Note: x_1 is a non-zero-divisor on R^+ .

Let $j \ge 2$. Assume by induction that x_1, \ldots, x_{j-1} is R^+ -regular.

Write $I_t = (x_1, \ldots, x_t)R$, $1 \le t \le d$.

Since x_1, \ldots, x_d is a system of parameters,

 $x_j \not\in \bigcup \mathfrak{p}$ $\operatorname{Min} R/I_{i-1}$

Since x_1, \ldots, x_d is a system of parameters,

$$x_j \notin \bigcup_{\operatorname{Min} R/I_{j-1}} \mathfrak{p}$$

Hence, it suffices to show that every element of

$$\mathfrak{m}\setminus igcup_{\mathsf{Min}\, R/I_{j-1}}\mathfrak{p}$$

is a non-zero-divisor on $R^+/I_{j-1}R^+$.

I.e., \mathfrak{m} is not associated if we don't go modulo a full system of parameters.

Assume the claim for now.

I.e., \mathfrak{m} is not associated if we don't go modulo a full system of parameters.

Assume the claim for now.

Let $\mathfrak{p} \in \operatorname{Ass}_R R^+ / I_{j-1} R^+$.

I.e., \mathfrak{m} is not associated if we don't go modulo a full system of parameters.

Assume the claim for now.

Let $\mathfrak{p} \in \operatorname{Ass}_R R^+/I_{j-1}R^+$.

Since $(R_{\mathfrak{p}})^+ = (R^+)_{\mathfrak{p}}$, it follows that $\mathfrak{p}R_{\mathfrak{p}} \in \operatorname{Ass}_{R_{\mathfrak{p}}}(R_{\mathfrak{p}})^+ / I_{j-1}(R_{\mathfrak{p}})^+$.

I.e., \mathfrak{m} is not associated if we don't go modulo a full system of parameters.

Assume the claim for now.

Let $\mathfrak{p} \in \operatorname{Ass}_R R^+/I_{j-1}R^+$.

Since $(R_{\mathfrak{p}})^+ = (R^+)_{\mathfrak{p}}$, it follows that $\mathfrak{p}R_{\mathfrak{p}} \in \operatorname{Ass}_{R_{\mathfrak{p}}}(R_{\mathfrak{p}})^+/I_{j-1}(R_{\mathfrak{p}})^+$.

Apply the above claim to the local ring $(R_{\mathfrak{p}}, \mathfrak{p}R_{\mathfrak{p}})$ to see that \mathfrak{p} is minimal over I_{j-1} .

・ロト・西ト・モート ヨー うらぐ

I.e., \mathfrak{m} is not associated if we don't go modulo a full system of parameters.

Assume the claim for now.

Let $\mathfrak{p} \in \operatorname{Ass}_R R^+ / I_{j-1} R^+$.

Since $(R_{\mathfrak{p}})^+ = (R^+)_{\mathfrak{p}}$, it follows that $\mathfrak{p}R_{\mathfrak{p}} \in \operatorname{Ass}_{R_{\mathfrak{p}}}(R_{\mathfrak{p}})^+/I_{j-1}(R_{\mathfrak{p}})^+$.

Apply the above claim to the local ring $(R_{\mathfrak{p}}, \mathfrak{p}R_{\mathfrak{p}})$ to see that \mathfrak{p} is minimal over I_{j-1} .

 I_{j-1} is a full system of parameters for R_p .

This shows that every element of

$$\mathfrak{m}\setminus \bigcup_{\operatorname{\mathsf{Min}} R/I_{j-1}}\mathfrak{p}$$

is a non-zero-divisor on $R^+/(x_1,\ldots,x_{j-1})R^+$.

This shows that every element of

$$\mathfrak{m}\setminus \bigcup_{\operatorname{\mathsf{Min}} R/I_{j-1}}\mathfrak{p}$$

is a non-zero-divisor on $R^+/(x_1,\ldots,x_{j-1})R^+$.

In particular x_j is a non-zero-divisor on $R^+/(x_1, \ldots, x_{j-1})R^+$.

・ロット (四)・ (目)・ (日)・ (日)

ETST $H^0_{\mathfrak{m}}(R^+/I_{j-1}R^+) = 0.$

ETST $H^0_{\mathfrak{m}}(R^+/I_{j-1}R^+) = 0.$ $H^0_{\mathfrak{m}} = \Gamma_{\mathfrak{m}}$

$$\mathsf{ETST} \ \mathsf{H}^{0}_{\mathfrak{m}}(R^{+}/I_{j-1}R^{+}) = 0. \qquad \qquad \mathsf{H}^{0}_{\mathfrak{m}} = \mathsf{\Gamma}_{\mathfrak{m}}$$

Since x_1, \ldots, x_{j-1} is R^+ -regular (induction hypothesis), we have exact sequence

$$0 \rightarrow R^+/I_{t-1}R^+ \stackrel{x_t}{\rightarrow} R^+/I_{t-1}R^+ \rightarrow R^+/I_tR^+ \rightarrow 0$$

for each $t \leq j - 1$.

$$\mathsf{ETST} \ \mathsf{H}^{0}_{\mathfrak{m}}(R^{+}/I_{j-1}R^{+}) = 0. \qquad \qquad \mathsf{H}^{0}_{\mathfrak{m}} = \mathsf{\Gamma}_{\mathfrak{m}}$$

Since x_1, \ldots, x_{j-1} is R^+ -regular (induction hypothesis), we have exact sequence

$$0 o R^+/I_{t-1}R^+ \stackrel{x_t}{ o} R^+/I_{t-1}R^+ o R^+/I_tR^+ o 0$$

for each $t \le j-1$. $I_0 = 0$.

$$\mathsf{ETST} \ \mathsf{H}^{0}_{\mathfrak{m}}(R^{+}/I_{j-1}R^{+}) = 0. \qquad \qquad \mathsf{H}^{0}_{\mathfrak{m}} = \mathsf{\Gamma}_{\mathfrak{m}}$$

Since x_1, \ldots, x_{j-1} is R^+ -regular (induction hypothesis), we have exact sequence

$$0 o R^+/I_{t-1}R^+ \xrightarrow{x_t} R^+/I_{t-1}R^+ o R^+/I_tR^+ o 0$$

for each $t \le j-1$. $I_0 = 0$.

From this, we get

$$\mathsf{H}^{i}_{\mathfrak{m}}(R^{+}/I_{t}R^{+})=0$$

for each i < d - t.

$$\mathsf{ETST} \ \mathsf{H}^{0}_{\mathfrak{m}}(R^{+}/I_{j-1}R^{+}) = 0. \qquad \qquad \mathsf{H}^{0}_{\mathfrak{m}} = \mathsf{\Gamma}_{\mathfrak{m}}$$

Since x_1, \ldots, x_{j-1} is R^+ -regular (induction hypothesis), we have exact sequence

$$0 o R^+/I_{t-1}R^+ \xrightarrow{\sim} R^+/I_{t-1}R^+ o R^+/I_tR^+ o 0$$

for each $t \le j-1$. $I_0 = 0$.

From this, we get

$$\mathsf{H}^{i}_{\mathfrak{m}}(R^{+}/I_{t}R^{+})=0$$

for each i < d - t. Apply with i = 0, t = j - 1.
$$\mathsf{H}^{i}_{\mathfrak{m}}(R^{+})=0$$

for every $i < d = \dim R$.

$$\mathsf{H}^{i}_{\mathfrak{m}}(R^{+})=0$$

for every $i < d = \dim R$.

Note that

$$R^+ = \lim_{\to} S$$

where S varies in the family of finite R-subalgebras of R^+ .

$$\mathsf{H}^i_\mathfrak{m}(R^+)=0$$

for every $i < d = \dim R$.

Note that

$$R^+ = \lim_{\to} S$$

where S varies in the family of finite R-subalgebras of R^+ .

Therefore

$$\mathsf{H}^{i}_{\mathfrak{m}}(R^{+}) = \lim_{
ightarrow} \mathsf{H}^{i}_{\mathfrak{m}}(S).$$

$$\mathsf{H}^{i}_{\mathfrak{m}}(R^{+})=0$$

for every $i < d = \dim R$.

Note that

$$R^+ = \lim_{\to} S$$

where S varies in the family of finite R-subalgebras of R^+ .

Therefore

$$\mathsf{H}^{i}_{\mathfrak{m}}(R^{+}) = \lim_{\rightarrow} \mathsf{H}^{i}_{\mathfrak{m}}(S).$$

ETST each map in the directed system $\{H^{i}_{\mathfrak{m}}(S)\}$ eventually is zero.

・ロト 《四下 《田下 《田下 』 うらぐ

Main Theorem

Theorem ([HL07, Theorem 2.1])

Let (R, \mathfrak{m}) be a d-dimensional local domain of characteristic p > 0, that is a homomorphic image of a Gorenstein local ring. Let S be a finite R-subalgebra of R^+ . Let i < d. Then there exists a finite S-subalgebra S' of R^+ such that the map

$$H^i_\mathfrak{m}(S) o H^i_\mathfrak{m}(S')$$

is zero.

Main Theorem

Theorem ([HL07, Theorem 2.1])

Let (R, \mathfrak{m}) be a d-dimensional local domain of characteristic p > 0, that is a homomorphic image of a Gorenstein local ring. Let S be a finite R-subalgebra of R^+ . Let i < d. Then there exists a finite S-subalgebra S' of R^+ such that the map

$$H^i_{\mathfrak{m}}(S) o H^i_{\mathfrak{m}}(S')$$

is zero.

Consequently,

$$\mathsf{H}^{i}_{\mathfrak{m}}(R^{+}) = \lim_{\rightarrow} \mathsf{H}^{i}_{\mathfrak{m}}(S) = 0$$

for all i < d.

・ロト・西ト・西ト・ 日・ うらぐ

Local cohomology, 2

Let $x_1, \ldots, x_d \in R$.

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●

Local cohomology, 2

Let $x_1, \ldots, x_d \in R$.

Extended Čech (or stable Koszul) complex

$$\check{\mathsf{C}}^{\bullet}(x_1,\ldots,x_d): \qquad 0 \to R \to \bigoplus_{1 \le i \le d} R_{x_i} \to \bigoplus_{1 \le i < j \le d} R_{x_i x_j} \to \cdots \to R_{x_1 x_2 \cdots x_d} \to 0$$

where the maps come (up to a sign) localisation maps.

Local cohomology, 2

Let $x_1, \ldots, x_d \in R$.

Extended Čech (or stable Koszul) complex

$$\check{\mathsf{C}}^{\bullet}(x_1,\ldots,x_d): \qquad 0 \to R \to \bigoplus_{1 \le i \le d} R_{x_i} \to \bigoplus_{1 \le i < j \le d} R_{x_i x_j} \to \cdots \to R_{x_1 x_2 \cdots x_d} \to 0$$

where the maps come (up to a sign) localisation maps.

Fact: For all *R*-modules *M*,

$$\mathsf{H}^{i}_{I}(M) = \mathsf{H}^{i}(\check{\mathsf{C}}^{\bullet}(x_{1},\ldots,x_{d})\otimes_{R}M),$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

if $\sqrt{I} = \sqrt{(x_1, \ldots, x_d)}$.

The Frobenius map $r \mapsto r^p$ commutes with localization: for any multiplicatively closed set $U \subseteq R$,

$$R \longrightarrow U^{-1}R$$

$$F \downarrow \qquad F \downarrow$$

$$R \longrightarrow U^{-1}R$$

(F = Frobenius)

・ロト・「「「・」」・ 「」・ 「」・ (「」・

The Frobenius map $r \mapsto r^p$ commutes with localization: for any multiplicatively closed set $U \subseteq R$,

$$\begin{array}{c} R \longrightarrow U^{-1}R \\ F \downarrow & F \downarrow \\ R \longrightarrow U^{-1}R \end{array}$$

(F = Frobenius)

Hence it induces a map of complexes $F : \check{C}^{\bullet}(x_1, \ldots, x_d) \to \check{C}^{\bullet}(x_1, \ldots, x_d)$ and on $F : H_I^i(R) \to H_I^i(R)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ◇◇◇

 $\alpha \in \mathsf{H}^{i}_{I}(R)$ is represented by a cycle

$$\left(rac{a}{b}
ight)\in igoplus_{1\leq j_1\leq \cdots \leq j_i\leq n} R_{\mathbf{x}_{j_1}\cdots \mathbf{x}_{j_i}}=\check{\mathsf{C}}^i$$

 $\alpha \in \mathsf{H}^{i}_{I}(R)$ is represented by a cycle

$$\left(rac{a}{b}
ight)\in igoplus_{1\leq j_1\leq \cdots \leq j_i\leq n} R_{\mathbf{x}_{j_1}\cdots \mathbf{x}_{j_i}}=\check{\mathsf{C}}^i$$

Then $\alpha^{p} := F(\alpha)$ is the element of $H_{I}^{i}(R)$ represented by the cycle

$$\left(\frac{a^{p}}{b^{p}}\right) \in \bigoplus_{1 \leq j_{1} \leq \cdots \leq j_{i} \leq n} R_{x_{j_{1}} \cdots x_{j_{i}}} = \check{\mathsf{C}}^{i}$$

 $\alpha \in \mathsf{H}^{i}_{I}(R)$ is represented by a cycle

$$\left(rac{a}{b}
ight)\in igoplus_{1\leq j_1\leq \cdots \leq j_i\leq n} R_{\mathbf{x}_{j_1}\cdots \mathbf{x}_{j_i}}=\check{\mathsf{C}}^i$$

Then $\alpha^{p} := F(\alpha)$ is the element of $H_{I}^{i}(R)$ represented by the cycle

$$\left(rac{a^p}{b^p}
ight)\in igoplus_{1\leq j_1\leq \cdots \leq j_i\leq n} R_{\mathrm{x}_{j_1}\cdots \mathrm{x}_{j_i}}=\check{\mathsf{C}}^i$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 → つへぐ

Write α^{p^e} for $F^e(\alpha)$, eth iterate of F.

Recall our assertion: $\exists S'$ such that the map $H^i_{\mathfrak{m}}(S) \to H^i_{\mathfrak{m}}(S')$ is zero.

Recall our assertion: $\exists S'$ such that the map $H^i_{\mathfrak{m}}(S) \to H^i_{\mathfrak{m}}(S')$ is zero.

First find a finite S-subalgebra \tilde{S} of $R^+ = S^+$ such that

$$\mathsf{Im}(\mathsf{H}^i_\mathfrak{m}(S) o \mathsf{H}^i_\mathfrak{m}(\widetilde{S}))$$

is a finitely generated (equiv. finite-length) *R*-module.

Recall our assertion: $\exists S'$ such that the map $H^i_{\mathfrak{m}}(S) \to H^i_{\mathfrak{m}}(S')$ is zero.

First find a finite S-subalgebra $ilde{S}$ of $R^+=S^+$ such that

$$\mathsf{Im}(\mathsf{H}^{i}_{\mathfrak{m}}(S) o \mathsf{H}^{i}_{\mathfrak{m}}(\widetilde{S}))$$

is a finitely generated (equiv. finite-length) *R*-module.

The map $S
ightarrow { ilde S}$ is compatible with the Frobenius maps.

Recall our assertion: $\exists S'$ such that the map $H^i_{\mathfrak{m}}(S) \to H^i_{\mathfrak{m}}(S')$ is zero.

First find a finite S-subalgebra $ilde{S}$ of $R^+=S^+$ such that

$$\mathsf{Im}(\mathsf{H}^{i}_{\mathfrak{m}}(S) o \mathsf{H}^{i}_{\mathfrak{m}}(\widetilde{S}))$$

is a finitely generated (equiv. finite-length) *R*-module.

The map $S
ightarrow ilde{S}$ is compatible with the Frobenius maps.

So is the map $H^{i}_{\mathfrak{m}}(S) \to H^{i}_{\mathfrak{m}}(\tilde{S})$.

Recall our assertion: $\exists S'$ such that the map $H^i_{\mathfrak{m}}(S) \to H^i_{\mathfrak{m}}(S')$ is zero.

First find a finite S-subalgebra $ilde{S}$ of $R^+ = S^+$ such that

$$\mathsf{Im}(\mathsf{H}^{i}_{\mathfrak{m}}(S) o \mathsf{H}^{i}_{\mathfrak{m}}(\widetilde{S}))$$

is a finitely generated (equiv. finite-length) *R*-module.

The map $S
ightarrow ilde{S}$ is compatible with the Frobenius maps.

So is the map $H^{i}_{\mathfrak{m}}(S) \to H^{i}_{\mathfrak{m}}(\tilde{S})$.

Hence

$${\sf Im}({\sf H}^i_{\mathfrak{m}}(S) o {\sf H}^i_{\mathfrak{m}}(\widetilde{S}))$$

is stable under Frobenius.

Since

$$\mathsf{Im}(\mathsf{H}^i_\mathfrak{m}(S) o \mathsf{H}^i_\mathfrak{m}(\widetilde{S}))$$

is finitely generated module, one proves that there exists a finite \tilde{S} -subalgebra S' of R^+ such that the composite map

$$\mathsf{H}^{i}_{\mathfrak{m}}(S)
ightarrow \mathsf{H}^{i}_{\mathfrak{m}}(\widetilde{S})
ightarrow \mathsf{H}^{i}_{\mathfrak{m}}(S')$$

is zero.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Since

$$\mathsf{Im}(\mathsf{H}^i_\mathfrak{m}(S) o \mathsf{H}^i_\mathfrak{m}(\widetilde{S}))$$

is finitely generated module, one proves that there exists a finite \tilde{S} -subalgebra S' of R^+ such that the composite map

$$\mathsf{H}^{i}_{\mathfrak{m}}(S)
ightarrow \mathsf{H}^{i}_{\mathfrak{m}}(\widetilde{S})
ightarrow \mathsf{H}^{i}_{\mathfrak{m}}(S')$$

is zero.

One proves this for each generator of

$$\mathsf{Im}(\mathsf{H}^{i}_{\mathfrak{m}}(S) o \mathsf{H}^{i}_{\mathfrak{m}}(\widetilde{S}))$$

and takes the compositum.

Lemma ('Equational lemma')

Let R be a noetherian domain of characteristic p > 0. Let I be an R-ideal and $\alpha \in H_I^i(R)$ be an element such that $\{\alpha^{p^e} \mid e \ge 0\}$ belong to a finitely generated submodule of $H_I^i(R)$. Then there exists a finite R-subalgebra R' of R^+ such that α goes to zero under the map

$$\mathrm{H}^{i}_{I}(R) \to \mathrm{H}^{i}_{I}(R').$$

$$\alpha^{p^s} = \sum_{i=1}^{s-1} r_i \alpha^{p^{s-i}}, \ r_i \in R, \forall i.$$

Let $\tilde{\alpha}$ be a cycle in $\check{\mathsf{C}}^i$ that represents α .

$$\alpha^{p^s} = \sum_{i=1}^{s-1} r_i \alpha^{p^{s-i}}, \ r_i \in R, \forall i.$$

Let $\tilde{\alpha}$ be a cycle in \check{C}^i that represents α .

Let $g(T) = T^{p^s} - \sum_{i=1}^{s-1} r_i T^{p^{s-i}}$.

・ロト・西ト・山田・山田・山下

$$\alpha^{p^s} = \sum_{i=1}^{s-1} r_i \alpha^{p^{s-i}}, \ r_i \in R, \forall i.$$

Let $\tilde{\alpha}$ be a cycle in $\check{\mathsf{C}}^i$ that represents α .

Let
$$g(T) = T^{p^s} - \sum_{i=1}^{s-1} r_i T^{p^{s-i}}$$
.

Then $g(\tilde{\alpha}) = d^{i-1}(\beta)$ for some $\beta \in \check{\mathsf{C}}^{i-1}$.

・ロト・「四ト・山田ト・山田ト・山下

$$\alpha^{p^s} = \sum_{i=1}^{s-1} r_i \alpha^{p^{s-i}}, \ r_i \in R, \forall i.$$

Let $\tilde{\alpha}$ be a cycle in $\check{\mathsf{C}}^i$ that represents α .

Let $g(T) = T^{p^s} - \sum_{i=1}^{s-1} r_i T^{p^{s-i}}$.

Then $g(\tilde{\alpha}) = d^{i-1}(\beta)$ for some $\beta \in \check{\mathsf{C}}^{i-1}$. $d^{i-1} : \check{\mathsf{C}}^{i-1} \to \check{\mathsf{C}}^{i}$

・ロト・西・・田・・田・・日・

$$\alpha^{p^s} = \sum_{i=1}^{s-1} r_i \alpha^{p^{s-i}}, \ r_i \in R, \forall i.$$

Let $\tilde{\alpha}$ be a cycle in $\check{\mathsf{C}}'$ that represents α .

Let
$$g(T) = T^{p^s} - \sum_{i=1}^{s-1} r_i T^{p^{s-i}}$$

Then $g(\tilde{\alpha}) = d^{i-1}(\beta)$ for some $\beta \in \check{\mathsf{C}}^{i-1}$. We show that $\beta = g(\beta') \in \check{\mathsf{C}}^{i-1}(R'')$ for finite extension R''.

・ロト・西ト・モート ヨー うらぐ

Write

$$\beta = \left(\frac{r_{j_1,\dots,j_{i-1}}}{(x_{j_1}\cdots x_{j_{i-1}})^e}\right) \in \check{\mathsf{C}}^{i-1}(R)$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Write

$$\beta = \left(\frac{r_{j_1,\ldots,j_{i-1}}}{(x_{j_1}\cdots x_{j_{i-1}})^e}\right) \in \check{\mathsf{C}}^{i-1}(R)$$

For each (i-1)-tuple $1 \leq j_1 < \cdots < j_{i-1} \leq d$ there exists

$$z_{j_1,\ldots,j_{i-1}} \in R^+$$

such that

$$g\left(\frac{z_{j_1,\dots,j_{i-1}}}{(x_{j_1}\cdots x_{j_{i-1}})^e}\right) = \frac{r_{j_1,\dots,j_{i-1}}}{(x_{j_1}\cdots x_{j_{i-1}})^e}$$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

Write

$$\beta = \left(\frac{r_{j_1,\ldots,j_{i-1}}}{(x_{j_1}\cdots x_{j_{i-1}})^e}\right) \in \check{\mathsf{C}}^{i-1}(R)$$

For each (i-1)-tuple $1 \leq j_1 < \cdots < j_{i-1} \leq d$ there exists

$$z_{j_1,\ldots,j_{i-1}} \in R^+$$

such that

$$g\left(\frac{z_{j_1,\dots,j_{i-1}}}{(x_{j_1}\cdots x_{j_{i-1}})^e}\right) = \frac{r_{j_1,\dots,j_{i-1}}}{(x_{j_1}\cdots x_{j_{i-1}})^e}$$

If we expand this out, and clear denominators by multiplying by $(x_{j_1} \cdots x_{j_{i-1}})^{ep^s}$, we get a monic polynomial expression of $z_{j_1,\dots,j_{i-1}}$ over R.

Adjoining these finitely many $z_{j_1,\ldots,j_{i-1}}$, we get a finite R-subalgebra R'' of R^+ and

$$\beta' \in \check{\mathsf{C}}^{i-1}(\mathsf{R}'')$$

such that

$$g(\beta') = \beta.$$

Adjoining these finitely many $z_{j_1,\ldots,j_{i-1}}$, we get a finite R-subalgebra R'' of R^+ and

$$\beta' \in \check{\mathsf{C}}^{i-1}(\mathsf{R}'')$$

such that

$$g(\beta') = \beta.$$

Define

$$\bar{\alpha} := \tilde{\alpha} - d^{i-1}(\beta')$$

・ロット (四)・ (目)・ (日)・ (日)

Adjoining these finitely many $z_{j_1,...,j_{i-1}}$, we get a finite *R*-subalgebra *R*["] of R^+ and

$$\beta' \in \check{\mathsf{C}}^{i-1}(\mathsf{R}'')$$

such that

$$g(\beta') = \beta.$$

Define

$$\bar{\alpha} := \tilde{\alpha} - d^{i-1}(\beta')$$

 $\bar{\alpha}$ represents the image of α under the natural map $H^i_I(R) \to H^i_I(R'')$.

Adjoining these finitely many $z_{j_1,...,j_{i-1}}$, we get a finite *R*-subalgebra *R*["] of R^+ and

$$\beta' \in \check{\mathsf{C}}^{i-1}(\mathsf{R}'')$$

such that

$$g(\beta') = \beta.$$

Define

$$\bar{\alpha} := \tilde{\alpha} - d^{i-1}(\beta')$$

 $\bar{\alpha}$ represents the image of α under the natural map $H^i_I(R) \to H^i_I(R'')$.

$$g(ar{lpha})=g(ar{lpha})-g(d^{i-1}(eta'))=d^{i-1}(eta)-d^{i-1}(g(eta'))=0$$

・ロ・・ 「「」・ 「」・ (」・ (「」・ (「」・

Entries of $\bar{\alpha}$ when thought of as $\binom{d}{i}$ -tuple are integral over R.

Entries of $\bar{\alpha}$ when thought of as $\binom{d}{i}$ -tuple are integral over R.

Adjoin them to R'' to get R'.
Entries of $\bar{\alpha}$ when thought of as $\binom{d}{i}$ -tuple are integral over R.

Adjoin them to R'' to get R'.

Can show that $\bar{\alpha}$ is a boundary in $\check{C}^{\bullet}(R')$.

Entries of $\bar{\alpha}$ when thought of as $\binom{d}{i}$ -tuple are integral over R.

Adjoin them to R'' to get R'.

Can show that $\bar{\alpha}$ is a boundary in $\check{C}^{\bullet}(R')$.

Hence α goes to zero in $H_I^i(R')$.

This outlines Step 2 of the proof.

Let (A, \mathfrak{n}) be an *n*-dimensional Gorenstein local ring and M a finitely generated A-module.

Let (A, \mathfrak{n}) be an *n*-dimensional Gorenstein local ring and M a finitely generated A-module. Then

$$H^i_{\mathfrak{n}}(M) \simeq \mathcal{D}(\mathsf{Ext}^{n-i}_{\mathcal{A}}(M,\mathcal{A}))$$

Let (A, \mathfrak{n}) be an *n*-dimensional Gorenstein local ring and M a finitely generated A-module. Then

$$H^i_{\mathfrak{n}}(M) \simeq \mathcal{D}(\operatorname{Ext}^{n-i}_A(M,A))$$

where ${\cal D}$ is the Matlis duality functor

$$\mathcal{D}(-) = \operatorname{Hom}_{A}(-, E_{A}(A/\mathfrak{n}))$$

 $(E_A(A/\mathfrak{n}) = \text{injective hull of } A/\mathfrak{n} \text{ as an } A \text{-module}).$

Let (A, \mathfrak{n}) be an *n*-dimensional Gorenstein local ring and *M* a finitely generated *A*-module. Then

$$H^i_{\mathfrak{n}}(M) \simeq \mathcal{D}(\operatorname{Ext}^{n-i}_A(M,A))$$

where ${\cal D}$ is the Matlis duality functor

$$\mathcal{D}(-) = \operatorname{Hom}_{A}(-, E_{A}(A/\mathfrak{n}))$$

 $(E_A(A/\mathfrak{n}) = \text{injective hull of } A/\mathfrak{n} \text{ as an } A \text{-module}).$

 ${\cal D}$ is an exact functor, and takes finite-length A-modules to finite-length A-modules.

Let (A, \mathfrak{n}) be an *n*-dimensional Gorenstein local ring mapping onto *R*.

Let (A, \mathfrak{n}) be an *n*-dimensional Gorenstein local ring mapping onto *R*.

S is a finite R-subalgebra of R^+ , hence a finitely generated A-module.

Let (A, \mathfrak{n}) be an *n*-dimensional Gorenstein local ring mapping onto *R*.

S is a finite R-subalgebra of R^+ , hence a finitely generated A-module.

Want a finite S-subalgebra \tilde{S} of $R^+ = S^+$ such that

 $\mathsf{Im}(\mathsf{H}^i_\mathfrak{m}(S) o \mathsf{H}^i_\mathfrak{m}(\widetilde{S}))$

is a finite-length *R*-module.

Let (A, \mathfrak{n}) be an *n*-dimensional Gorenstein local ring mapping onto *R*.

S is a finite R-subalgebra of R^+ , hence a finitely generated A-module.

Want a finite S-subalgebra \tilde{S} of $R^+ = S^+$ such that

 $\mathsf{Im}(\mathsf{H}^i_\mathfrak{m}(S) o \mathsf{H}^i_\mathfrak{m}(\tilde{S}))$

is a finite-length *R*-module.

Equivalently,

$$\mathsf{Im}(\mathsf{Ext}^{n-i}_{\mathcal{A}}(\tilde{S},\mathcal{A}) \to \mathsf{Ext}^{n-i}_{\mathcal{A}}(S,\mathcal{A}))$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

is a finite-length R- (or A-) module.

The result holds for R_p , by induction on dimension. (If dim R = 0, it is a field, and the theorem holds.)

The result holds for R_p , by induction on dimension. (If dim R = 0, it is a field, and the theorem holds.)

Hence there exists a finite S_p -algebra S'^p such that the map

$$\mathsf{H}^{i}_{\mathfrak{p}R_{\mathfrak{p}}}(S_{\mathfrak{p}}) o \mathsf{H}^{i}_{\mathfrak{p}R_{\mathfrak{p}}}(S^{'\mathfrak{p}})$$

is zero.

The result holds for R_p , by induction on dimension. (If dim R = 0, it is a field, and the theorem holds.)

Hence there exists a finite S_p -algebra S'^p such that the map

$$\mathsf{H}^{i}_{\mathfrak{p}R_{\mathfrak{p}}}(S_{\mathfrak{p}}) o \mathsf{H}^{i}_{\mathfrak{p}R_{\mathfrak{p}}}(S^{'\mathfrak{p}})$$

is zero.

Superscript p to emphasise dependence on p.

The result holds for R_p , by induction on dimension. (If dim R = 0, it is a field, and the theorem holds.)

Hence there exists a finite S_p -algebra S'^p such that the map

$$\mathsf{H}^{i}_{\mathfrak{p}R_{\mathfrak{p}}}(S_{\mathfrak{p}}) o \mathsf{H}^{i}_{\mathfrak{p}R_{\mathfrak{p}}}(S^{'\mathfrak{p}})$$

Superscript p to emphasise dependence on p.

is zero.

Matlis duality for A_p gives that the map

$$\operatorname{Ext}_{\mathcal{A}_{\mathfrak{p}}}^{\operatorname{ht}\mathfrak{p}-i}(S'^{\mathfrak{p}},\mathcal{A}_{\mathfrak{p}}) o \operatorname{Ext}_{\mathcal{A}_{\mathfrak{p}}}^{\operatorname{ht}\mathfrak{p}-i}(S_{\mathfrak{p}},\mathcal{A}_{\mathfrak{p}})$$

is zero.

Clear denominators to get a finite S-subalgebra $\tilde{S}^{\mathfrak{p}}$ of R^+ such that

$$\operatorname{Im}(\operatorname{Ext}_{\mathcal{A}}^{n-i}(\widetilde{S}^{\mathfrak{p}},\mathcal{A}) \to \operatorname{Ext}_{\mathcal{A}}^{n-i}(S,\mathcal{A}))$$

is not supported at p.

Clear denominators to get a finite S-subalgebra $\tilde{S}^{\mathfrak{p}}$ of R^+ such that

$$\operatorname{Im}(\operatorname{Ext}_{A}^{n-i}(\widetilde{S}^{\mathfrak{p}},A) \to \operatorname{Ext}_{A}^{n-i}(S,A))$$

is not supported at p.

Do this for each \mathfrak{p} in the finite set

$$\mathsf{Ass}_{\mathcal{A}} \mathsf{Ext}_{\mathcal{A}}^{n-i}(S,\mathcal{A}) \smallsetminus \{\mathfrak{n}\}$$

to get a finite S-subalgebra \tilde{S} of R^+ such that

$$\mathsf{Im}(\mathsf{Ext}^{n-i}_{A}(\tilde{S},A) \to \mathsf{Ext}^{n-i}_{A}(S,A))$$

・ロト ・日 ・ モー・ モー・ ロー・ つくや

is not supported at p for each p in that finite set of primes.

Clear denominators to get a finite S-subalgebra $\tilde{S}^{\mathfrak{p}}$ of R^+ such that

$$\operatorname{Im}(\operatorname{Ext}_{A}^{n-i}(\widetilde{S}^{\mathfrak{p}},A) \to \operatorname{Ext}_{A}^{n-i}(S,A))$$

is not supported at p.

Do this for each ${\mathfrak p}$ in the finite set

$$\mathsf{Ass}_{\mathcal{A}} \operatorname{Ext}_{\mathcal{A}}^{n-i}(S,\mathcal{A}) \smallsetminus \{\mathfrak{n}\}$$

to get a finite S-subalgebra \tilde{S} of R^+ such that

 $\mathsf{Im}(\mathsf{Ext}^{n-i}_{A}(\tilde{S},A) o \mathsf{Ext}^{n-i}_{A}(S,A))$

is not supported at $\mathfrak p$ for each $\mathfrak p$ in that finite set of primes.

In other words,

$$\mathsf{Im}(\mathsf{Ext}^{n-i}_{\mathcal{A}}(\tilde{S},\mathcal{A}) \to \mathsf{Ext}^{n-i}_{\mathcal{A}}(S,\mathcal{A}))$$

has finite length.

Separability

Theorem (Sannai-Singh [SS12])

Let (R, \mathfrak{m}) be a d-dimensional local domain of characteristic p > 0, that is a homomorphic image of a Gorenstein local ring. Let i < d.

1. [SS12, Theorem 1.3(2)] Let S be a finite R-subalgebra of R^+ . Then there exists a finite S-subalgebra S' of R^+ such that the map

$$\mathsf{H}^i_\mathfrak{m}(S) o \mathsf{H}^i_\mathfrak{m}(S')$$

is zero and the field extension [Frac(S') : Frac(S)] is Galois.

2. [SS12, Corollary 3.3] Write $R^{+\text{sep}}$ for the elements of R^{+} separable over Frac(R). Then $\text{H}^{i}_{\mathfrak{m}}(R^{+\text{sep}}) = 0$. Consequently, $R^{+\text{sep}}$ is a balanced big Cohen-Macaulay algebra.

C. Huneke and G. Lyubeznik.
Absolute integral closure in positive characteristic.
Adv. Math., 210(2):498–504, 2007.

 A. Sannai and A. K. Singh.
Galois extensions, plus closure, and maps on local cohomology. *Adv. Math.*, 229(3):1847–1861, 2012.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Thank you!

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの