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These are expository lectures on the “big Cohen-Macaulay algebras”
conjecture (Hochster) and its proof in the prime characteristic case.

Previous lecture: the conjecture and some applications.

This lecture: proof by Huneke and Lyubeznik in the prime characteristic
case that the absolute integral closure is a big Cohen-Macaulay algebra.
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Statement

Throughout this talk (R, m) is a noetherian local ring.

Definition
An R-algebra S is said to be a balanced (big) Cohen-Macaulay R-algebra
if every system of parameters of R is an S-regular sequence.

Definition
Let R be a domain. The absolute integral closure R* of R is the integral
closure of R in an algebraic closure of its fraction field.
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Theorem ([HLO7, Corollary 2.3(b)])

Let R be domain of characteristic p > 0, that is a homomorphic image of
a Gorenstein local ring. Then R* is a balanced (big) Cohen-Macaulay
R-algebra.

This follows from:

Theorem ([HLO7, Corollary 2.3(a)])
Let R be as above. Hi (RT) = 0 for every i < dim R.

We will sketch the proof of this implication now.
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Local cohomology, 1

No need to assume

e (x1,...,xq) be an R-idea R local here.

Define I-torsion functor I'j(—) on R-modules by

F1(M) == Unen (0:07 ™)

Left-exact, covariant functor.

Its right-derived functors Hi(—),i € N are called Jocal cohomology
functors (with support in /).
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Sketch:

Let x1,...,xy be a system of parameters for R. R local now.
WTST it is an R™-regular sequence.

Since mR* # R™, we need only show that x; is a non-zero-divisor on
R*/(x1,...,xj—1)R* for every j > 2.

Note: xy is a non-zero-divisor on R™.
Let j > 2. Assume by induction that xi,...,xj_1 is R*-regular.

Write /1_- = (X]_,...,Xt)R, 1 <t< d.
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Hence, it suffices to show that every element of

m\ (J »
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is a non-zero-divisor on R*/;_1R™.
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Claim: m & Assg RT/l;_1R™ for each 2 < j < d.

l.e., m is not associated if we don't go modulo a full system of parameters.
Assume the claim for now.

Let p € Assg RT/i_1RT.

Since (Ry)* = (R™),, it follows that pR, € Assg,(Ry)" /li—1(Ry)™".

Apply the above claim to the local ring (R;,pR;) to see that p is minimal
over [;_1.

li—1 is a full system of parameters for R,.



This shows that every element of

m\ J »

Min R/lj_y

is a non-zero-divisor on R™/(x1,...,xj—1)R*.



This shows that every element of

m\ J »

Min R/lj_y

is a non-zero-divisor on R™/(x1,...,xj—1)R*.

In particular x; is a non-zero-divisor on R /(x1,...,xj—1)R™.
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To prove the claim that m & Assg RT/li_1R™ for each 2 < j < d,

ETST HY(RT/I;,_1RT) = 0. HO =M
Since x1,...,xj_1 is RT-regular (induction hypothesis), we have exact
sequence

0— R"/l,_1RT % RT /I, 1Rt = RT/ILRT =0

I
e

foreach t <j — 1. lo

From this, we get .
HT’H(RJF//tRJF) =0

for each i < d —t. Apply with i =0, t =j — 1. u
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Hence we need to show that
Hi (RT) =0
for every i < d =dimR.

Note that
RT =1lim$S
—

where S varies in the family of finite R-subalgebras of R™.

Therefore . '
Hi(RT) = lim Hy, (S).

ETST each map in the directed system {H! (S)} eventually is zero.
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Main Theorem

Theorem ([HLO7, Theorem 2.1])

Let (R, m) be a d-dimensional local domain of characteristic p > 0, that is
a homomorphic image of a Gorenstein local ring. Let S be a finite
R-subalgebra of R™. Let i < d. Then there exists a finite S-subalgebra S’
of R such that the map

Hi(S) — Hi(S")

is zero.

Consequently, ' '
Hi(RY) = im Hi(S) = 0

for all i < d.
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Local cohomology, 2

Let x1,...,xq4 € R.

Extended Cech (or stable Koszul ) complex

E(xty .o xd) : 0—R— @ Ry — EB Rux; =+ = Ry — 0

1<i<d 1<i<j<d

where the maps come (up to a sign) localisation maps.

Fact: For all R-modules M,

if VI=+/(x1,...,xq)-
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multiplicatively closed set U C R,

R— U1R

|

R— UlR

(F = Frobenius)



The Frobenius map r — r? commutes with localization: for any
multiplicatively closed set U C R,

R——=U"1R
S
R——=U"lR
(F = Frobenius)
Hence it induces a map of complexes F : C*(x1,...,xq) = C*(x1,..

and on F : Hi(R) — Hi(R).

. 7Xd)
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a € H’)(R) is represented by a cycle

(%) € P Ry = &

1< <<ji<n
Then aP := F(a) is the element of Hj(R) represented by the cycle
aP i
<bp) © @ R)gl---le. =C

1<j<-<ji<n

Write aP® for F¢(a), eth iterate of F.
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Quick overview of the proof

Recall our assertion: 3 S’ such that the map H! (S) — H! (S') is zero.
First find a finite S-subalgebra S of RT = S such that
Im(H3,(S) — Hi(5))
is a finitely generated (equiv. finite-length) R-module.
The map S — Sis compatible with the Frobenius maps.
So is the map Hi (S) — Hi ().

Hence
Im(H[,(S) = HW(5))

is stable under Frobenius.
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is finitely generated module, one proves that there exists a finite
S-subalgebra S’ of R such that the composite map

Hiu(S) = Hi(5) = Hi(S)

is zero.



Since
Im(HL,(S) = HW(5))

is finitely generated module, one proves that there exists a finite
S-subalgebra S’ of R such that the composite map

Hiu(S) = Hi(5) = Hi(S)

is zero.

One proves this for each generator of
Im(Hi,(S) = Hi($))

and takes the compositum.



Step 2 of the proof

Lemma (‘Equational lemma’)

Let R be a noetherian domain of characteristic p > 0. Let | be an R-ideal
and a € Hi(R) be an element such that {a”° | e > 0} belong to a finitely
generated submodule of Hi(R). Then there exists a finite R-subalgebra R’
of R™ such that o goes to zero under the map

Hi(R) — Hi(R)).
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o
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Since Zf:o RaP', t > 0 form an ascending chain inside a finitely
generated R-module, there exists s such that

o
s s—i .
of = g riaP € R,Vi.

Let & be a cycle in ¢’ that represents a.
Let g(T) =TF — Z, 1 lTps ,

Then g(&) = d'~1(B) for some 6 el Ji-1. ¢t
We show that 8 = g(3') € €'~ (R”) for finite extension R".
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(

M,dica

Xjy -+ ')(ji—1)e

)



Write
8= ((rlld—l) e CYR)

Xjy -+ ')(ji—1)e

For each (i — 1)-tuple 1 < j; < -+ < jj_1 < d there exists

. +
Zjy,jia € R

g< Zj1senrdio1 ) _ M1, ica
(le o 'in71)e (le o 'in71)e

such that




Write
Fit oo 2i—1
,6 _ ( J1s-e)i—1 ) c C R
(le”'xji—1)e ( )

For each (i — 1)-tuple 1 < j; < -+ < jj_1 < d there exists

. +
Zjy,jia € R

g< Zj1senrdio1 ) _ M1, ica
(le o 'in71)e (le o 'in71)e

If we expand this out, and clear denominators by multiplying by
(x;, - X;_,)%", we get a monic polynomial expression of z, . , over R.

such that
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Adjoining these finitely many z; . ,, we get a finite R-subalgebra R” of
R* and -

g el (R
such that

g(B) =5

Define

& represents the image of o under the natural map Hi(R) — Hi(R").

g(a) =g(a) — g(d () = d"1(B) — d"*(g(8)) =0
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Entries of & when thought of as (‘?)—tuple are integral over R.
Adjoin them to R” to get R'.

Can show that @ is a boundary in C*(R').

Hence o goes to zero in Hi(R).

This outlines Step 2 of the proof.
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Local duality

Let (A, n) be an n-dimensional Gorenstein local ring and M a finitely
generated A-module.
Then

Hi (M) ~ D(Ext} (M, A))

where D is the Matlis duality functor
D(—) = Homa(—, Ea(A/n))
(Ea(A/n) = injective hull of A/n as an A-module).

D is an exact functor, and takes finite-length A-modules to finite-length
A-modules.
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Step 1 of the proof

Let (A, n) be an n-dimensional Gorenstein local ring mapping onto R.
S is a finite R-subalgebra of R™, hence a finitely generated A-module.
Want a finite S-subalgebra S of Rt = S* such that

Im(H5,(S) = Hiw(5))

is a finite-length R-module.

Equivalently, o '
Im(Exty (S, A) — Ext}, (S, A))

is a finite-length R- (or A-) module.
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Let p € SpecA, p #n.

The result holds for R, by induction on dimension.
(If dim R =0, it is a field, and the theorem holds.)

Hence there exists a finite Sp-algebra S'" such that the map

Hir, () = Hir, (S™)

Superscript p to
is zero. emphasise depen-
dence on p.

Matlis duality for A, gives that the map
Extp"~(S™, Ap) = Extiy"~(Sp, Ap)

is zero.
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Clear denominators to get a finite S-subalgebra S? of R™ such that
Im(Ext5 (5P, A) — Ext37/(S, A))

is not supported at p.

Do this for each p in the finite set
Assa Exth (S, A)~{n}
to get a finite S-subalgebra S of R™ such that
Im(Exth (5, A) — Ext3 (S, A))

is not supported at p for each p in that finite set of primes.

In other words, o '
Im(Eth”(S,A) — Ext/’Z‘*’(S,A))

has finite length.



Separability

Theorem (Sannai-Singh [SS12])

Let (R, m) be a d-dimensional local domain of characteristic p > 0, that is
a homomorphic image of a Gorenstein local ring. Let i < d.

1. [SS12, Theorem 1.3(2)] Let S be a finite R-subalgebra of R*. Then
there exists a finite S-subalgebra S’ of R™ such that the map

H(S) — Hi(S")

is zero and the field extension [Frac(S’) : Frac(S)] is Galois.

2. [SS12, Corollary 3.3] Write RT*P for the elements of R™ separable
over Frac(R). Then H; (R™5?) = 0. Consequently, RT5P is a
balanced big Cohen-Macaulay algebra.



[§ C. Huneke and G. Lyubeznik.
Absolute integral closure in positive characteristic.
Adv. Math., 210(2):498-504, 2007.

[§ A. Sannai and A. K. Singh.
Galois extensions, plus closure, and maps on local cohomology.
Adv. Math., 229(3):1847-1861, 2012.



Thank you!
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