Big Cohen-Macaulay algebras
 Part 2: Absolute integral closure in prime characteristic

Manoj Kummini

Chennai Mathematical Institute
2020-07-03
https://www.cmi.ac.in/~mkummini/notes/Rplus.pdf

These are expository lectures on the "big Cohen-Macaulay algebras" conjecture (Hochster) and its proof in the prime characteristic case.

Previous lecture: the conjecture and some applications.

This lecture: proof by Huneke and Lyubeznik in the prime characteristic case that the absolute integral closure is a big Cohen-Macaulay algebra.

Statement

Local cohomology, 1 Sketch

Main Theorem
Local cohomology, 2
Quick overview
Step 2 of the proof Local duality
Step 1 of the proof

Separability

Statement

Throughout this talk (R, \mathfrak{m}) is a noetherian local ring.

Statement

Throughout this talk (R, \mathfrak{m}) is a noetherian local ring.

Definition

An R-algebra S is said to be a balanced (big) Cohen-Macaulay R-algebra if every system of parameters of R is an S-regular sequence.

Statement

Throughout this talk (R, \mathfrak{m}) is a noetherian local ring.

Definition

An R-algebra S is said to be a balanced (big) Cohen-Macaulay R-algebra if every system of parameters of R is an S-regular sequence.

Definition

Let R be a domain. The absolute integral closure R^{+}of R is the integral closure of R in an algebraic closure of its fraction field.

Theorem ([HL07, Corollary 2.3(b)])
Let R be domain of characteristic $p>0$, that is a homomorphic image of a Gorenstein local ring. Then R^{+}is a balanced (big) Cohen-Macaulay R-algebra.

Theorem ([HL07, Corollary 2.3(b)])
Let R be domain of characteristic $p>0$, that is a homomorphic image of a Gorenstein local ring. Then R^{+}is a balanced (big) Cohen-Macaulay R-algebra.

This follows from:

Theorem ([HL07, Corollary 2.3(a)])
Let R be as above. $H_{\mathfrak{m}}^{i}\left(R^{+}\right)=0$ for every $i<\operatorname{dim} R$.

Theorem ([HL07, Corollary 2.3(b)])
Let R be domain of characteristic $p>0$, that is a homomorphic image of a Gorenstein local ring. Then R^{+}is a balanced (big) Cohen-Macaulay R-algebra.

This follows from:

Theorem ([HL07, Corollary 2.3(a)])

Let R be as above. $\mathrm{H}_{\mathrm{m}}^{i}\left(R^{+}\right)=0$ for every $i<\operatorname{dim} R$.

We will sketch the proof of this implication now.

Local cohomology, 1

Let $I=\left(x_{1}, \ldots, x_{d}\right)$ be an R-ideal.

Local cohomology, 1

Let $I=\left(x_{1}, \ldots, x_{d}\right)$ be an R-ideal.

No need to assume R local here.

Local cohomology, 1

Let $I=\left(x_{1}, \ldots, x_{d}\right)$ be an R-ideal.
No need to assume R local here.

Define I-torsion functor $\Gamma_{l}(-)$ on R-modules by

$$
\Gamma_{l}(M):=\cup_{n \in \mathbb{N}}\left(0: M I^{n}\right)
$$

Local cohomology, 1

$$
\text { Let } I=\left(x_{1}, \ldots, x_{d}\right) \text { be an } R \text {-ideal. }
$$

No need to assume R local here.

Define I-torsion functor $\Gamma_{l}(-)$ on R-modules by

$$
\Gamma_{l}(M):=\cup_{n \in \mathbb{N}}\left(0: M I^{n}\right)
$$

Left-exact, covariant functor.

Local cohomology, 1

Let $I=\left(x_{1}, \ldots, x_{d}\right)$ be an R-ideal.
No need to assume R local here.

Define I-torsion functor $\Gamma_{l}(-)$ on R-modules by

$$
\Gamma_{l}(M):=\cup_{n \in \mathbb{N}}\left(0: M I^{n}\right)
$$

Left-exact, covariant functor.

Its right-derived functors $\mathrm{H}_{l}^{i}(-), i \in \mathbb{N}$ are called local cohomology functors (with support in I).

Sketch:

Let x_{1}, \ldots, x_{d} be a system of parameters for R.

Sketch:

Let x_{1}, \ldots, x_{d} be a system of parameters for R. $\quad R$ local now.

Sketch:

Let x_{1}, \ldots, x_{d} be a system of parameters for $R . \quad R$ local now.
WTST it is an R^{+}-regular sequence.

Sketch:

Let x_{1}, \ldots, x_{d} be a system of parameters for R. \quad local now.

WTST it is an R^{+}-regular sequence.

Since $\mathfrak{m} R^{+} \neq R^{+}$, we need only show that x_{j} is a non-zero-divisor on $R^{+} /\left(x_{1}, \ldots, x_{j-1}\right) R^{+}$for every $j \geq 2$.

Sketch:

Let x_{1}, \ldots, x_{d} be a system of parameters for R. \quad local now.

WTST it is an R^{+}-regular sequence.

Since $\mathfrak{m} R^{+} \neq R^{+}$, we need only show that x_{j} is a non-zero-divisor on $R^{+} /\left(x_{1}, \ldots, x_{j-1}\right) R^{+}$for every $j \geq 2$.

Note: x_{1} is a non-zero-divisor on R^{+}.

Sketch:

Let x_{1}, \ldots, x_{d} be a system of parameters for R. \quad local now.

WTST it is an R^{+}-regular sequence.

Since $\mathfrak{m} R^{+} \neq R^{+}$, we need only show that x_{j} is a non-zero-divisor on $R^{+} /\left(x_{1}, \ldots, x_{j-1}\right) R^{+}$for every $j \geq 2$.

Note: x_{1} is a non-zero-divisor on R^{+}.

Let $j \geq 2$. Assume by induction that x_{1}, \ldots, x_{j-1} is R^{+}-regular.

Sketch:

Let x_{1}, \ldots, x_{d} be a system of parameters for R. \quad local now.

WTST it is an R^{+}-regular sequence.

Since $\mathfrak{m} R^{+} \neq R^{+}$, we need only show that x_{j} is a non-zero-divisor on $R^{+} /\left(x_{1}, \ldots, x_{j-1}\right) R^{+}$for every $j \geq 2$.

Note: x_{1} is a non-zero-divisor on R^{+}.

Let $j \geq 2$. Assume by induction that x_{1}, \ldots, x_{j-1} is R^{+}-regular.

Write $I_{t}=\left(x_{1}, \ldots, x_{t}\right) R, 1 \leq t \leq d$.

Since x_{1}, \ldots, x_{d} is a system of parameters,

$$
x_{j} \notin \bigcup_{\operatorname{Min} R / I_{j-1}} \mathfrak{p}
$$

Since x_{1}, \ldots, x_{d} is a system of parameters,

$$
x_{j} \notin \bigcup_{\operatorname{Min} R / I_{j-1}} \mathfrak{p}
$$

Hence, it suffices to show that every element of

is a non-zero-divisor on $R^{+} / I_{j-1} R^{+}$.

Claim: $\mathfrak{m} \notin \operatorname{Ass}_{R} R^{+} / I_{j-1} R^{+}$for each $2 \leq j \leq d$.
I.e., \mathfrak{m} is not associated if we don't go modulo a full system of parameters.

Assume the claim for now.

Claim: $\mathfrak{m} \notin \operatorname{Ass}_{R} R^{+} / I_{j-1} R^{+}$for each $2 \leq j \leq d$.
I.e., \mathfrak{m} is not associated if we don't go modulo a full system of parameters.

Assume the claim for now.

Let $\mathfrak{p} \in \operatorname{Ass}_{R} R^{+} / I_{j-1} R^{+}$.

Claim: $\mathfrak{m} \notin \operatorname{Ass}_{R} R^{+} / I_{j-1} R^{+}$for each $2 \leq j \leq d$.
I.e., \mathfrak{m} is not associated if we don't go modulo a full system of parameters.

Assume the claim for now.

Let $\mathfrak{p} \in \operatorname{Ass}_{R} R^{+} / I_{j-1} R^{+}$.
Since $\left(R_{\mathfrak{p}}\right)^{+}=\left(R^{+}\right)_{\mathfrak{p}}$, it follows that $\mathfrak{p} R_{\mathfrak{p}} \in \operatorname{Ass}_{R_{\mathfrak{p}}}\left(R_{\mathfrak{p}}\right)^{+} / I_{j-1}\left(R_{\mathfrak{p}}\right)^{+}$.

Claim: $\mathfrak{m} \notin \operatorname{Ass}_{R} R^{+} / I_{j-1} R^{+}$for each $2 \leq j \leq d$.
l.e., \mathfrak{m} is not associated if we don't go modulo a full system of parameters.

Assume the claim for now.

Let $\mathfrak{p} \in \operatorname{Ass}_{R} R^{+} / I_{j-1} R^{+}$.

Since $\left(R_{\mathfrak{p}}\right)^{+}=\left(R^{+}\right)_{\mathfrak{p}}$, it follows that $\mathfrak{p} R_{\mathfrak{p}} \in \operatorname{Ass}_{R_{\mathfrak{p}}}\left(R_{\mathfrak{p}}\right)^{+} / \iota_{j-1}\left(R_{\mathfrak{p}}\right)^{+}$.

Apply the above claim to the local ring $\left(R_{\mathfrak{p}}, \mathfrak{p} R_{\mathfrak{p}}\right)$ to see that \mathfrak{p} is minimal over I_{j-1}.

Claim: $\mathfrak{m} \notin \operatorname{Ass}_{R} R^{+} / I_{j-1} R^{+}$for each $2 \leq j \leq d$.
l.e., \mathfrak{m} is not associated if we don't go modulo a full system of parameters.

Assume the claim for now.

Let $\mathfrak{p} \in \operatorname{Ass}_{R} R^{+} / I_{j-1} R^{+}$.

Since $\left(R_{\mathfrak{p}}\right)^{+}=\left(R^{+}\right)_{\mathfrak{p}}$, it follows that $\mathfrak{p} R_{\mathfrak{p}} \in \operatorname{Ass}_{R_{\mathfrak{p}}}\left(R_{\mathfrak{p}}\right)^{+} / \iota_{j-1}\left(R_{\mathfrak{p}}\right)^{+}$.

Apply the above claim to the local ring $\left(R_{\mathfrak{p}}, \mathfrak{p} R_{\mathfrak{p}}\right)$ to see that \mathfrak{p} is minimal over I_{j-1}.

$$
I_{j-1} \text { is a full system of parameters for } R_{\mathfrak{p}} \text {. }
$$

This shows that every element of

$$
\mathfrak{m} \backslash \bigcup_{\operatorname{Min} R / I_{j-1}} \mathfrak{p}
$$

is a non-zero-divisor on $R^{+} /\left(x_{1}, \ldots, x_{j-1}\right) R^{+}$.

This shows that every element of

$$
\mathfrak{m} \backslash \bigcup_{\operatorname{Min} R / l_{j-1}} \mathfrak{p}
$$

is a non-zero-divisor on $R^{+} /\left(x_{1}, \ldots, x_{j-1}\right) R^{+}$.

In particular x_{j} is a non-zero-divisor on $R^{+} /\left(x_{1}, \ldots, x_{j-1}\right) R^{+}$.

To prove the claim that $\mathfrak{m} \notin \operatorname{Ass}_{R} R^{+} / I_{j-1} R^{+}$for each $2 \leq j \leq d$, ETST $H_{\mathrm{m}}^{0}\left(R^{+} / I_{j-1} R^{+}\right)=0$.

To prove the claim that $\mathfrak{m} \notin \operatorname{Ass}_{R} R^{+} / I_{j-1} R^{+}$for each $2 \leq j \leq d$, ETST $H_{\mathrm{m}}^{0}\left(R^{+} / I_{j-1} R^{+}\right)=0$.

$$
H_{m}^{0}=\Gamma_{m}
$$

To prove the claim that $\mathfrak{m} \notin \operatorname{Ass}_{R} R^{+} / I_{j-1} R^{+}$for each $2 \leq j \leq d$,
ETST $H_{\mathfrak{m}}^{0}\left(R^{+} / I_{j-1} R^{+}\right)=0$.

$$
H_{\mathfrak{m}}^{0}=\Gamma_{\mathfrak{m}}
$$

Since x_{1}, \ldots, x_{j-1} is R^{+}-regular (induction hypothesis), we have exact sequence

$$
0 \rightarrow R^{+} / I_{t-1} R^{+} \xrightarrow{x_{t}} R^{+} / I_{t-1} R^{+} \rightarrow R^{+} / I_{t} R^{+} \rightarrow 0
$$

for each $t \leq j-1$.

To prove the claim that $\mathfrak{m} \notin \operatorname{Ass}_{R} R^{+} / I_{j-1} R^{+}$for each $2 \leq j \leq d$,
ETST $H_{\mathfrak{m}}^{0}\left(R^{+} / I_{j-1} R^{+}\right)=0$.

$$
H_{\mathfrak{m}}^{0}=\Gamma_{\mathfrak{m}}
$$

Since x_{1}, \ldots, x_{j-1} is R^{+}-regular (induction hypothesis), we have exact sequence

$$
0 \rightarrow R^{+} / I_{t-1} R^{+} \xrightarrow{x_{t}} R^{+} / I_{t-1} R^{+} \rightarrow R^{+} / I_{t} R^{+} \rightarrow 0
$$

for each $t \leq j-1$.

$$
I_{0}=0 .
$$

To prove the claim that $\mathfrak{m} \notin \operatorname{Ass}_{R} R^{+} / I_{j-1} R^{+}$for each $2 \leq j \leq d$,
ETST $H_{\mathfrak{m}}^{0}\left(R^{+} / I_{j-1} R^{+}\right)=0$.

$$
H_{\mathfrak{m}}^{0}=\Gamma_{\mathfrak{m}}
$$

Since x_{1}, \ldots, x_{j-1} is R^{+}-regular (induction hypothesis), we have exact sequence

$$
0 \rightarrow R^{+} / I_{t-1} R^{+} \xrightarrow{x_{t}} R^{+} / I_{t-1} R^{+} \rightarrow R^{+} / I_{t} R^{+} \rightarrow 0
$$

for each $t \leq j-1$.

$$
I_{0}=0 .
$$

From this, we get

$$
\mathrm{H}_{\mathfrak{m}}^{i}\left(R^{+} / I_{t} R^{+}\right)=0
$$

for each $i<d-t$.

To prove the claim that $\mathfrak{m} \notin \operatorname{Ass}_{R} R^{+} / I_{j-1} R^{+}$for each $2 \leq j \leq d$,
ETST $H_{\mathfrak{m}}^{0}\left(R^{+} / I_{j-1} R^{+}\right)=0$.

$$
H_{\mathfrak{m}}^{0}=\Gamma_{\mathfrak{m}}
$$

Since x_{1}, \ldots, x_{j-1} is R^{+}-regular (induction hypothesis), we have exact sequence

$$
0 \rightarrow R^{+} / I_{t-1} R^{+} \xrightarrow{x_{t}} R^{+} / I_{t-1} R^{+} \rightarrow R^{+} / I_{t} R^{+} \rightarrow 0
$$

for each $t \leq j-1$.

$$
I_{0}=0 .
$$

From this, we get

$$
\mathrm{H}_{\mathfrak{m}}^{i}\left(R^{+} / I_{t} R^{+}\right)=0
$$

for each $i<d-t$. Apply with $i=0, t=j-1$.

Hence we need to show that

$$
\mathrm{H}_{\mathfrak{m}}^{i}\left(R^{+}\right)=0
$$

for every $i<d=\operatorname{dim} R$.

Hence we need to show that

$$
\mathrm{H}_{\mathfrak{m}}^{i}\left(R^{+}\right)=0
$$

for every $i<d=\operatorname{dim} R$.

Note that

$$
R^{+}=\lim _{\rightarrow} S
$$

where S varies in the family of finite R-subalgebras of R^{+}.

Hence we need to show that

$$
\mathrm{H}_{\mathfrak{m}}^{i}\left(R^{+}\right)=0
$$

for every $i<d=\operatorname{dim} R$.

Note that

$$
R^{+}=\lim _{\rightarrow} S
$$

where S varies in the family of finite R-subalgebras of R^{+}.

Therefore

$$
H_{\mathfrak{m}}^{i}\left(R^{+}\right)=\lim _{\rightarrow} H_{\mathfrak{m}}^{i}(S) .
$$

Hence we need to show that

$$
\mathrm{H}_{\mathfrak{m}}^{i}\left(R^{+}\right)=0
$$

for every $i<d=\operatorname{dim} R$.

Note that

$$
R^{+}=\lim _{\rightarrow} S
$$

where S varies in the family of finite R-subalgebras of R^{+}.

Therefore

$$
H_{\mathfrak{m}}^{i}\left(R^{+}\right)=\lim _{\rightarrow} H_{\mathfrak{m}}^{i}(S) .
$$

ETST each map in the directed system $\left\{\mathrm{H}_{\mathfrak{m}}^{i}(S)\right\}$ eventually is zero.

Main Theorem

Theorem ([HL07, Theorem 2.1])
Let (R, \mathfrak{m}) be a d-dimensional local domain of characteristic $p>0$, that is a homomorphic image of a Gorenstein local ring. Let S be a finite R-subalgebra of R^{+}. Let $i<d$. Then there exists a finite S-subalgebra S^{\prime} of R^{+}such that the map

$$
\mathrm{H}_{\mathfrak{m}}^{i}(S) \rightarrow \mathrm{H}_{\mathfrak{m}}^{i}\left(S^{\prime}\right)
$$

is zero.

Main Theorem

Theorem ([HL07, Theorem 2.1])

Let (R, \mathfrak{m}) be a d-dimensional local domain of characteristic $p>0$, that is a homomorphic image of a Gorenstein local ring. Let S be a finite
R-subalgebra of R^{+}. Let $i<d$. Then there exists a finite S-subalgebra S^{\prime} of R^{+}such that the map

$$
\mathrm{H}_{\mathfrak{m}}^{i}(S) \rightarrow \mathrm{H}_{\mathfrak{m}}^{i}\left(S^{\prime}\right)
$$

is zero.

Consequently,

$$
H_{\mathfrak{m}}^{i}\left(R^{+}\right)=\lim _{\rightarrow} H_{\mathfrak{m}}^{i}(S)=0
$$

for all $i<d$.

Local cohomology, 2
Let $x_{1}, \ldots, x_{d} \in R$.

Local cohomology, 2

Let $x_{1}, \ldots, x_{d} \in R$.
Extended Čech (or stable Koszul) complex

$$
\check{C l}^{\bullet}\left(x_{1}, \ldots, x_{d}\right): \quad 0 \rightarrow R \rightarrow \bigoplus_{1 \leq i \leq d} R_{x_{i}} \rightarrow \bigoplus_{1 \leq i<j \leq d} R_{x_{x_{i}} x_{j}} \rightarrow \cdots \rightarrow R_{x_{1} x_{2} \cdots x_{d}} \rightarrow 0
$$

where the maps come (up to a sign) localisation maps.

Local cohomology, 2

Let $x_{1}, \ldots, x_{d} \in R$.

Extended Čech (or stable Koszul) complex

$$
\check{C}^{\bullet}\left(x_{1}, \ldots, x_{d}\right): \quad 0 \rightarrow R \rightarrow \bigoplus_{1 \leq i \leq d} R_{x_{i}} \rightarrow \bigoplus_{1 \leq i<j \leq d} R_{x_{i} x_{j}} \rightarrow \cdots \rightarrow R_{x_{1} x_{2} \cdots x_{d}} \rightarrow 0
$$

where the maps come (up to a sign) localisation maps.

Fact: For all R-modules M,

$$
\mathrm{H}_{l}^{i}(M)=\mathrm{H}^{i}\left(\check{\mathrm{C}}^{\bullet}\left(x_{1}, \ldots, x_{d}\right) \otimes_{R} M\right)
$$

$$
\text { if } \sqrt{I}=\sqrt{\left(x_{1}, \ldots, x_{d}\right)}
$$

The Frobenius map $r \mapsto r^{p}$ commutes with localization：for any multiplicatively closed set $U \subseteq R$ ，

（ $F=$ Frobenius $)$

The Frobenius map $r \mapsto r^{p}$ commutes with localization: for any multiplicatively closed set $U \subseteq R$,

($F=$ Frobenius $)$

Hence it induces a map of complexes $F: \check{C}^{\bullet}\left(x_{1}, \ldots, x_{d}\right) \rightarrow \check{C}^{\bullet}\left(x_{1}, \ldots, x_{d}\right)$ and on $F: \mathrm{H}_{l}^{i}(R) \rightarrow \mathrm{H}_{l}^{i}(R)$.
$\alpha \in \mathrm{H}_{l}^{i}(R)$ is represented by a cycle

$$
\left(\frac{a}{b}\right) \in \bigoplus_{1 \leq j_{1} \leq \cdots \leq j_{i} \leq n} R_{x_{j_{1}} \cdots x_{j_{i}}}=\check{C}^{i}
$$

$\alpha \in \mathrm{H}_{l}^{i}(R)$ is represented by a cycle

$$
\left(\frac{a}{b}\right) \in \bigoplus_{1 \leq j_{i} \leq \cdots \leq j_{i} \leq n} R_{x_{j_{1}} \cdots x_{j_{i}}}=\check{c}^{i}
$$

Then $\alpha^{p}:=F(\alpha)$ is the element of $\mathrm{H}_{/}^{i}(R)$ represented by the cycle

$$
\left(\frac{a^{p}}{b^{p}}\right) \in \bigoplus_{1 \leq j_{1} \leq \cdots \leq j_{i} \leq n} R_{x_{x_{1}} \cdots x_{j_{i}}}=\check{C}^{i}
$$

$\alpha \in \mathrm{H}_{l}^{i}(R)$ is represented by a cycle

$$
\left(\frac{a}{b}\right) \in \bigoplus_{1 \leq j_{1} \leq \cdots \leq j_{i} \leq n} R_{x_{j_{1}} \cdots x_{j_{i}}}=\check{C}^{i}
$$

Then $\alpha^{p}:=F(\alpha)$ is the element of $\mathrm{H}_{l}^{i}(R)$ represented by the cycle

$$
\left(\frac{a^{p}}{b^{p}}\right) \in \bigoplus_{1 \leq j_{1} \leq \cdots \leq j_{i} \leq n} R_{x_{j_{1}} \cdots x_{j_{i}}}=\check{C}^{i}
$$

Write $\alpha^{p^{e}}$ for $F^{e}(\alpha)$, eth iterate of F.

Quick overview of the proof

Recall our assertion: $\exists S^{\prime}$ such that the map $\mathrm{H}_{\mathfrak{m}}^{i}(S) \rightarrow \mathrm{H}_{\mathfrak{m}}^{i}\left(S^{\prime}\right)$ is zero.

Quick overview of the proof

Recall our assertion: $\exists S^{\prime}$ such that the map $\mathrm{H}_{\mathrm{m}}^{i}(S) \rightarrow \mathrm{H}_{\mathrm{m}}^{i}\left(S^{\prime}\right)$ is zero.
First find a finite S-subalgebra \tilde{S} of $R^{+}=S^{+}$such that

$$
\operatorname{Im}\left(H_{m}^{i}(S) \rightarrow H_{m}^{i}(\tilde{S})\right)
$$

is a finitely generated (equiv. finite-length) R-module.

Quick overview of the proof

Recall our assertion: $\exists S^{\prime}$ such that the map $\mathrm{H}_{\mathrm{m}}^{i}(S) \rightarrow \mathrm{H}_{\mathrm{m}}^{i}\left(S^{\prime}\right)$ is zero.
First find a finite S-subalgebra \tilde{S} of $R^{+}=S^{+}$such that

$$
\operatorname{Im}\left(H_{m}^{i}(S) \rightarrow H_{\mathfrak{m}}^{i}(\tilde{S})\right)
$$

is a finitely generated (equiv. finite-length) R-module.
The map $S \rightarrow \tilde{S}$ is compatible with the Frobenius maps.

Quick overview of the proof

Recall our assertion: $\exists S^{\prime}$ such that the map $\mathrm{H}_{\mathrm{m}}^{i}(S) \rightarrow \mathrm{H}_{\mathrm{m}}^{i}\left(S^{\prime}\right)$ is zero.
First find a finite S-subalgebra \tilde{S} of $R^{+}=S^{+}$such that

$$
\operatorname{Im}\left(H_{m}^{i}(S) \rightarrow H_{m}^{i}(\tilde{S})\right)
$$

is a finitely generated (equiv. finite-length) R-module.
The map $S \rightarrow \tilde{S}$ is compatible with the Frobenius maps.
So is the map $H_{\mathrm{m}}^{i}(S) \rightarrow \mathrm{H}_{\mathrm{m}}^{i}(\tilde{S})$.

Quick overview of the proof

Recall our assertion: $\exists S^{\prime}$ such that the map $\mathrm{H}_{\mathrm{m}}^{i}(S) \rightarrow \mathrm{H}_{\mathrm{m}}^{i}\left(S^{\prime}\right)$ is zero.
First find a finite S-subalgebra \tilde{S} of $R^{+}=S^{+}$such that

$$
\operatorname{Im}\left(H_{m}^{i}(S) \rightarrow H_{m}^{i}(\tilde{S})\right)
$$

is a finitely generated (equiv. finite-length) R-module.
The map $S \rightarrow \tilde{S}$ is compatible with the Frobenius maps.
So is the map $H_{m}^{i}(S) \rightarrow \mathrm{H}_{\mathfrak{m}}^{i}(\tilde{S})$.
Hence

$$
\operatorname{Im}\left(H_{\mathfrak{m}}^{i}(S) \rightarrow H_{\mathfrak{m}}^{i}(\tilde{S})\right)
$$

is stable under Frobenius.

Since

$$
\operatorname{Im}\left(\mathrm{H}_{\mathfrak{m}}^{i}(S) \rightarrow \mathrm{H}_{\mathfrak{m}}^{i}(\tilde{S})\right)
$$

is finitely generated module, one proves that there exists a finite \tilde{S}-subalgebra S^{\prime} of R^{+}such that the composite map

$$
\mathrm{H}_{\mathfrak{m}}^{i}(S) \rightarrow \mathrm{H}_{\mathfrak{m}}^{i}(\tilde{S}) \rightarrow \mathrm{H}_{\mathfrak{m}}^{i}\left(S^{\prime}\right)
$$

is zero.

Since

$$
\operatorname{Im}\left(\mathrm{H}_{\mathfrak{m}}^{i}(S) \rightarrow \mathrm{H}_{\mathfrak{m}}^{i}(\tilde{S})\right)
$$

is finitely generated module, one proves that there exists a finite \tilde{S}-subalgebra S^{\prime} of R^{+}such that the composite map

$$
\mathrm{H}_{\mathfrak{m}}^{i}(S) \rightarrow \mathrm{H}_{\mathfrak{m}}^{i}(\tilde{S}) \rightarrow \mathrm{H}_{\mathfrak{m}}^{i}\left(S^{\prime}\right)
$$

is zero.

One proves this for each generator of

$$
\operatorname{Im}\left(\mathrm{H}_{\mathfrak{m}}^{i}(S) \rightarrow \mathrm{H}_{\mathfrak{m}}^{i}(\tilde{S})\right)
$$

and takes the compositum.

Step 2 of the proof

Lemma ('Equational lemma')

Let R be a noetherian domain of characteristic $p>0$. Let I be an R-ideal and $\alpha \in \mathrm{H}_{l}^{i}(R)$ be an element such that $\left\{\alpha^{p^{e}} \mid e \geq 0\right\}$ belong to a finitely generated submodule of $\mathrm{H}_{l}^{i}(R)$. Then there exists a finite R-subalgebra R^{\prime} of R^{+}such that α goes to zero under the map

$$
\mathrm{H}_{l}^{i}(R) \rightarrow \mathrm{H}_{l}^{i}\left(R^{\prime}\right) .
$$

Since $\sum_{i=0}^{t} R \alpha^{p^{i}}, t \geq 0$ form an ascending chain inside a finitely generated R-module, there exists s such that

$$
\alpha^{p^{s}}=\sum_{i=1}^{s-1} r_{i} \alpha^{p^{s-i}}, r_{i} \in R, \forall i .
$$

Let $\tilde{\alpha}$ be a cycle in \check{C}^{i} that represents α.

Since $\sum_{i=0}^{t} R \alpha^{p^{i}}, t \geq 0$ form an ascending chain inside a finitely generated R-module, there exists s such that

$$
\alpha^{p^{s}}=\sum_{i=1}^{s-1} r_{i} \alpha^{p^{s-i}}, r_{i} \in R, \forall i .
$$

Let $\tilde{\alpha}$ be a cycle in \check{C}^{i} that represents α.

Let $g(T)=T^{p^{s}}-\sum_{i=1}^{s-1} r_{i} T^{p^{s-i}}$.

Since $\sum_{i=0}^{t} R \alpha^{p^{i}}, t \geq 0$ form an ascending chain inside a finitely generated R-module, there exists s such that

$$
\alpha^{p^{s}}=\sum_{i=1}^{s-1} r_{i} \alpha^{p^{s-i}}, r_{i} \in R, \forall i .
$$

Let $\tilde{\alpha}$ be a cycle in \check{C}^{i} that represents α.

Let $g(T)=T^{p^{s}}-\sum_{i=1}^{s-1} r_{i} T^{p^{s-i}}$.

Then $g(\tilde{\alpha})=d^{i-1}(\beta)$ for some $\beta \in \check{C}^{i-1}$.

Since $\sum_{i=0}^{t} R \alpha^{p^{i}}, t \geq 0$ form an ascending chain inside a finitely generated R-module, there exists s such that

$$
\alpha^{p^{s}}=\sum_{i=1}^{s-1} r_{i} \alpha^{p^{s-i}}, r_{i} \in R, \forall i .
$$

Let $\tilde{\alpha}$ be a cycle in \check{C}^{i} that represents α.

Let $g(T)=T^{p^{s}}-\sum_{i=1}^{s-1} r_{i} T^{p^{s-i}}$.

Then $g(\tilde{\alpha})=d^{i-1}(\beta)$ for some $\beta \in \check{C}^{i-1}$.

$$
d^{i-1}: \check{C}^{i-1} \rightarrow \check{C}^{i}
$$

Since $\sum_{i=0}^{t} R \alpha^{p^{i}}, t \geq 0$ form an ascending chain inside a finitely generated R-module, there exists s such that

$$
\alpha^{p^{s}}=\sum_{i=1}^{s-1} r_{i} \alpha^{p^{s-i}}, r_{i} \in R, \forall i .
$$

Let $\tilde{\alpha}$ be a cycle in \check{C}^{i} that represents α.

Let $g(T)=T^{p^{s}}-\sum_{i=1}^{s-1} r_{i} T^{p^{s-i}}$.

Then $g(\tilde{\alpha})=d^{i-1}(\beta)$ for some $\beta \in \check{C}^{i-1}$.

$$
d^{i-1}: \check{C}^{i-1} \rightarrow \check{C}^{i}
$$

We show that $\beta=g\left(\beta^{\prime}\right) \in \check{C}^{i-1}\left(R^{\prime \prime}\right)$ for finite extension $R^{\prime \prime}$.

Write

$$
\beta=\left(\frac{r_{j_{1}, \ldots, j_{i-1}}}{\left(x_{j_{1}} \cdots x_{j_{i-1}}\right)^{e}}\right) \in \check{C}^{i-1}(R)
$$

Write

$$
\beta=\left(\frac{r_{j_{1}, \ldots, j_{i-1}}}{\left(x_{j_{1}} \cdots x_{j_{i-1}}\right)^{e}}\right) \in \check{C}^{i-1}(R)
$$

For each ($i-1$)-tuple $1 \leq j_{1}<\cdots<j_{i-1} \leq d$ there exists

$$
z_{j_{1}, \ldots, j_{i-1}} \in R^{+}
$$

such that

$$
g\left(\frac{z_{j_{1}, \ldots, j_{i-1}}}{\left(x_{j_{1}} \cdots x_{j_{i-1}}\right)^{e}}\right)=\frac{r_{j_{1}, \ldots, j_{i-1}}}{\left(x_{j_{1}} \cdots x_{j_{i-1}}\right)^{e}}
$$

Write

$$
\beta=\left(\frac{r_{j_{1}, \ldots, j_{i-1}}}{\left(x_{j_{1}} \cdots x_{j_{i-1}}\right)^{e}}\right) \in \check{C}^{i-1}(R)
$$

For each ($i-1$)-tuple $1 \leq j_{1}<\cdots<j_{i-1} \leq d$ there exists

$$
z_{j_{1}, \ldots, j_{i-1}} \in R^{+}
$$

such that

$$
g\left(\frac{z_{j_{1}, \ldots, j_{i-1}}}{\left(x_{j_{1}} \cdots x_{j_{i-1}}\right)^{e}}\right)=\frac{r_{j_{1}, \ldots, j_{i-1}}}{\left(x_{j_{1}} \cdots x_{j_{i-1}}\right)^{e}}
$$

If we expand this out, and clear denominators by multiplying by $\left(x_{j_{1}} \cdots x_{j_{i-1}}\right)^{e p^{s}}$, we get a monic polynomial expression of $z_{j_{1}, \ldots, j_{i-1}}$ over R.

Adjoining these finitely many $z_{j_{1}, \ldots, j_{i-1}}$, we get a finite R-subalgebra $R^{\prime \prime}$ of R^{+}and

$$
\beta^{\prime} \in \check{C}^{i-1}\left(R^{\prime \prime}\right)
$$

such that

$$
g\left(\beta^{\prime}\right)=\beta
$$

Adjoining these finitely many $z_{j_{1}, \ldots, j_{i-1}}$, we get a finite R-subalgebra $R^{\prime \prime}$ of R^{+}and

$$
\beta^{\prime} \in \check{C}^{i-1}\left(R^{\prime \prime}\right)
$$

such that

$$
g\left(\beta^{\prime}\right)=\beta
$$

Define

$$
\bar{\alpha}:=\tilde{\alpha}-d^{i-1}\left(\beta^{\prime}\right)
$$

Adjoining these finitely many $z_{j_{1}, \ldots, j_{i-1}}$, we get a finite R-subalgebra $R^{\prime \prime}$ of R^{+}and

$$
\beta^{\prime} \in \check{C}^{i-1}\left(R^{\prime \prime}\right)
$$

such that

$$
g\left(\beta^{\prime}\right)=\beta
$$

Define

$$
\bar{\alpha}:=\tilde{\alpha}-d^{i-1}\left(\beta^{\prime}\right)
$$

$\bar{\alpha}$ represents the image of α under the natural map $\mathrm{H}_{l}^{i}(R) \rightarrow \mathrm{H}_{l}^{i}\left(R^{\prime \prime}\right)$.

Adjoining these finitely many $z_{j_{1}, \ldots, j_{i-1}}$, we get a finite R-subalgebra $R^{\prime \prime}$ of R^{+}and

$$
\beta^{\prime} \in \check{C}^{i-1}\left(R^{\prime \prime}\right)
$$

such that

$$
g\left(\beta^{\prime}\right)=\beta
$$

Define

$$
\bar{\alpha}:=\tilde{\alpha}-d^{i-1}\left(\beta^{\prime}\right)
$$

$\bar{\alpha}$ represents the image of α under the natural map $\mathrm{H}_{l}^{i}(R) \rightarrow \mathrm{H}_{l}^{i}\left(R^{\prime \prime}\right)$.

$$
g(\bar{\alpha})=g(\tilde{\alpha})-g\left(d^{i-1}\left(\beta^{\prime}\right)\right)=d^{i-1}(\beta)-d^{i-1}\left(g\left(\beta^{\prime}\right)\right)=0
$$

Entries of $\bar{\alpha}$ when thought of as $\binom{d}{i}$-tuple are integral over R.

Entries of $\bar{\alpha}$ when thought of as $\binom{d}{i}$-tuple are integral over R.

Adjoin them to $R^{\prime \prime}$ to get R^{\prime}.

Entries of $\bar{\alpha}$ when thought of as $\binom{d}{i}$-tuple are integral over R.

Adjoin them to $R^{\prime \prime}$ to get R^{\prime}.

Can show that $\bar{\alpha}$ is a boundary in $\check{C}^{\bullet}\left(R^{\prime}\right)$.

Entries of $\bar{\alpha}$ when thought of as $\binom{d}{i}$-tuple are integral over R.

Adjoin them to $R^{\prime \prime}$ to get R^{\prime}.

Can show that $\bar{\alpha}$ is a boundary in $\check{C}^{\bullet}\left(R^{\prime}\right)$.

Hence α goes to zero in $\mathrm{H}_{l}^{i}\left(R^{\prime}\right)$.

This outlines Step 2 of the proof.

Local duality

Let (A, \mathfrak{n}) be an n-dimensional Gorenstein local ring and M a finitely generated A-module.

Local duality

Let (A, \mathfrak{n}) be an n-dimensional Gorenstein local ring and M a finitely generated A-module.
Then

$$
\mathrm{H}_{\mathfrak{n}}^{i}(M) \simeq \mathcal{D}\left(\operatorname{Ext}_{A}^{n-i}(M, A)\right)
$$

Local duality

Let (A, \mathfrak{n}) be an n-dimensional Gorenstein local ring and M a finitely generated A-module.
Then

$$
\mathrm{H}_{\mathfrak{n}}^{i}(M) \simeq \mathcal{D}\left(\operatorname{Ext}_{A}^{n-i}(M, A)\right)
$$

where \mathcal{D} is the Matlis duality functor

$$
\mathcal{D}(-)=\operatorname{Hom}_{A}\left(-, E_{A}(A / \mathfrak{n})\right)
$$

$\left(E_{A}(A / \mathfrak{n})=\right.$ injective hull of A / \mathfrak{n} as an A-module $)$.

Local duality

Let (A, \mathfrak{n}) be an n-dimensional Gorenstein local ring and M a finitely generated A-module.
Then

$$
\mathrm{H}_{\mathfrak{n}}^{i}(M) \simeq \mathcal{D}\left(\operatorname{Ext}_{A}^{n-i}(M, A)\right)
$$

where \mathcal{D} is the Matlis duality functor

$$
\mathcal{D}(-)=\operatorname{Hom}_{A}\left(-, E_{A}(A / \mathfrak{n})\right)
$$

$\left(E_{A}(A / \mathfrak{n})=\right.$ injective hull of A / \mathfrak{n} as an A-module $)$.
\mathcal{D} is an exact functor, and takes finite-length A-modules to finite-length A-modules.

Step 1 of the proof

Let (A, \mathfrak{n}) be an n-dimensional Gorenstein local ring mapping onto R.

Step 1 of the proof

Let (A, \mathfrak{n}) be an n-dimensional Gorenstein local ring mapping onto R.
S is a finite R-subalgebra of R^{+}, hence a finitely generated A-module.

Step 1 of the proof

Let (A, \mathfrak{n}) be an n-dimensional Gorenstein local ring mapping onto R.
S is a finite R-subalgebra of R^{+}, hence a finitely generated A-module.

Want a finite S-subalgebra \tilde{S} of $R^{+}=S^{+}$such that

$$
\operatorname{Im}\left(\mathrm{H}_{\mathfrak{m}}^{i}(S) \rightarrow \mathrm{H}_{\mathfrak{m}}^{i}(\tilde{S})\right)
$$

is a finite-length R-module.

Step 1 of the proof

Let (A, \mathfrak{n}) be an n-dimensional Gorenstein local ring mapping onto R.
S is a finite R-subalgebra of R^{+}, hence a finitely generated A-module.

Want a finite S-subalgebra \tilde{S} of $R^{+}=S^{+}$such that

$$
\operatorname{Im}\left(\mathrm{H}_{\mathfrak{m}}^{i}(S) \rightarrow \mathrm{H}_{\mathfrak{m}}^{i}(\tilde{S})\right)
$$

is a finite-length R-module.

Equivalently,

$$
\operatorname{Im}\left(\operatorname{Ext}_{A}^{n-i}(\tilde{S}, A) \rightarrow \operatorname{Ext}_{A}^{n-i}(S, A)\right)
$$

is a finite-length R - (or A-) module.

Let $\mathfrak{p} \in \operatorname{Spec} A, \mathfrak{p} \neq \mathfrak{n}$.

Let $\mathfrak{p} \in \operatorname{Spec} A, \mathfrak{p} \neq \mathfrak{n}$.
The result holds for $R_{\mathfrak{p}}$, by induction on dimension. (If $\operatorname{dim} R=0$, it is a field, and the theorem holds.)

Let $\mathfrak{p} \in \operatorname{Spec} A, \mathfrak{p} \neq \mathfrak{n}$.
The result holds for $R_{\mathfrak{p}}$, by induction on dimension. (If $\operatorname{dim} R=0$, it is a field, and the theorem holds.)

Hence there exists a finite $S_{\mathfrak{p}}$-algebra $S^{\prime \mathfrak{p}}$ such that the map

$$
\mathrm{H}_{\mathfrak{p} R_{\mathfrak{p}}}^{i}\left(S_{\mathfrak{p}}\right) \rightarrow \mathrm{H}_{\mathfrak{p} R_{\mathfrak{p}}}^{i}\left(S^{\prime \mathfrak{p}}\right)
$$

is zero.

Let $\mathfrak{p} \in \operatorname{Spec} A, \mathfrak{p} \neq \mathfrak{n}$.
The result holds for $R_{\mathfrak{p}}$, by induction on dimension. (If $\operatorname{dim} R=0$, it is a field, and the theorem holds.)

Hence there exists a finite $S_{\mathfrak{p}}$-algebra $S^{\prime \mathfrak{p}}$ such that the map

$$
\mathrm{H}_{\mathfrak{p} R_{\mathfrak{p}}}^{i}\left(S_{\mathfrak{p}}\right) \rightarrow \mathrm{H}_{\mathfrak{p} R_{\mathfrak{p}}}^{i}\left(S^{\prime \mathfrak{p}}\right)
$$

is zero.

$$
\begin{aligned}
& \text { Superscript } \mathfrak{p} \text { to } \\
& \text { emphasise depen- } \\
& \text { dence on } \mathfrak{p} \text {. }
\end{aligned}
$$

Let $\mathfrak{p} \in \operatorname{Spec} A, \mathfrak{p} \neq \mathfrak{n}$.
The result holds for R_{p}, by induction on dimension. (If $\operatorname{dim} R=0$, it is a field, and the theorem holds.)

Hence there exists a finite $S_{\mathfrak{p}}$-algebra $S^{\prime \mathfrak{p}}$ such that the map

$$
\mathrm{H}_{\mathfrak{p} R_{\mathfrak{p}}}^{i}\left(S_{\mathfrak{p}}\right) \rightarrow \mathrm{H}_{\mathfrak{p} R_{\mathfrak{p}}}^{i}\left(S^{\prime \mathfrak{p}}\right)
$$

is zero.

$$
\begin{aligned}
& \text { Superscript } \mathfrak{p} \text { to } \\
& \text { emphasise depen- } \\
& \text { dence on } \mathfrak{p} \text {. }
\end{aligned}
$$

Matlis duality for $A_{\mathfrak{p}}$ gives that the map

$$
\operatorname{Ext}_{A_{\mathfrak{p}}}^{\mathrm{ht} \mathfrak{p}-i}\left(S^{\prime \mathfrak{p}}, A_{\mathfrak{p}}\right) \rightarrow \operatorname{Ext}_{A_{\mathfrak{p}}}^{\mathrm{tt} \mathfrak{p}-i}\left(S_{\mathfrak{p}}, A_{\mathfrak{p}}\right)
$$

is zero.

Clear denominators to get a finite S-subalgebra $\tilde{S}^{\mathfrak{p}}$ of R^{+}such that

$$
\operatorname{Im}\left(\operatorname{Ext}_{A}^{n-i}\left(\tilde{S}^{\mathfrak{p}}, A\right) \rightarrow \operatorname{Ext}_{A}^{n-i}(S, A)\right)
$$

is not supported at \mathfrak{p}.

Clear denominators to get a finite S-subalgebra $\tilde{S}^{\text {p }}$ of R^{+}such that

$$
\operatorname{Im}\left(\operatorname{Ext}_{A}^{n-i}\left(\tilde{S}^{\mathfrak{p}}, A\right) \rightarrow \operatorname{Ext}_{A}^{n-i}(S, A)\right)
$$

is not supported at \mathfrak{p}.
Do this for each \mathfrak{p} in the finite set

$$
\operatorname{Ass}_{A} \operatorname{Ext}_{A}^{n-i}(S, A) \backslash\{\mathfrak{n}\}
$$

to get a finite S-subalgebra \tilde{S} of R^{+}such that

$$
\operatorname{Im}\left(\operatorname{Ext}_{A}^{n-i}(\tilde{S}, A) \rightarrow \operatorname{Ext}_{A}^{n-i}(S, A)\right)
$$

is not supported at \mathfrak{p} for each \mathfrak{p} in that finite set of primes.

Clear denominators to get a finite S-subalgebra $\tilde{S}^{\text {p }}$ of R^{+}such that

$$
\operatorname{Im}\left(\operatorname{Ext}_{A}^{n-i}\left(\tilde{S}^{\mathfrak{p}}, A\right) \rightarrow \operatorname{Ext}_{A}^{n-i}(S, A)\right)
$$

is not supported at \mathfrak{p}.
Do this for each \mathfrak{p} in the finite set

$$
\operatorname{Ass}_{A} \operatorname{Ext}_{A}^{n-i}(S, A) \backslash\{\mathfrak{n}\}
$$

to get a finite S-subalgebra \tilde{S} of R^{+}such that

$$
\operatorname{Im}\left(\operatorname{Ext}_{A}^{n-i}(\tilde{S}, A) \rightarrow \operatorname{Ext}_{A}^{n-i}(S, A)\right)
$$

is not supported at \mathfrak{p} for each \mathfrak{p} in that finite set of primes.
In other words,

$$
\operatorname{Im}\left(\operatorname{Ext}_{A}^{n-i}(\tilde{S}, A) \rightarrow \operatorname{Ext}_{A}^{n-i}(S, A)\right)
$$

has finite length.

Separability

Theorem (Sannai-Singh [SS12])

Let (R, \mathfrak{m}) be a d-dimensional local domain of characteristic $p>0$, that is a homomorphic image of a Gorenstein local ring. Let $i<d$.

1. [SS12, Theorem 1.3(2)] Let S be a finite R-subalgebra of R^{+}. Then there exists a finite S-subalgebra S^{\prime} of R^{+}such that the map

$$
\mathrm{H}_{\mathfrak{m}}^{i}(S) \rightarrow \mathrm{H}_{\mathfrak{m}}^{i}\left(S^{\prime}\right)
$$

is zero and the field extension $\left[\operatorname{Frac}\left(S^{\prime}\right): \operatorname{Frac}(S)\right]$ is Galois.
2. [SS12, Corollary 3.3] Write $R^{+ \text {sep }}$ for the elements of R^{+}separable over $\operatorname{Frac}(R)$. Then $\mathrm{H}_{\mathfrak{m}}^{i}\left(R^{+ \text {sep }}\right)=0$. Consequently, $R^{+ \text {sep }}$ is a balanced big Cohen-Macaulay algebra.

围 C. Huneke and G. Lyubeznik.
Absolute integral closure in positive characteristic.
Adv. Math., 210(2):498-504, 2007.
㞒 A. Sannai and A. K. Singh.
Galois extensions, plus closure, and maps on local cohomology. Adv. Math., 229(3):1847-1861, 2012.

Thank you！

