
Lecture 6e: Ordered Monoids and languages definable in Σ1 and Σ2

Recall that we had characterized the class of languages definable in FO1păq, i.e., first-
order logic sentences that use only one variable, and demonstrated an algorithm to check if
a given regular language lies in this class. A different way to parametrize formulas of FOpăq
is via the number of alternations of quantifiers.

A formula is said to be in prenex form if it consists of a sequence of quantifiers followed
by a quantifier-free formula (i.e. all the quantifiers occur before the other logical operators).
A well-known fact in logic is that every FO formula can be rewritten into an equivalent
formula in prenex form.

For eg. Dx.Dy.ppx ă yq ^ pDx.py ă xq ^ pDx.px ă yqqqq can be equivalently expressed as
Dx1.Dx2.ppx ă x2q ^ pDx3.px2 ă x3q ^ pDx4.px3 ă x4qqqq and then as Dx1.Dx2.Dx3.Dx4.px1 ă
x2q ^ px2 ă x3q ^ px3 ă x4q In general, by using a new variable for every quantifier and
then moving all the quantifiers to the beginning of the formula we obtain such an equivalent
prenex formula. We omit the details here.

Any formula in prenex form consists of alternating blocks of existential and universal
quantifiers. The formula written above has a single block of existential quantifiers while the
formula @x.@y.Dz.px “ yq _ ppx ă zq ^ pz ă yqq _ ppy ă zq ^ pz ă xqq has two blocks, a
universal block followed by an existential block.

Let Σ0 “ Π0 be the set of quantifier free formula. The classes Σi and Πi are defined
inductively as follows: The class Σi`1 consists of formulas obtained from formulas in Πi

by adding a block of existential quantifiers while Πi`1 consists of formulas obtained from
formulas in Σi by adding a block of universal quantifiers.

The two example formulas listed above are in Σ1 and Π2 respectively. In general, Σi

consists of formulas with i blocks of quantifiers beginning with an existential block while Πi

consists of formulas with i blocks beginning with a universal block. Quite clearly, if ϕ is a
formula in Σi then  ϕ can be transformed into an equivalent formula in Πi by pushing the
negation over the quantifiers. A similar result holds for formulas in Πi.

We shall say that a language L is in Σi (respectively Πi) if it is definable by a sentence
in Σi (respectively Πi). We will also use Σi to refer to the class of languages in Σi and soon.

Thus L P Πi iff L P Σi. We note that Πi Ď Σi`1 since we may always add an existential
quantifier on an irrelevant variable at the beginning of the formula without altering its
meaning. Similarly Σi Ď Πi`1.

Unlike the case of the variable hierarchy, where we have FO3păq “ FOpăq, the quantifier
alternation hierarchy is known to be infinite, providing a finer stratification of first-order
definable languages. But, as of now, our understanding of this hierarchy is limited. For
instance, decidability of membership (of regular languages) in the levels Σ1 and Σ2 (and
therefore for Π1 and Π2) is known, but the problem remains open for higher levels. We
now describe monoid based characterizations for Σ1 and Σ2 which lead to a solution to their
membership problems. The presentation here follows that in [3].

We hit a road block immediately! Observe that the class Σi is unlikely to be closed under
complementation, unless Πi “ Σi, and it turns out it is not. However, the set of languages

1



definable using a monoid (and hence any class of monoids) is closed under complementation
and so there is no hope of obtaining Σi as the class of languages definable using a class of
monoids.

J.E.Pin proposed a elegant solution to this problem using what are called ordered monoids
which we study now. Recall that monoids were obtained naturally from the syntactic con-
gruence Σ˚{ ”L defined by any language L where x ”L y holds if and only if for all u, v P Σ˚,
uxv P L ðñ uyv P L.

What if we refined this two sided requirement into just a one sided requirement? We say
x ďL y iff for all u, v P Σ˚, uyv P L ùñ uxv P L. This relation is a pre-order, i.e., it is
reflexive and transitive but not anti-symmetric. As a matter of fact, its symmetric core (i.e)
tpx, yq | x ďL y ^ y ďL xu is exactly the ”L relation. As with any pre-order, it induces a
partial-order on the equivalence classes of its symmetric core. In what follows we write rxsL
to denote the equivalence class of x w.r.t. ”L.

Proposition 1 The pair ptrxsL | x P Σ
˚u,ďLq is a partial order (where we lift the definition

of ďL by writing rxsL ďL rusL whenever x ďL y.)

We observe that this relation is consistent with the multiplication in the monoid. That
is, if rxsL ďL rysL then, for any u, v, rusLrxsLrvsL ďL rvsL (we leave this as an easy exercise
to the reader). Further, we observe that for any x,y if rxsL ďL rysL and rysL Ď L then
rxsL Ď L (simply use u “ v “ ǫ in the definition of ďL).

Recall that the language L is recognized by the syntactic morphism ηL from pΣ˚, ., ǫq to
ptrxsL | x P Σ˚u, ., rǫsLq and L “ η´1

L pXq where X “ trxsL | rxsL Ď Lu. The import of the
previous paragraph is that this set X is a downward closed set w.r.t the order ďL. In any
partial order a downward closed subset is called an ideal.

To summarize, we have equipped the syntactic monoid of L with a partial order, which
is consistent with its multiplication and further observed that the subset recognizing L is
an ideal. Most importantly, even though L is recognised by the same syntactic monoid
its recognizing set is not an ideal (as a matter of fact it is an upward closed set, as the
complement of any ideal is).

We shall refer to the structure ptrxsL | x P Σ
˚u, ., rǫsL,ďLq as the ordered syntactic monoid

of L. We shall write oSynpLq to denote this monoid. The ordered syntactic monoid of L
and L are different as we would like them to be (as an aside note that the ordered syntactic
monoid of L is ptrxsL | x P Σ

˚u, ., rǫsL,ď
R
Lq). With this reasoning in mind we define ordered

monoids and recognition via ordered monoids as follows.

Definition 2 An ordered monoid is a tuple pM, ., 1,ďq where pM, ., 1q is a monoid and ď
is a partial order on M that is consistent, that is, if x ď y then uxv ď uyv for all u, v PM .

A morphism h from an ordered monoid pM, ., 1M ,ďMq to pN, ., 1N ,ďNq is a monoid
morphism from the monoid pM, ., 1Mq to pN, ., 1Nq which further satisfies x ďM y implies
hpxq ďN hpyq (i.e. it is also monotone w.r.t. the orderings).

We observe that any monoid can be turned into an ordered monoid by using “ (i.e. the
identity relation) as the order. In particular, pΣ˚, ., ǫ,“q, is an ordered monoid and is called
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the free ordered monoid on Σ. Another interesting class of examples of ordered monoids are
the ordered syntactic monoids of languages as described above. The map ηL :: x ÞÑ rxsL is
an ordered monoid morphism from pΣ˚, ., ǫ,“q to oSynpLq.

Definition 3 L is recognized by an ordered monoid morphism h : pΣ˚, ., ǫ,“q ÝÑ pM, ., 1,ďq
if there is an ideal X ĎM such that L “ h´1pXq.

The following is just a consequence of the above discussion:

Proposition 4 A language L over an alphabet Σ is regular if and only if it is recognized by
a finite ordered monoid.

Thus, recognition by ordered monoids provides an algebraic view of regular languages
that allows us to examine classes that are not closed under complementation. The syntactic
ordered monoid plays the role of the syntactic monoid in this setting:

Proposition 5 Let pM, ., 1,ďq be a finite ordered monoid that recognizes a regular language
L via the morphism h. Then, there is a surjective morphism hL from the ordered submonoid
phpΣ˚q, ., 1,ďq to the ordered syntactic monoid of L such that such that ηL “ hL.h.

We leave the proof of this proposition as an exercise to the reader.
We still have to show how to compute the ordereed syntactic monoid of a regular language.

The underlying monoid of oSynpLq is SynpLq which is computable. So, we just have to
compute ďL. This is a consequence of the following lemma.

Lemma 6 Let X “ trxsL | x P Lu. Then, for any x, y P Σ˚, rxsL ďL rysL iff for all
rusL, rvsL P SynpLq, rusLrxsLrvsL P X whenever rusLrysLrvsL P X. Thus, the ordered syntac-
tic monoid of any regular language is computable.

Proof: Suppose rxsL ďL rysL. By the definition of ďL, for all u, v P Σ˚, uxv P L whenever
uyv P L. But, his means that for all u, v P Σ˚, ruxvsL P X whenever ruyvsL P X.

For the converse, suppose uyv P L. Therefore rusLrysLrvsL P X and by the hypothesis
this means rusLrxsLrvsL P X. This means uxv P η´1pXq and thus uxv P L.

We are now in a position to characterize the class of languages in Σ1 and Σ2.

The class Σ1

Consider any formula ϕ “ Dx1.Dx2. . . . Dxm.ϕ
1 in Σ1 and a word w “ a1 . . . an such that

w |ù ϕ. Then, there is a valuation σ such that w “ w1ai1w2ai2 . . . wrairwr`1, r ď m and the
positions in the image of σ are in the set ti1, . . . iru.

Now, observe that the sequence ai1ai2 . . . air also satisfies the formula ϕ using the valua-
tion that sends xi to j if σpxiq “ ij. Moreover, any word in Σ˚ai1Σ

˚ai2 . . . arΣ
˚ also satisfies

ϕ. Thus, we have
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Proposition 7 Let ϕ be a formula in Σ1 with m quantifiers. Then

Lpϕq “
ď

tΣ˚a1Σ
˚a2 . . . arΣ

˚ | r ď m, a1a2 . . . ar |ù ϕu

A language of the form Σ˚a1Σ
˚a2 . . . arΣ

˚ is called a simple monomial and finite unions
of simple monomials is called a simple polynomial. Thus every Σ1 language is a simple
polynomial.

Proposition 8 A language is in Σ1 iff it is a simple polynomial.

Proof: The remark above proves one direction. For the other direction note that the formula
Dx1.Dx2. . . . Dxr.px1 ă x2q ^ . . . ^ pxr´1 ă xrq ^ a1px1q ^ . . . ^ arpxrq describes the language
Σ˚a1Σ

˚ . . . arΣ
˚.

A language is upward closed if uav P L whenever uv P L. Clearly every simple monomial
is upward closed and upward closed languages are closed under unions. Thus, as a corollary
to the above proposition we also have

Corollary 9 Every language in Σ1 is upward closed.

If a regular language L, with a FA on say n states, is upward closed then it may be
expressed as the following simple polynomial

L “ tΣ˚a1Σ
˚a2 . . . arΣ

˚ | r ď n, a1a2 . . . ar P Lu

and hence it is also in Σ1. Thus we have

Proposition 10 A language is in Σ1 iff it is upward closed.

This also leads to an algebraic characterization of Σ1 as follows:

Theorem 11 A language L is in Σ1 iff it is recognized by a morphism h to an ordered
monoid pM, ., 1q in which 1 ď s holds for all s PM .

Proof: Note that if 1 ď s then hpuavq “ hpuqhpaqhpvq ď hpuq1hpvq “ hpuvq. Since the
language is defined by an ideal it follows that if uv P L then uav P L and thus L is upward
closed and hence in Σ1.

For the converse, since the language is upward closed we have uv P L ùñ uwv P L and
so rusL.rǫsL.rvsL ď rusL.rwsL.rvsL for all u, v, w P Σ˚ and thus rǫsL ď rwsL for all w P Σ˚.
Thus oSynpLq satisfies 1 ď s.

Thus one may check whether a regular language belongs to Σ1 by computing its ordered
syntactic monoid and verifying that it satisfies 1 ď s. It turns out that it is easy to check
if the language of a finite automaton is upward closed (Exercise) and so the algebraic char-
acterization is not essential. However, it is the technique that is being enunciated here and
this works for Σ2 as well (while the ad hoc automata based algorithm does not.)

Theorem 12 Membership is decidable for Σ1.
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Exercise: Prove that the class of finite ordered monoids satisfying 1 ď s is closed under
products and division.

The class Σ2

A monomial is a language of the form A˚
0
a1A

˚
1
a2 . . . arA

˚
r where ai P Σ and Ai Ď Σ. A

polynomial is simply a finite union of monomials. We shall show that the class Σ2 is precisely
the class of polynomials and obtain an effective algebraic characterization for this class.

One direction is easy. A monomial A˚
0
a1A

˚
1
a2 . . . arA

˚
r , can be expressed by the formula

Dx1Dx2 . . . Dxr.@y.
ľ

1ďiďr

aipxiq ^
ľ

1ďiďr´1

pxi ă xi`1q

^ py ă x1q ùñ A0pyq ^ py ą xrq ùñ Arpyq ^
ľ

1ďiăr

ppy ą xiq ^ py ă xi`1q ùñ Aipyq

Proposition 13 Every polynomial is in Σ2.

The other direction is non-trivial and uses the factorization forest theorem in its proof.
We first establish some simple properties of polynomials.

Lemma 14 The class of polynomials over Σ is the least class of languages closed under
union and concatenation which contains all the finite languages as well as all languages of
the form A˚ for A Ď Σ.

Proof: Clearly all polynomials are members of the least class containing finite languages and
languages of the form A˚. For the converse, note that all finite languages are polynomials
and so are languages of the form A˚. Thus, it suffices to prove that the class of polynomials
is closed under union and concatenation. Closure under union follows from the definition of
polynomials. Given two monomials A˚

0
a1 . . . arA

˚
r and B0b1 . . . bmB

˚
r their concatenation is

the following polynomial:

A˚
0
a1 . . . arA

˚
r b1B

˚
1
. . . bmB

˚
m Y

ď

bPB0

A˚
0
a1 . . . arA

˚
r bB

˚
0
b1B

˚
1
. . . bmB

˚
m

Closure of polynomials under concatenation follows from the fact that pL1YL1
1
q.pL2YL1

2
q “

L1.L2 Y L1.L
1
2
Y L1

1
.L2 Y L1

1
.L1

2
.

In what follows, we write αpwq for the set of letters that appear in the word w. Next, we
show that the ordered syntactic monoids of languages in Σ2 satisfy an useful property.

Lemma 15 Let L be a language in Σ2 and let m be the total number of quantifiers in a
Σ2 formula ϕ that defines L. For any word u P Σ˚ and v P αpuq˚ we have xuNvuNy P L

whenever xuNy P L for all N ą m2 ` m, x, y P Σ˚. That is, ruN sLrvsLru
N sL ď ruN sL in

oSynpLq for all N ą m2 `m.
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Proof: Let ϕ “ Dx1x2 . . . xk@y1y2 . . . yl.ϕ
1 and let xuNy |ù ϕ. From a valuation σ assign-

ing positions within ρ “ xuNy for x1 . . . xk which satisfies @y1y2 . . . yl.ϕ
1 we manufacture a

valuation σ1 assigning positions in ρ1 “ xuNvuNy satisfying @y1y2 . . . yl.ϕ
1.

By our choice of N , we may write ρ as uk1umuk2 such that none of the positions within
the middle um is in the range of σ. We now consider a break up of ρ1 as xuk1um`k2vum`k1uk

2
y.

The map σ1 assigns all the xis which are assigned a position within the prefix xuk1 by rho

the same position in the corresponding prefix of ρ1. Similarly any xj assigned a position in
the suffix uk2y by σ is assigned the corresponding position within the same suffix of ρ1 by σ1.
Thus, all atomic formulas involving only x1, x2 . . . xk are either satisfied by both pρ, σq and
pρ1, σ1q or neither.

Suppose σ1
f is any extension of σ1 which also assigns positions in ρ1 for the variables

y1, y2, . . . yl. We show that there is an extension of σf of σ assigning positions in ρ for the
variables y1, y2, . . . yl such that any atomic formula involving x1, x2 . . . xk, y1, . . . yl is either
satisfied by both pρ, σf q and pρ

1, σ1
f q or neither.

If a variable yj is assigned a position within the prefix xuk1 or the suffix uk2y by σ1
f then

σf assigns the corresponding position in ρ for yj. Let Y be the set of such variables. Then,
it is easy check that both pρ, σf q and pρ, σ

1
f q satisfy the same set of atomic formulas w.r.t.

the variables tx1, . . . , xku Y Y .
Let yj1 , yj2 . . . yjr be the variables assigned positions in the infix um`k2vum`k1 by σ1

f .
Further suppose that the positions used are p1 ă p2 ă . . . ă pr1 with r1 ď r (since multiple
variables may be assigned the same position).

We pick one position, say qi, from each of the first r1 copies of t in the infix tm of ρ such
that the letter at position qi in ρ is the letter at position pi in ρ1. This is possible since
αpuvq Ď αpuq. The map σf assigns position qi to any variable that was assigned the position
pi by the valuation σ1

f .
Then pρ, σf q satisfies any atomic formula over tx1, . . . xk, y1, . . . , ylu iff it is also satisfied

by pρ1, σ1
f q. Hence pρ, σf q satisfies ϕ

1 iff pρ1, σ1
f q satisfies ϕ

1.
Thus, ρ, σ |ù @y1y2 . . . yk.ϕ

1 implies that ρ1, σ1 |ù @y1y2 . . . yk.ϕ
1, so that ρ1 |ù ϕ whenever

ρ |ù ϕ as required.

Let pM, ., 1,ďq be an ordered monoid. For any idempotent e P M , we write Se for the
semigroup generated by the elements ts | e ďJ su.

Proposition 16 If L is language in Σ2 then its ordered syntactic monoid satisfies ese ďL e,
for every idempotent e and every s P Se.

Proof: Let e ďJ s in oSynpLq. Therefore s “ rvsL for some v and since e ďJ rvsL we may
assume e “ rxvysL for some x, y P Σ˚. In particular, if e ďJ s then we may assume that
e “ rusL and s “ rvsL and αpvq Ď αpuq.

Now, if s P Se the s “ s1s2 . . . sk, e ďJ si, 1 ď i ď k. Let si “ rvisL. Therefore e “ ruisL
such that αpviq Ď αpuiq. Let u “ u1u2 . . . uk and v “ v1v2 . . . vk. Then s “ rv1 . . . vksL.
Further rusL “ ek “ e. Thus, if s P Se then we may assume s “ rvsL and e “ rusL and
αpvq Ď αpuq.
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Then, by Lemma 15, rusNL rvsLrus
N
L ďL rus

N
L . But e is an idempotent and so we get

rusLrvsLrusL ďL rusL as required.

Next we show that languages recognized by monoids satisfying ese ď e for s P Se are
always polynomials. This is a nontrivial fact and uses the factorization forest theorem in its
proof.

Lemma 17 Let pM, ., 1,ďq be an ordered monoid satisfying ese ď e whenever s P Se and
e is an idempotent. Let X be any ideal in M . Let h : pΣ˚, ., ǫ,“q ÝÑ pM, ., 1,ďq be a
morphism. Then h´1pXq is a polynomial.

Proof: The proof essentially follows the argument used to obtain well-typed regular expres-
sions for h´1psq for each s. Let

Li
s “ tw | hpwq “ s, w has a factorization tree of height ď iu

. We construct a polynomial P i
s for each 0 ď i ď 5|M | and s P M so that Li

s Ď P i
s and

hpP i
sq Ď sÓ, where sÓ is the ideal tt|t ď su.
We let

P 0

s “
ÿ

ta | a P ΣY tǫu, hpaq “ su

which is clearly a polynomial satisfying the required properties.
If s is not an idempotent then we set

P i`1

s “ P i
s `

ÿ

tP i
u.P

i
v | u.v “ su

which is again a polynomial since polynomials are also closed under concatenation (and
union). Also, hpxyq with x P P i

u and y P P i
v is hpxq.hpyq ď u.v ď s as required. If

w P Li`1

s zLi
s, since s is not an idempotent we must have u, v and w “ w1.w2 such that

w1 P L
i
u, w2 P L

i
v and s “ uv. Therefore w P P s

i`1
.

Finally, if e is an idempotent then we set

P i`1

e “ P i
e `

ÿ

tP i
u.P

i
v | u.v “ eu ` pP i

eqA
˚pP i

eq

where A is the set of letters that appear in the words of the language h´1peq. Observe that
e ďJ hpaq for each a P A.

That P i`1

e is a polynomial follows from closure under concatenation and union. If x P P i
u

and y P P i
v with uv “ e then hpxyq ď e as above. If x, y P P i

e and v P A˚ then hpxvyq “
hpxqhpvqhpyq “ ehpvqe. But e is an idempotent and hpvq P Se and therefore ehpvqe ď e

as required. Finally, let w P Li`1

e zLi
e. We need to show that w P P i`1

e . If the root of the
factorization tree for w has two children then the proof proceeds as in the previous case. If
the root has at least 3 children then w “ w1w2 . . . wk, k ě 3 such that wi P Li

e. Thus, by
induction hypothesis w1, wk P P i

e . Further, by definition αpwiq Ď A for each 1 ď i ď k and
thus w2w3 . . . wk´1 P A

˚. Thus w P P i`1

e .

The proof of the Lemma is now easy. Let Ps “ P
5|M |
s . Clearly Ps is a polynomial such

that h´1psq Ď Ps and hpPsq Ď s Ó. The polynomial
Ť

sPX Ps is the language h´1pXq since
sÓĎ X for each s P X.

As a consequence of Propostions 13,16 and Lemma 17 we have the following theorem:
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Theorem 18 A language L is in Σ2 iff it is a polynomial iff oSynpLq satisfies ese ďL e for
every idempotent e and s P Se. Thus, the membership problem for Σ2 is decidable.

The proof of the above theorem also showed that any ordered monoid satisfying ese ď s

for all s P Se recognizes only languages in Σ2.

Exercise: Show that the class of ordered monoids satisfying ese ď e for all idempotents e
and s P Se is closed under products and division.
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