
Lecture 5: Schutzenberger’s Theorem

In this lecture we shall prove the theorem of Schutzenberger that relates languages rec-
ognized by aperiodic monoids with regular languages that can be described via star-free
regular expressions. The proof described below is an adaptation of the proof given by Nick
Pippenger in [1] (and Pippenger indicates that his proof follows the original presentation by
Schutzenberger in [2]).

Theorem 1 (Schutzenberger) Every aperiodic language can described via star-free expres-
sions.

The proof of this theorem proceeds by induction on the size of the monoid recognizing the
language L. To start with we set out a few lemmas that help us to carry out the inductive
argument. In this lecture every monoid we consider will be aperiodic.

Lemma 2 For any x in an aperiod monoid M , if x = pxq then x = px and x = xq.

Proof: Clearly x = pixqi for each i. But, since M is aperiodic, there is an N such that
pN = pN+1. Thus, x = pNxqN = pN+1xqN = px. Similarly x = xq.

One easy consequence of this lemma is that if e = ab then e = a and e = b for the identity
e of an aperiodic monoid M .

We say that a subset I of M is an ideal if IM ⊆ I and MI ⊆ I. Thus, an ideal is a
subset that is closed w.r.t. multiplication (on both sides) by the elements of the monoid.
Ideals are interesting subsets as one can define quotient monoids via ideals.

Definition 3 Let M be an monoid and let I be an ideal of M . Then, there is a natural
monoid M/I whose elements are M − I ∪{i} and whose multiplication operation . is defined
as follows:

• x.i = i.x = i.i = i

• x.y = i, if x.y ∈ I

• x.y is the same as x.y in M otherwise.

It is easy to check M/I is a monoid. There is the obvious morphism ηI from M to M/I
which is identity on the elements of M − I and maps every element of I to i. Note that if
a language L is recognized by a morphism h as h−1(I) in M then the same is recognised by
η ◦ h to M/I as the pre-image of {i}. We shall simply write h to denote the composed map
η ◦ h to M/I.

Thus, if I is an ideal of size more than 2 then any language recognized as the preimage
of I can be recognised via a smaller monoid (M/I). More generally,
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Lemma 4 Let M be an finite aperiodic monoid, I be an ideal and let either I ⊆ X or
X ∩ I = ∅. Then, any language L recognized as the preimage of X is recognized via the
monoid M/I. In particular, if I has atleast 2 elements then L is recognized by a smaller
aperiodic monoid.

Definition 5 With each element x of a monoid M we can associate a interesting ideal F (x),
called the forbidding ideal of x.

F (x) = {y | ∀p, q.pyq 6= x}

It consists of all the elements that cannot “divide” x or cannot generate x via multiplication.

It is easy to check that F (x) is an ideal for any x ∈ M .

Lemma 6 Let h be a morphism from Σ∗ to M . Then, h−1(x) = (ηF (x) ◦ h)
−1(x). Thus, if

F (x) has at least 2 elements then the language recognized as h−1(x) can be recoginized using
a smaller monoid.

This follows from the fact that x 6∈ F (x) and F (x) is an ideal.
We are now in a position to describe the main ideas behind the proof. The proof,

understandably, proceeds by induction on the size of the monoid M . If M is the trivial
monoid, then the only languages recognised via M are ∅ and Σ∗ and clearly both are star-
free languages.

For the induction step, consider any language L recognized via some monoid M . Firstly,
for any X = {x1, x2, . . . , xk}, h

−1(X) is the union of the sets h−1(x1), h
−1(x2), . . ., h

−1(xk).
Thus, it suffices to show that h−1(x) can be expressed as a star-free expression involving
languages definable using aperiodic monoids smaller than M .

If F (x) has at least two elements, this would just be an application of Lemma 6. Other-
wise, we need to do a lot of hard work. The idea is to show that we can find a collection Y of
elements in M such that h−1(x) can be described as a star-free expression involving h−1(y),
y ∈ Y , and further, for each y ∈ Y , F (y) strictly contains F (x). Once we do this, notice
that we can always focus our attention on h−1(x) for only those elements with |F (x)| > 1
and complete our proof using Lemma 6.

Observe that F (e) = M \ {e} for an aperiodic monoid (this follows from Lemma 2).
Thus, h−1(e) poses any problems only in the case that M has fewer than 2 elements and we
leave that as an exercise and assume henceforth that we are only interested in h−1(x) for
x 6= e.

As a first step in that direction, we show that languages recognised by any ideal of M ,
even those of size 1, can be reduced to star-free expressions involving languages definable
via smaller monoids.

Lemma 7 If L = h−1(I) for some ideal I in M then L can be expressed using star-free
expressions involving languages which are recognized by smaller aperiodic monoids.
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Proof: If the ideal I = ∅ then L = ∅ and it can be described by the star-free expression ∅.
Otherwise |I| ≥ 1. (When |I| > 1, we can appeal to Lemma 7 to complete the proof.

However, the following argument does not distinguish between this case and when |I| = 1.)
Let A = {a | h(a) ∈ I}. Clearly, for each a ∈ A, the expression Ea = ∅.a.∅ defines a
language La contained in L (since I is an ideal). Thus, we could focus our attention on
writing star-free expressions to cover words in L \

⋃
a∈A

La.
Pick any word w in L. Consider a minimal substring of u of w that is in L.
If u = ǫ then the identity of M is in I which means that M = I and thus L = Σ∗. If

u = a for some a ∈ Σ then w ∈ La and we need to do nothing in this case.
Thus we only need to consider the case when u = avb for some v. Let h(v) = y. Note

that, by the minimality of u, none of y, h(a)y or yh(b) can be in I.
Note that, since I is an ideal, h(w1).a.y.b.h(w2) ∈ I for each w1, w2 ∈ Σ∗. Thus,

∅.a.h−1(y).b.∅ ⊆ L. Note that this language contains the word w. If we show that h−1(y)
may be described via a smaller monoid, this would take us one step closer to a star-free
expression for L, since we have now managed to cover the word w.

Next we show that F (y) has at least two elements, thus establishing that h−1(y) can be
accepted via a smaller monoid (M/F (y)). Since y 6∈ I and I is an ideal, I ⊆ F (y) and since
I is nonempty, there is at least one element in F (y)∩ I. We now show that there is at least
one other element in F (y).

Consider h(a)y. If h(a)y 6∈ F (y) then there must be p, q such that y = ph(a)yq. Thus
y = ph(a)y and multiplying both sides by h(b) we get yh(b) = ph(a)yh(b) which is in I
since h(a)yh(b) ∈ I. But this contradicts the minimality of u (since then vb ∈ L). Thus,
h(a)y ∈ F (y) \ I. Thus F (y) has at least two elements.

Finally, even though there are infinitely many w’s outside of
⋃

a∈A
La in L, the monoid

M is finite and so is the alphabet Σ and thus we only have finitely many choices for triples
of the form (a, y, b). Thus, we can describle all of L \

⋃
a∈A

La as a finite union of languages

of the form ∅.a.h−1(y).b.∅, with |F (y)| > 1. This completes the proof of this lemma.

The other key idea behind Schutzenberger’s proof is the following technical lemma :

Lemma 8 x = (xM ∩Mx) \ F (x)

Proof: Let y ∈ (xM ∩ Mx) \ F (x). Thus y = px and y = xq and x = rys. Then, by
Lemma 2, y = xq = rysq. Thus y = ry. Similarly, y = px = prys and thus y = ys. Thus
y = rys = x.

We say “language defined by x” to mean h−1(x). Next we show that h−1(x) can be
expressed as a star-free expression involving languages defined by other elements for which
the forbidding set is larger than F (x), for any x 6= e. (When x = e, F (x) = M − {e} and
assuming that |M | > 2 we can use Lemma 7.)

Lemma 9 Let x ∈ M , x 6= e, then there is a subset Y ⊆ M such that, ∀y ∈ Y. F (y) strictly
contains F (x) and h−1(x) can be expressed as a star-free expression involving h−1(y), y ∈ Y
and other languages definable via smaller aperiodic monoids.
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Proof: We know that x = (xM ∩ Mx) \ F (x). Note that h−1((xM ∩ Mx) \ F (x)) =
h−1(xM \ F (x)) ∩ h−1(Mx \ F (x)) and h−1(xM \ F (x)) = h−1(xM) \ h−1(F (x)).

F (x) is an ideal and so, using Lemma 7, h−1(F (x)) can be expressed via smaller monoids.
We show that for each w ∈ h−1(xM \F (x)) one can find a letter a and an element y such that
h−1(y).a.∅ \ h−1(F (x)) ⊆ h−1(xM \ F (x)), w ∈ h−1(y).a.∅, where F (y) has more elements
than F (x). This combined with the fact that h−1(F (x)) is recognized by smaller monoids
(by Lemma 7) gives the inductive argument.

Let w ∈ h−1(xM \F (x)). Let u be the shortest prefix of w such that h(u) ∈ (xM \F (x)).
If u = ǫ, then then e = xd for some d ∈ M where e is the identity of M . This contradicts
the aperiodicity of M unless x = e. But by assumption x 6= e. Thus, we may assume that u
is not ǫ.

Thus u = va for some v such that h(v) = y 6∈ (xM \ F (x)). We claim that h−1(y).a.∅ ⊆
h−1(xM). In proof, h(avw′) = h(va)h(w′) = xm.d = xm′. Thus it is in xM . Thus,
h−1(y).a.∅ \ h−1(F (x)) is a subset of h−1(xM \ F (x)) containing w.

Next we show that F (y) has more elements than F (x). First of all y 6∈ F (x). Otherwise,
yh(a) will also be in F (x) leading to a contradiction. Thus F (x) ⊆ F (y). We now show
that yh(a) is also in F (y). Suppose yh(a) is not in F (y). Then y = pyh(a)q. This means
that y = py and y = yh(a)q. Thus y = xdq (since yh(a) ∈ xM) and thus y ∈ xM . But we
already showed that y 6∈ F (x) and thus y ∈ xM \ F (x). This contradicts the minimality of
u. Thus it must be the case that yh(a) ∈ F (y) and thus F (y) has at least one more element
than F (x).

Thus, we have picked an arbitrary element w of h−1(xM \ F (x)) and shown that there
is a star-free regular expression involving h−1(y) for some y with F (y) strictly containing
F (x), that describes a language containing w and which is contained in h−1(xM \ F (x)) ∪
h−1(F (x)). Since M and Σ are finite sets, it follows that we can write a star-free regular
expression involving some elements y1, . . . yk of M , where F (yi) strictly contains F (x) for
each i, that describes a language containing h−1(xM \ F (x)) and which is contained in
h−1(xM \ F (x)) ∪ h−1(F (x)). The proof follows from Lemma 7 and the fact that star-free
expressions may use the boolean operations.

A similar argument works for h−1(Mx\F (x)) and this completes the proof of this lemma.

Finally, we can establish Schutzenberger’s theorem.
Proof: As indicated earlier if M is the trivial monoid, it can only describe ∅ and Σ∗ and
both of these are star-free languages. There is only one aperiod monoid with |M | = 2 and
we leave that case as an easy exercise.

For the induction step, since star-free languages are closed under union, it suffices to
consider h−1(x) for some x ∈ M . If x = e, since |M | > 2 we apply Lemma 7 and complete the
proof from the induction hypothesis. Otherwise, applying Lemma 9 twice, we may conclude
that there is a set Y ⊆ M such that F (y) contains two more elements than F (x) for each
y ∈ Y and further h−1(x) can be expressed as a star-free expression involving h−1(y), y ∈ Y
and other languages definable using small aperiodic monoids. But then h−1(y) is recognizable
via a smaller monoid M/F (y) for each y ∈ Y . Thus h−1(x) can be described via a star-free
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expression that only involves languages definable via smaller aperiodic monoids and we may
now apply the induction hypothesis to conclude that h−1(x) is an aperiodic language.
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